
International Journal of Computer Applications (0975 – 8887)

Volume 55– No.8, October 2012

17

Query Processing in Distributed Data Warehouse

using Proposed Dynamic Task Dependency

Scheduling Algorithm

S. Krishnaveni and M. Hemalatha

Department of Computer Science
Karpagam University, Coimbatore

Tamilnadu, India

ABSTRACT

A data warehouse is an electronic storage of huge amounts of

data. It is also a system for retrieving and managing a data. In

distributed data warehouse, data can be shared across multiple

data repositories. Each may belong to one or more

organizations. Query sorting is the problem of formatting the

number of queries to be selected together. Reducing the usual

completion period of a random order is a common concern. In

this paper we propose Dynamic Task Dependency Scheduling

(DTDS) Algorithm for query scheduling. Here our proposed

algorithm takes the arrival time, size and also it considers the

query dependency from the given query. It is also adaptable

for all distributed data warehouse systems. Performance

results show that the proposed algorithm gives less processing

time and minimum query cost compared to others.

Keywords

Data Warehouse, Random Scheduling (RS), Optimal

Resource Constraints (ORC), Grouping based Fine-grained

Job Scheduling (GFJS), Heuristic Algorithm (HA), Dynamic

Task Dependency Scheduling (DTDS)

1. INTRODUCTION
Stored data are uploaded from the operational systems in the

data warehouse, where the data can go through an operational

data for supplementary operations before it is used for

reporting. The crucial mechanisms of a data warehousing

system are,

 To retrieve and analyze the data

 To extract, transform and load data

 To manage data dictionary

Main data warehousing applications are personal productivity,

data query and reporting and planning and analysis. Statistical

packages, spreadsheets and graphics tools are personal

productivity applications that are used in individual computers

for manipulating and presenting data. Small amount of

warehouse data required to develop a standalone environment.

Distributive warehouse data are accessed by data query and

reporting applications which are list oriented queries and they

provide an overview of historical data. The planning analysis

applications share a set of user requirements. They cannot be

met by applying query tools against the historical data

maintained in the warehouse repository.

Modern trends in distributed data warehouse have improved

the significance of query selecting. In distribution logistics

some of the large quantity queries are being exchanged by a

number of small queries, which have to be practiced in

extremely rigid time gaps. Distributed data warehouse

containing more than two local data warehouses at each

collection point and coordinator site. If the client gives queries

in distributed system, query processing performed at local

sites [1]. Skalla system is designed for distributed data

warehouse to evaluate OLAP queries. Skalla translates OLAP

queries to reduce the amount of data that needs to be shipped

among sites.

Query selecting is the process of salvage items from their

storage locations to fill customer orders, is known as the most

time consuming and laborious component of the warehousing

activities [2]. So the query selecting operation is a strong

candidate for productivity improvement studies. Performance

and competence of the query selecting operations are inclined

by four vital factors, like warehouse layout, map-reading and

sorting procedure, storage policy and grouping method [3].

Scheduling is used to form a resource’s start and end times of

activity and satisfy the execution of resource capacity

constraints, and optimize few sets of performance objectives

to the extent possible. Task scheduling is the designing of

tasks or queries to specific physical resources to reduce the

cost function processed by the client. This is an NP-complete

problem and different heuristics may be used to reach an

optimal or near optimal solution [4]. Effective computation

and task scheduling are rapidly becoming one of the main

challenges in various computing systems and is seen as being

vital for its success.

2. LITERATURE REVIEW
We survey various task scheduling algorithms that focuses

task scheduling, query selecting and scheduling approaches,

time and cost minimizations, etc. The simple allocation

schemes such as First Fit back fills (FF) are used in practice

[5]. In any transactions First In First Out (FIFO) algorithm

does not prioritize and transactions are performed based on

their arrival time. Scheduling procedures are based on First-

Come-First-Serve (FCFS) algorithm [6] which allocates the

resources for tasks based on their arrival time. The benefit of

FCFS grants the level of determinism on the waiting time of

each task [7]. Demerit of FCFS shows, the tasks in the ready

queue cannot be scheduled immediately due to lacking of

resources but the tasks in the queue would be able to execute

given the currently accessible resources. These latter tasks are

blocked from executing while the system resources are

remaining idle [8].

