
International Journal of Computer Applications (0975 – 8887)  

Volume 49– No.16, July 2012 

32 

MDA based approach towards Design of Database for 
Banking System 

 
Harsh Dev 

Phd,Professor, Department of CSE 
Pranveer Singh Institute of Technology, 

 Kanpur U.P., India  

Amit Seth  
 Research Scholar, Department of CSE  

 Kanpur Institute of Technology, 
Kanpur U.P., India 

 
          

 

ABSTRACT 
The Indian Banks collects huge amount of data which the 
banks are unable to turn into fast transaction and also unable 

to maintain and utilize it in a proper manner. Other problems 
are also occurring w.r.t. the reusability of the system in a 
different environment designed by the developer. Nowadays 
we are focusing upon interoperability of database and system 
hardware. In this paper we have proposed a new design of 
banking Database system of a bank using the modern MDA 
approach of software engineering to improve the 
maintainability, portability and flexibility. We have shown 

that MDA approach also provides interoperability, easy 
maintenance of highly computational business oriented 
system by taking the study of banking database. In this paper 
we have shown how database modeling is done with MDA for 
modelling at different levels like CIM, PIM, and PSM, which 
gives a new dimension to the database based application 
development.  

Keywords           
Model-driven development (MDD), Model Driven 
architecture (MDA), Entity Relationship (ER) Diagram, 
Platform independent models (PIM), Computation 
Independent Models (CIM), Platform specific models (PSM). 
 

1. INTRODUCTION 
While it is feasible to build much more complex and larger 
database-based application systems, we are struggling with 
two major problems: development speed and costs. Systems 
are never built using only one technology and systems always 

need to communicate with other systems. With each new 
technology, much work needs to be done again and again. 
Furthermore, there is the problem of continuously changing 
requirements [1].  
Several recent papers have already addressed some 
similarities between database technology and MDA concepts 
([1, 2, 3, and 4]). However it is far from being clear how 
should database engineering concepts be reinterpreted in 
terms of MDA. 

The requirements of a database do not remain constant during 
its life time and therefore the database has to evolve in order 
to fulfill the new requirements. Since database evolution 
activities consume a large amount of resources [5], they are 
considered of great practical importance and, as a 
consequence, much research has been focused on analyzing 
ways of facilitating this task [6, 7]. In particular, among the 
several problems that are related to evolution activities [8], 

one of the most important is that of „forward database 
maintenance problem‟ (or „redesign problem‟, according to 
[7]). This problem faces how to reflect in the logical and 
extensional schemas the changes that have occurred in the 
conceptual schema of a database. As a contribution towards 
achieving a satisfactory solution to this problem (that has not 
been found yet, despite a lot of efforts by different researchers 

[7,5]), authors of the [9] have presented an architecture for 
managing database evolution. 
Another problem in Database System is productivity, w.r.t. 
transforming the similar database design in different type of 
database.  Developers are mainly focused on high-level CIM 
and PIM models. Maintenance of database, portability and 

different database transformation are also the main issues.  In 
our work we have focused on the Interoperability in real 
world problems in which most system need to communicate 
with the other.  Reusability of database design is also the main 
issue for other similar type of database. 
Each software product has to satisfy two kinds of 
requirements: functional, and nonfunctional. The same relates 
to the database which is a part of a software system. As 

database is a typical part of many software systems, many 
questions arise, for example: Can an MDA be used effectively 
for database design? What kind of (non-) functional 
requirements can be delegated to database management 
system? How to formalize nonfunctional requirements? How 
they influence the physical model of the database? [2]. 
In this paper we have shown how to implemented database 
designing process based on MDA approach. 

Model Driven Architecture (MDA) is a new methodology 
proposed by OMG. MDA provides an open, vendor-neutral 
approach to the challenge of business and technology change. 
Based firmly upon OMG‟s established standards, MDA aims 
to separate business or application logic from underlying 
platform technology. Platform-independent applications built 
using MDA and associated standards can be realized on a 
range of open and proprietary platforms, including CORBA, 

J2EE, .NET, and Web Service or other Web based platforms. 
Fully-specified platform-independent models can enable 
intellectual property to move away from technology-specific 
code, helping to insulate business applications from 
technology evolution, and further enable interoperability [10]. 
Organizations can benefit from the application of the   
model-driven approach to the existing activities of the 
software development life cycle, such as requirements 
gathering, business analysis, process modeling, systems 

design, service definition, integration, solutions design, code 
generation, automatic transformations, etc. [11] 
The Model Driven Architecture (MDA) is meant to facilitate 
system development by using models for representing both 
the “problem” and its “solution”. In its ideal form, software 
development based on MDA would follow a development 
process that begins by producing models of the problem 
domain at a high level of abstraction, and then proceeds by 

gradually and automatically transforming them into 
executable code with the help of tools [12]. 