Hierarchical Job Scheduling (HJS) model [9] is based on a

hierarchical approach using global and local level scheduler.

The global scheduler uses a separate queue for different type

of tasks and local scheduler uses a single queue for all tasks

for scheduling with the FCFS, SJF or FF policy. The global

scheduler has more functions, from that anyone is identical to

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.8, October 2012

18

the resources are requested for participating clusters by a task

or queries. Others are the best utilization of the available

clusters.

In Scheduling Framework for Bandwidth-Aware Job

Grouping-Based scheduling (SFBAJG) algorithm [10], tasks

are scheduled in system by the use of bandwidth-aware

scheduling and also consider their computational and

communication capabilities of the resources. It uses network

bandwidth of resources for priority determination of every

resource. At the time of information retrieval, task grouping

method was used and maximize the resource utilization. After

that the grouped tasks are sent to earliest finished resources.

A task scheduling model based on Maximum Processor

Utilization and Throughput (MPUT) scheduling algorithm

[11] that exploits the CPU utilization, throughput and reduces

turnaround time. This Job Schedule Model Based (JSMB)

algorithm provides reliability with sensible load balance but it

does not contemplate any constraints of tasks and resources.

In Highest Response Next (HRN) Scheduling [12] tasks are

allotted to the processors based on their priority as well as

processor’s capability. It provides high responses with

memory, CPU requirement and time. This has effectively

completed all the tasks quickly than First Come First Serve

(FCFS) and Shortest Job First (SJF). But it is not suitable for

huge number of task allocation as there are considerable

amount of CPU and memory wastage is there. HRN’s

turnaround time is also high.

In Resource Co-Allocation for Scheduling Tasks with

Dependencies (RCSTD) algorithm [13], each step combines

the clusters based on the dependencies between the combined

clusters. Therefore these clusters are combined if any

dependencies exist between current and former clusters. The

aim of this algorithm is to enhance the load balancing

efficiency and minimum time for the execution of tasks. This

algorithm minimizes the task execution time and it has a

dynamic nature as a result of within a cluster the tasks are

allocated to the appropriate resource on that it can be

scheduled at the earliest time. This RCSTD algorithm found a

sensible load balancing for all the resources for a set of tasks

scheduled for each resource in the system. Cluster

communication overhead and unspecified task requirements

are the main demerit for this algorithm.

Optimal Resource Constraint (ORC) Scheduling [14] allocates

tasks according to their processor’s capabilities. ORC applies

Round Robin (RR) scheduling and a Best Fit algorithm to

distribute the tasks for available processors. It gives better

performance than FCFS, SJF and RR. It reduces the average

waiting time, turnaround time and minimizes the process

allocation complexity. High communication overhead is the

difficulty for this algorithm.

Grouping-based Fine-grained Job Scheduling (GFJS)

algorithm [15,16] is based on resource characteristics. This

algorithm integrated with Greedy and FCFS algorithms

improve the Fine-grained jobs. Then the coarse-grained tasks

are formed by the grouping of fine-grained jobs. These

coarse-grained are allocated to the available resources

according to their capability (MIPS) and bandwidth (Mb/s).

GFJS maximizes the resource utilization, reduces the task

execution time, processing time and network latency. High

preprocessing time & memory size constraint inconsiderable

are the main drawbacks for this algorithm. Grouping strategy

considers the processing power, memory size and bandwidth

requirements of each task realize the real grid system.

Provides a real grid computing environment and reduces the

waiting time of the grouped tasks [17].

Heuristic algorithm [18] is used in experience based learning

(EBL) for calculating the processing time. Heuristic algorithm

is not considering all the possible schedules. It selects some

possible schedules that are having the shortest sum of

completion time and this set contains the optimal one. Patient

scheduling is done by the use of this algorithm. This shows

the patient’s minimal waiting time in hospital and minimizes

the total completion time.

In distribution logistics few-but-large quantity orders are

being replaced by many-but-small orders. The optimal routing

policies for a warehouse with multiple cross aisles that can be

found by using dynamic programming [19]. There is a model

to determine the optimal layout for minimizing the throughput

time of a data warehouse and the yields are randomly stored

[20]. Construction Management in Decision Support System

(CMDSS) can provide exact and timely information to

support project managers in construction decision-making

[21].

Grouping queries to reduce the entire travel time for a

multiple-aisle selector-to-part warehouse considered and the

problem is still NP-hard in strong sense when the quantity of

orders per batch is better than two [22]. A branch-and-price

algorithm is intended to solve instances of modest size to

optimality. For larger instances, it is instructed to use an

iterated descent approximation algorithm.

In [23] focus on finding an approach for determining the

optimal selecting batch size to order-pickers in a typical 2-

block warehouse that is a simple but efficient approach also

supports the average waiting time of a random order is a

convex perform of the group size. It is difficult to capture the

impact of aisle blockage, composite-Poisson arrivals or other

storage methods and various layouts.

More than 300 papers surveyed in [24] and classified the

literature on setup time consistent with store environments,

group and non-group setup times, sequence-dependent and

independent setup times (costs), and task and group

availability models. Also they mentioned the issues of

resource-dependent task and setup constraints, task and set-up

corrosion, and task or group transportation. They suggest that

future researches have to concentrate a specific solution

method.

Every client order contains a set of tasks that must be shipped

as one group at the same time. They proposed a new

Minimum Flow Time Variation (MFV) dispatching rule for

client order scheduling in a normal task shop to minimize the

total completion time of all tasks within the same order [25].

This rule will efficiently minimize the finished goods’ storage

level and controls the waiting time before they can be shipped

but it does not concentrate the finished time.

The query grouping issue is essential for operating manual

picker-to-parts query or task selecting systems in distribution

warehouses efficiently. The proposed meta-heuristics [26] are

related to the different capacities of selecting devices,

antithetic routing policies and required scenarios. They

suggest the researchers to focus the minimization of overall

query or task selecting time for issues involving due dates.

Depending upon this literature survey we have concluded that

existing task scheduling algorithms, which are used in grid

computing, are more efficient than other data warehouse

related algorithms. In this paper, we are implementing four

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.8, October 2012

19

existing algorithms and also proposed a Dynamic Task

Dependency Scheduling algorithm which overcomes the

demerits of existing task scheduling algorithms and it

outperforms in terms of time and query cost.

3. OVERVIEW OF EXISTING

SCHEDULING ALGORITHMS
Task is the smallest identifiable and an essential piece of work

to be done or to be undertaken. Task scheduling is the

designing of tasks or queries to specific physical resources to

minimize the cost function and reduce the overall completion

time processed by the client. It is one of the main challenges

in distributed data warehouse system. Some of the existing

task scheduling algorithms are taken for the comparison with

proposed systems. They are Random Scheduling, Optimal

Resource Constraints, Grouping-Based Fine-Grained Job

scheduling and Heuristic Scheduling algorithms.

3.1 Random Scheduling (RS) Algorithm
Random scheduling is a randomized version of shared

queries. It assigned resources for all queries randomly.

Algorithm steps

1. Initially available queries are assigned to resources

randomly

2. Find the execution time of queries from the current

random solution

3. Again generate another random solution and find

the execution time of queries

4. If new execution time better than the previous

execution time then continues with step2

5. If there are no solutions available then previous best

solutions then terminate

3.2 Optimal Resource Constraint (ORC)

Scheduling algorithm
ORC allocates tasks according to their processor’s

capabilities. It includes the mixture of Best fit algorithm and

Round Robin scheduling to allocate the tasks in queue pool.