1.1 Model-driven development (MDD)  
Model-driven development (MDD) represents an approach to 
system engineering where models are used in the 

understanding, design, construction, deployment, operation, 



International Journal of Computer Applications (0975 – 8887)  
Volume *– No.*, ___________ 2011 

33 

 

maintenance and modification of software systems. Model 
transformation tools and services are used to align the 
different models, ensuring that they are consistent across e.g. 
different refinement levels. Model-driven development in 
represents a business-driven approach to software systems 

development that starts with a computation independent 
model (CIM) describing the business context and business 
requirements. The CIM is refined to a platform independent 
model (PIM) which specifies services and interfaces that the 
software systems must provide to the business, independent of 
software technology platforms. The PIM is further refined to a 
platform specific model (PSM) which describes the 
realization of the software systems with respect to the chosen 

software technology platforms.[13] 

1.2 Model-driven Architecture (MDA)  

We propose here a collective lifecycle for MDA-based 
software development that can be used as a basis for 
constructing MDA-based methodologies.  

The phases and activities of the proposed lifecycle are 
described here in different levels of abstraction. In the 
following Fig 1 we have shown the process of specifying a 
system independently of the software execution platform to 
that of transforming the system specification into one for a 
particular software execution platform. 

 
 

              Fig 1:  MDA process used in database banking 
 
Banking database design is difficult to understand and also 
difficult to handle technical complexity found in the system 
due to which problems of maintainability and reusability 
persists for database system. We have designed database 
using MDA approach to enable the specific model. In Fig 1 
we have shown the database design process using MDA. The 
MDA separates the bank database in the level of abstraction. 

The first level CIM describes requirements of the system 

which defines Business model. The second level PIM describe 
the software specifications which defines the domain model of 
the system. The third level PSM describe the software 
realization model which defines detailed design of the system. 
The resulted database design is implemented for a particular 
required platform. 
In addition to the business-driven approach, a model-driven 
framework should also address how to integrate and 

modernize existing legacy systems according to new business 
needs. This approach is known as architecture-driven 
modernization (ADM) in the OMG.[13] 

1.3 Existing MDA Technologies and 

Standards             
MOF (Meta Object Facility): Meta-modelling language, 
repository interface (JMI), interchange (XMI) 
UML (XML Metadata Interchange): Standard modelling 
language .Instance of the MOF model. For developers and 
“meta-developers” 

CWM (Common Warehouse Metamodel): Modelling 
languages for data warehousing applications. (e.g. Relational 
DBs) 
QVT (Queries/View/Transformations): Transformations 
definition language. Also for Queries and Views of models. 

SPEM (Software Process Engineering Metamodel): 
metamodel and a UML profile used to describe a concrete 

software development process.  
XMI (XML Metadata Interchange): XMI 2.1 is a format to 
represent models in a structured text from. In this way UML 
models and MOF metamodels may be interchanged between 
different modelling tools.  
 

2. MDA IMPLEMENTED IN DATABASE 

DESIGN                
The process of software development usually involves a 
database design. Traditionally, during database design three 
different models of database are built: conceptual, logical and 
physical. Conceptual model represents a modeled domain 
with additional constraints that expressed static and dynamic 
integrity demands. Logical model also represents the modeled 
domain but in terms of a chosen data model. In the paper the 
relational data model is assumed. [2] says that physical model 

is a data model tailored to a given database system and all the 
models may be expressed in terms of UML language. 
MDA involves a collection of models, where every 
subsequent model is developed on the basis on its preceding 
model. There are many similarities between traditional 
process of database design and MDA, so it means that MDA 
may be applicable for that purpose [2]. 
MDA introduces three types of models representing different 