Algorithm Steps

1. Put all incoming queries into the queue pool

2. Searches the all queries in the queue and check the

resources and its capability

3. The scheduler will allocate the queries to the

resources based on its capability and tasks size

4. The tasks put it in Round Robin queue and again

search the resource’s capability to process the

queries

5. After the completion of allotted queries by the

resource, the queries are allotted to the best fit free

resources

6. This process will be continued until all the queries

are completed

3.3 Grouping-Based Fine-Grained Job

Scheduling (GFJS) Algorithm
Based on the resource status, lightweight tasks are grouped as

coarse-grained tasks consistent with processing capabilities

(in MIPS) and also the bandwidth (in Mb/s) of the available

resources. The processing capability and bandwidth are used

to constrain the sizes of coarse-grained tasks.

Algorithm Steps

1. The scheduler receives the queries and gets

resources status

2. According to the size of queries, query_list is sorted

in descending order

3. Based on the resource status, small queries can be

grouped as coarse-grained tasks according to

processing capabilities and the bandwidth of the

available resources

4. Processing time of the coarse-grained task should

not exceed the expected time

5. Here only the processing capacity and bandwidth

are used to constrain the sizes of coarse-grained

6. If any new tasks come, it will be allocated to an

appropriate resource without grouping, if a coarse-

grained task running in that resource.

7. Then the fine-grained task can be grouped as several

new tasks and this group size should be less than

the capacity of available resources

This method could sufficiently utilize the capability of the

resources since the grouped tasks match the capacity of

resource in a more proper way. When there is no more

resource left, FCFS algorithm is used, once a resource node

finishes its task, it will be assigned a new grouped task.

3.4 Heuristic Algorithm (HA)
By using this heuristic method, only some schedules need to

be considered that will contain the optimal schedule. The

heuristic function is selected such that the schedules that are

created by this function should contain the optimal schedule.

The query scheduling problem can be effectively solved using

this heuristic method. Thus the optimal schedule having the

minimum total weighted completion time and total tardiness is

obtained.

Algorithm Steps

1. Scheduler collects the details of the number of

queries, number of resources and the number of

queries already assigned to each resource

2. Calculate the weighted sum of total completion time

and total delay of each resource then tries to

minimize the weighted sum by rearranging list of

queries

3. Generate all possibilities for rearranging queries and

resources to minimize the overall weighted sum

4. Among these generated the correct possible

scheduling sequences select one with the minimum

weighted sum of total completion time and total

delay

5. Every iteration the weighted sum is calculated based

on previous total completion time of query and

delay of each resource

Though these existing algorithms work fine there are few

demerits, to overcome these issues we propose a Dynamic

Task Dependency Scheduling Algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.8, October 2012

20

4. PROPOSED DYNAMIC TASK

DEPENDENCY SCHEDULING (DTDS)

ALGORITHM
Proposed Dynamic Task Dependency Scheduling algorithm

schedules tasks in distributed data warehouse systems by

considering their query dependency and resource status. The

main aim of this algorithm is to minimize processing time of

the tasks and reduce the memory size.

Fig 1: Framework for Proposed DTDS Algorithm

To start with, collect all the queries from client and sorting

them by size and arrival time. Then check resource or

processor status. If the resource is in running state just skip

and search the other resource. When find the resource is in

waiting state, queries are scheduled and mapped into that

particular resource based on its dependency. Again resources

are mapped to queries based on earliest free time of the

resource and earliest start time of the query. If the resource is

free check out all dependent queries are executed. Then insert

the independent queries based on sorting order until all the

queries are executed which is shown in Fig.1.

Proposed DTDS Algorithm Steps

1. Collect all the queries and sort them according to

the size and arrival time

2. Initially queries are first scheduled and mapped to

resources by its dependency

3. The resources are mapped to the queries based on

earliest free time of the resource ri and the earliest

start time of the query qi on the resource ri

4. For each resources check if the resource is in

running state, if it is skipping that resource then

select next one

5. If the resource is having any available slot check

whether the dependent queries are executed

6. If depended queries are executed insert this query

based on sorting order

7. Repeat steps from 4 until all queries are executed

5. IMPLEMENTATION & RESULTS
Queries are randomly generated by the client in a distributed

data warehouse environment. Submitted queries are allocated

into different inter-processors according to scheduling

algorithms. After query processing is completed the results

are collected from inter-processors by the server and sent to

the corresponding client. Results are compared based on

processing time (in seconds) and memory size (in

bytes/1000). While comparing various scheduling algorithms

our proposed Dynamic Task Dependency Scheduling

Algorithm performs well. So the proposed DTDS algorithm

yield results in minimal query cost.

5.1 Data Set Description
In this work food mart data set has been used. It contains

twenty four relevant tables that are stored in MS Access

database. The tables are randomly distributed into different

sites.

5.2 Performance Analysis

5.2.1 Performance of various scheduling

algorithms with Time
Table 1 shows the processing time (seconds) for different

number of queries for Random Scheduling (RS), Optimal

Resource Constraints (ORC), Grouping-Based Fine-Grained

Job Scheduling (GFJS), Heuristic Algorithm (HA) and

proposed Dynamic Task Dependency Scheduling (DTDS)

algorithms.

Table 1. Process Time for number of queries

Number

of

Queries

Time (seconds)

RS ORC GFJS HA DTDS

10 25 15 10 6 4

20 25 20 18 12 10

30 35 25 22 15 10

40 35 28 25 19 14

50 45 32 25 24 18

60 70 40 28 24 23

70 95 40 30 32 29

80 105 48 32 38 35

90 120 63 40 38 36

Fig 2: Performance of Scheduling Algorithms with

Processing Time

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.8, October 2012

21

Fig. 2 shows the processing time of RS, ORC, GFJS, HA and

proposed DTDS algorithms with a number of queries and it

proves that the proposed DTDS algorithm outperforms than

other four existing algorithms. While the total number of

queries increases the processing time is less in the proposed

DTDS algorithm when compared with other existing

algorithms.

5.2.2 Performance of various algorithms with

Memory Size
 The Table 2 shows the memory size (in bytes/1000)

for different number of queries for different algorithms (RS,

ORC, GFJS, HA and proposed DTDS).

Table 2. Memory size for number of queries

Number

of

Queries

Memory Size (bytes/1000)

RS ORC GFJS HA DTDS

10 180 150 110 70 25

20 340 280 190 150 55

30 500 430 280 200 125

40 660 600 370 220 125

50 820 750 460 280 165

60 1020 800 570 375 165

70 1200 880 680 420 205

80 1200 1050 770 500 275

90 1400 1180 870 560 315

Fig 3: Performance of Scheduling Algorithms with

Memory Size

Fig. 3 Despites the memory size of RS, ORC, GFJS, HA and

proposed DTDS algorithms with a number of queries. It

shows that the proposed DTDS algorithm outperforms than

other existing algorithms. While the total number of queries

increases the memory size is less in the proposed DTDS

algorithm when compared with other existing algorithms.

6. CONCLUSION AND FUTURE WORK
In this paper, we surveyed various scheduling algorithms

which are used in data warehouse as well as grid computing.

From that we took four existing scheduling algorithms for

comparison. Food mart data set was used and it contains

twenty four relevant tables which are randomly distributed in

various sites (inter-processors). Implementation result has

shown the processing time (seconds) and memory size

(bytes/1000) with respect to the number of queries. RS

algorithm assigned resources for all queries randomly and

gave the result to the client. ORC algorithm schedules the

queries according to their processor’s capabilities. GFJS

algorithm schedules the queries based on the processor’s

processing capability and bandwidth. Heuristic algorithm

(HA) selects few possible schedules that are contained

optimality and shows the result in short period. Proposed

Dynamic Task Dependency Scheduling algorithm schedules

the queries based on its dependency as well as resource status.