abstraction levels, i.e.: Computation Independent Model 
(CIM), Platform Independent Model (PIM), and Platform 
Specific Model (PSM) [15]. So that it can be easily 
maintained and adapted in different environment. Functional 
requirements (FRs) capture the intended behavior of the 
system or specify what the system will do. This behavior may 
be modeled as services, tasks or functions the system is 
required to perform. Non-functional requirements (NFRs) 
define required system properties such as performance, 

security, maintainability, etc[2]. External quality 
characteristics include: functionality, reliability, usability, 
efficiency, maintainability and portability. Each of them is 
subdivided in several sub-characteristics. These sub-
characteristics can be measured by well-defined metrics [26]. 
Our proposed design separates the levels of abstraction which 
is easier to create, develop, reuse and maintain. Since we can 
test the validity of our models at every level of abstraction in 

MDA therefore the validation and verification of models 
become easier. 
This paper explores that developers can develop database 
system quickly because they have a reliable high-level 
graphical view of the system and can achieve lower 
maintenance costs because of different levels of abstraction of 
the database. 
In [2] the authors have done the Feasibility Analysis of MDA-

based Database Design. In [1] the authors only explained the 
MDA approach improves the development quality of 
traditional database based application development. In this 
paper we have shown how the MDA approach is implemented 
in database using the study of banking database system and 
also shown that the proposed design have number of 
advantages.         

2.1 Computation Independent Models 

(CIM) 



International Journal of Computer Applications (0975 – 8887)  
Volume *– No.*, ___________ 2011 

34 

 

In MDA, system requirements are modeled using a 
Computation Independent Model (CIM). This model is called 
business model and it uses a vocabulary that is familiar to the 
domain experts. A CIM does not show details of the systems 
structure, but the environment in which the system will 

operate, being useful to understand the problem [15]. In [14] 
the authors have defined the scope of the software system 
through problem domain analysis and also the unambiguous 
black-box definition of the system, its objectives, and its  
scope have been produced [14]. 
In the following Fig 2 we have represented the banking 
system of in the form of CIM model. Here we have shown all 
entities related to the customer and bank. Entities are shown 

in grey box with their attributes in white box. This also shows 
relation between them(one entity in relation with another 
entity). The CIM hides structural details of the system. The 
presented model can do the computation of the business logic 

like addition, subtraction or any complex calculation from 
different type of problem of different bank. So in this way we 
can easily understand and handle the problem requirement 
models. This clearly supports reusability and maintainability. 
In Fig 2 below we have shown the UserLogins(entity) with 

their attribute are UserloginID, UserLogin and 

UserPassword(attributes) related to another entity 

TransactionLog(entity) with their attributes are 

TransactionID, TransactionDate,TransactionType, 

TransactionAmount,  NewBalance, AccountID, CustomerID, 

EmpolyeeID and UserLoginID both entity are shown with 

their relationship. UserLogins may have zero or one to many 

TransactionLog. CIM hides the details of data type of the 

attributes. Even it does not show the primary and foreign 

keys.

 
                                                                                                    

Fig 2: ER Digram Presented in CIM 



International Journal of Computer Applications (0975 – 8887)  
Volume *– No.*, ___________ 2011 

35 

 

2.2 Platform independent models (PIM) 
In the second level of abstraction authors [15] found the 

Platform Independent Model (PIM), which is a model with a 
relatively high abstraction level, which is independent from 
any implementation technology.  
A platform independent analysis model is defined through 
analyzing the requirements model. System functionalities are 
described in the analysis PIM while maintaining traceability 
to the requirements model. Developers may use appropriate 
model elements stored in a model repository to produce some 

parts of this PIM. This model is not the final PIM, but forms 
the foundation for producing the final version. Conventional 
OO analysis techniques can be used for this activity, which is 
typically executed in an iterative and incremental fashion 
[14]. 
In Fig 3 PIM captures database information implementation-
independent system model and business process model. 
A platform independent model of database is a view of the 

system from a viewpoint of platform independence. It hides 
detail design of database system. It is also representing 
platform independent information. It carries more detail than 
that of CIM. It also represents the primary key and foreign 
key of the entity. Like Customer entity have Primary key (PK)  
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
                                                                                                                           

 
 

 

 

 

              

 

 
UserLoginID. PIM mdoel presented here also defines the 
datatype of attributes. Following Fig 3 also shows that PIM  
CustomerID and Foreign keys (FK) AcountID and gathers 
descriptive behavior of the system which shows all the 

information needed.  This shows the platform independent 
way of describing the domain requirement of the system. 