In the above performance analysis we found that the proposed

DTDS algorithm outperforms than other existing algorithms.

Our future work will be focused on resource management in

the distributed data warehouse for avoiding the interruptions

at the time of system failure.

7. ACKNOWLEDGEMENT
We thank the Karpagam University for the Motivation and

Encouragement to make this work as successful one.

8. REFERENCES
[1] Akinde, M.O., Bhlen, M.H., Johnson, T., Lakshmanan,

L.V.S., Srivastava, D., 2003. Efficient OLAP query

processing in distributed data warehouses. Information

Systems 28, 111-135.

[2] Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco,

J.M.A.T., 2003. Facilities Planning. John Wiley & Sons,

New York, chap. 7, 432-444.

[3] Petersen, C.G., 1997. An Evaluation of Order Picking

Routing Policies. International Journal of Operations &

Production Management 17 (11), 1098–1111.

[4] Raksha Sharma, Vishnu Kant Soni, Manoj Kumar

Mishra, Prachet Bhuyan, 2010. A Survey of Job

Scheduling and Resource Management in Grid

Computing. World Academy of Science, Engineering

and Technology 64, 461-466.

[5] Vijay Subramani, Rajkumar Kettimuthu, Srividya

Srinivasan, Sadayappan, P., 2002. Distributed Job

Scheduling on Computational Grids using Multiple

Simultaneous Requests. 11th IEEE International

Symposium on High Performance Distributed

Computing, 359-366.

[6] Claus Bitten, Joern Gehring, Uwe Schwiegelshohn,

Ramin Yahyapour, 2000. The NRW-Metacomputer-

Building Block for a Worldwide Computational Grid. 9th

Heterogeneous Computing Workshop, 31-40.

[7] Carsten Ernemann, Volker Hamscher, Uwe

Schwiegelshohn, Ramin Yahyapour, 2002. On

Advantageous of Grid Computing for Parallel Job

Scheduling. 2nd IEEE/ACM International Symposium

on Cluster Computing and the Grid, 39-46.

[8] Hongzhang Shan, Leonid Oliker, Rupak Biswas, 2003.

Job Superscheduler Architecture and Performance in

Computational Grid Environments. ACM/IEEE

Conference on Supercomputing, 44-58.

[9] Santoso, J., van Albada, G.D., Nazief, B.A.A., Sloot,

P.M.A., 2000. Hierarchical Job Scheduling for Clusters

of Workstations. 6th Annual Conference of the

Advanced School for Computing and Imaging, 99-105.

[10] Ng Wai Keat, Ang Tan Fong, Ling Teck Chaw, Liew

Chee Sun, 2006. Scheduling Framework for Bandwidth-

Aware Job Grouping-Based Scheduling in Grid

International Journal of Computer Applications (0975 – 8887)

Volume 55– No.8, October 2012

22

Computing. Malaysian Journal of Computer Science 19

(2), 117-126.

[11] Homer Wu, Chong Yen Lee, Wuu Yee chen, Tsang Lee,

2007. A Job schedule Model Based on Grid

Environment. 1st IEEE International Conference on

Complex, Intelligent and Software Intensive System, 43-

52.

[12] Somasundaram, K., Radhakrishnan, S.,

Gomathynayagam, M., 2007. Efficient Utilization of

Computing Resources using Highest Response Next

Scheduling in Grid. Asian Journal of Information

Technology 6 (5), 544-547.

[13] Diana Moise, Izabela Moise, Florin Pop, Valentin

Cristea, 2008. Resource CoAllocation for Scheduling

Tasks with Dependencies in Grid. International

Workshop on High Performance in Grid Middleware, 41-

48.