2.3 Platform specific models (PSM)  
Developing formal and automatic transformations between 
models (e.g. PIM-PSM) is the main advantage of MDA [26]. 

In [16] authors have given transformations following the 
declarative approach of QVT, thus relations between elements 
of the metamodels are used for constructing the 
transformation between models (i.e. PIM and PSM). 
Two models PIM and PSM describe the same system in much 
common way in MDA. To get a PSM from a PIM, different 
artifacts of the system are mapped from one model to another. 
Hence, it is necessary to formulate a set of transformation 

criteria that allows converting a source model e.g. PIM 
representing one view of the system into the target model e.g. 
PSM representing another view of the system. If model 
transformation is described in some formal language and there 
exists an algorithm for its automatic execution, then it is 
called model transformation definition [17]. 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  3: ER Diagram Design Presented in  PIM 



International Journal of Computer Applications (0975 – 8887)  
Volume *– No.*, ___________ 2011 

36 

 

A platform specific model is a view of the system from the 

platform specific viewpoint. A PSM combines the 

specifications in the PIM with the details that specify how the 
system uses a particular type of platform. The PSM represents 

the PIM taking into account the specific platform 

characteristics [13]. 

In the following Fig 4 we have shown PIM transformation 

into PSM using transformation specification. There are some 
transformation tools, such as Mia-Transformation, which 
performs model-to-model transformation and Mia-Generation 
[20], which performs model to code transformation. Here we 
have shown that the specific language can be used for 
transformation. PSM can represent all quires, procedures and 
triggers which is implemented in platform specific system.  

 
 

Fig 4: Transformation PIM to PSM 
 
Some transformations are applicable to some special 

application purposes while others may serve multiple 
domains. Hence domain of application also forms the basis for 
classification of transformation approaches. As is the case 
with FUJABA (From Uml to Java And Back Again), it aims 
at and strives to achieve the conversion from UML diagrams 
to standard Java source codes and vice versa, the process in 
turn referred to as round-trip engineering [18]. Graphical and 
textual languages have been used in PROGRESS 

(PROgrammed Graph REwriting System) to bring about the 
ascribed graph structures and graph transformations [19]. 
  

3. CONCLUSION     

In this paper we have applied MDA in traditional database 

based application developments. MDA gives database 
development a new thought. We conclude that MDA 
approach provide following advantages in designing the 
database system.  

 Using MDA we can represent system specifications, 

which separates the specification of functionality from 
specification of the implementation therefore it reacts 
swiftly to the changing functional and technological 
requirements. 

 In this paper we have represented database design for 

software development using MDA based approach, 
which will expedite the development time.  

 We have presented hare that database can be applied to 

the same PIM to produce different type of PSM. Thereby 
increasing the reusability of design in terms of 
implementation in different database application.  

 Proposed model separates the system into highly 
cohesive components which are easier to create, develop 
and maintain. Thereby it increases the developer‟s 

productivity in terms of generation of design of different 
databases from same type of metamodels. 

 MDA approach efficiently represent the three type of 

model representing different abstraction level (CIM, PIM 
and PSM), which supports the portability of designed 
system. 

 Our proposed model will also enhance the validation & 

verification process at different level of abstraction. 
 

4.  FUTURE SCOPE     

The above work can be extended for the design of multi-
dimensional databases for handling complex databases such 
as multimedia database. It can also be used to model the 
mobile based data mining system.  

 

5. ACKNOWLEDGMENTS 
I especially extend my sincere and grateful thanks to 
Associate Prof. Mrs. Shubha Jain, Head of the Department 
of Computer Science Department and Assistant Prof. Mr. 

Akhilesh Kumar Yadav Kanpur Institute of Technology, 

GBTU University, Kanpur, Uttar Pradesh, India. 

6.  REFERENCES 
[1] Li.B., Liu.S, Yu.Z. 2005. The 9th International Conference 

on Computer Supported Cooperative Work in Design 
Proceedings, “Applying MDA in Traditional Database-

based Application Development”. 