[14] Somasundaram, K., Radhakrishnan, S., 2008. Node

Allocation in Grid Computing using Optimal Resource

Constraint (ORC) Scheduling. International Journal of

Computer Science and Network Security 8 (6), 309-313.

[15] Quan Liu, Yeqing Liao, 2009. Grouping-Based Fine-

grained Job Scheduling in Grid Computing. 1st IEEE

International Workshop on Education Technology and

Computer Science, 556-559.

[16] Yeqing Liao, Quan Liu, 2009. Research on Fine-grained

Job Scheduling in Grid Computing. International Journal

of Information Engineering and Electronic Business, 9-

16.

[17] Vishnu Kant Soni, Raksha Sharma, Manoj Kumar

Mishra, 2010. Grouping-Based Job Scheduling Model in

Grid Computing. World Academy of Science,

Engineering and Technology 65, 781-784.

[18] Grace Mary Kanaga, E., Valarmathi, M.L., Juliet A

Murali, 2010. Agent Based Patient Scheduling Using

Heuristic Algorithm. International Journal on Computer

Science and Engineering 2, 69-75.

[19] Roodbergen, K.J., De Koster, R., 2001. Routing Methods

for Warehouses with Multiple Cross Aisles. International

Journal of Production Research 39 (9), 1865–1883.

[20] Roodbergen, K.J., 2001. Layout and Routing Methods

for Warehouses. Ph.D. Thesis. Erasmus Research

Institute of Management (ERIM), Erasmus University

Rotterdam, The Netherlands.

[21] Chau, K.W., Ying Cao, Anson, M., Jianping Zhang,

2002. Application of Data Warehouse and Decision

Support System in Construction Management.

Automation in Construction 12 (2), 213-224.

[22] Gademann, N., van de Velde, S., 2005. Order Batching

to Minimize Total Travel Time in a Parallel-Aisle

Warehouse. IIE Transactions 37, 63-75.

[23] Tho Le-Duc, Rene´ M.B.M. de Koster, 2007. Travel

Time Estimation and Order Batching in a 2-block

Warehouse. European Journal of Operational Research

176, 374–388.

[24] Ali Allahverdi, Ng, C.T., Cheng, T.C.E., Mikhail Y.

Kovalyov, 2008. A Survey of Scheduling Problems with

Setup Times or Costs. European Journal of Operational

Research 187, 985–1032.

[25] Sheng Yuan Hsu, Liu, C.H., 2009. Improving the

Delivery Efficiency of the Customer Order Scheduling

Problem in a Job Shop. Computers & Industrial

Engineering 57, 856–866.

[26] Sebastian Henn, Gerhard Wäscher, 2012. Tabu Search

Heuristics for the Order Batching Problem in Manual

Order Picking Systems. European Journal of Operational

Research, Accepted manuscript, 1-31.

9. AUTHORS PROFILE
S. Krishnaveni completed M.C.A., M. Phil. and currently

pursuing Ph.D in computer science at Karpagam University

under the guidance of Dr. M. Hemalatha, Professor and Head,

Dept. of Software System, Karpagam University, Coimbatore.

Published five papers in International Journals and presented

one paper in National Conference and two papers in

International Conferences. Area of research: Data Mining,

Data Warehouse and Grid Computing.

Dr. M. Hemalatha completed M.Sc., M.C.A., M. Phil., Ph.D

(Ph.D, Mother Terasa women's University, Kodaikanal). She

is Professor & Head and guiding Ph.D Scholars in Department

of Computer Science at Karpagam University, Coimbatore.

Twelve years of experience in teaching and published more

than hundred papers in International Journals and also

presented more than eighty papers in various National and

International Conferences. She received best researcher award

in the year 2012 from Karpagam University. Her research

areas include Data Mining, Image Processing, Computer

Networks, Cloud Computing, Software Engineering,

Bioinformatics and Neural Network. She is a reviewer in

several National and International Journals.