[2] Dubielewicz, I., Hnatkowska, B.,  Huzar, Z., 
Tuzinkiewicz, L .2006. Proceedings of the International 
Conference on Dependability of Computer Systems , 
IEEE” Feasibility Analysis of MDA-based Database 
Design”2006. 

[3]  Gogolla, M., Lindow A., Richters M., Ziemann, P. 2002. 
Metamodel Transformation of Data Models, Workshop 

in Software Model Engineering, Dresden, Germany, 
http://www.metamodel.com/wisme-2002/. 

 

[4]  Bernard, M. 2002. Models transformations: from mapping 
to mediation, Workshop in Software Model Engineering, 
Dresden, Germany, http://www.metamodel.com/wisme-
2002/. 

[5] L´opez, J. R., Oliv´e A. 2000. A Framework for the 
Evolution of Temporal Conceptual Schemas of 

Information Systems, in B. Wangler, L. Bergman (eds.), 
Advanced Information Systems Eng., CAiSE, Springer, 
LNCS 1789, 369–386.   

[6] Al-Jadir, L., L´eonard. M. 1998. Multiobjects to Ease 
Schema Evolution in an OODBMS, in T. W. Ling, S. 
Ram, M. L. Lee (eds.), Conceptual modeling, ER-98, 
LNCS 1507, Springer, 316–333. 

[7] da Silva, A. S., Laender, A. H. F., Casanova, M. A. 1996. 

An Approach to Maintaining Optimized Relational 
Representations of Entity-Relationship Schemas, in B. 
Thalheim (ed.), Conceptual Modeling- ER‟96, Springer 
Verlag, LNCS 1157, 292–308. 

[8] Hainaut, J.L,  Englebert, V., Henrard, J., Hick, J. M. ,  
Roland, D. 1994. Database Evolution: the DB-MAIN 
approach, in Loucopoulos, P. (ed.), Entity-Relationship 
approach- ER‟94, Springer Verlag, LNCS 881, 1994, 

112–131. 

 



International Journal of Computer Applications (0975 – 8887)  
Volume *– No.*, ___________ 2011 

37 

 

[9] Dom´ınguez,E, Lloret,J, Zapata, M. A.2002. An 
architecture for Managing Database Evolution, 
Proceedings of ER 2002 Workshop on Evolution and 
Change in Data Management, To appear in LNCS, 64–
75.     

[10] OMG. 2004. “How systems will be built” 
http://www.omg.org/mda/,2004. 

[11] Guttman, M. and Parodi, J. 2007. Real-Life MDA: 
Solving Business Problems with Model Driven 
Architecture. San Francisco, CA: Morgan Kaufmann 
Publishers. 

[12] Gholami, M.F, Ramsin,R.2010. International Conference 
on Intelligent Systems, Modelling and Simulation, 

Strategies for Improving MDA-Based Development 
Processes. 

[13] OMG, "OMG Model Driven Architecture", Object 
Management Group (OMG). http://www.omg.org/mda . 

[14]  Asadi, M., Ravakhah, M., Ramsin,R.,Second.2008. Asia 
International Conference on Modelling & Simulation 
“An MDA-based System Development Lifecycle”, 
IEEE. 

[15] Miller, J., Mukerji, J.2003. MDA Guide Version 1.0.1., 
Object Management Group. 

[16] OMG .2002.2nd Revised Submission: MOF 2.0 
Query/Views/Transformations. http://www.omg.org/cgi-
bin/doc?ad/05-03-02 

[17] Singh, Y., Sood, M.2009. "Models and Transformations 
in MDA," cicsyn, pp.253-258, 2009 First International 
Conference on Computational Intelligence, 
Communication Systems and Networks, IEEE computer 
society. 

[18] “Public Domain case tool for UML” 
http://www.fujaba.de, Sep15, 2008. 

[19] Schurr, A. 1990 “PROGRESS: A VHL-Language based 

on Graph Grammars,” Proc. of the 4th International 
Workshop on Graph Grammars and their application to 
Computer Science, pp.641-659. 

[20] ISO/IEC 9126-2:2002(E), Software engineering – 
Product quality – Part 2: External metrics. 

 

 

 

 

 


