
International Journal of Computer Applications (0975 – 888)

Volume 47– No.20, June 2012

22

A Comparative Study on Software Architectural Styles

for Network based Applications

Dipanwita Thakur
Banasthali University

Rajasthan, India

G.N. Purohit
Banasthali university

Rajasthan, India

ABSTRACT

Software architecture defines the components and the

interaction in between the components of a system. It also

defines how the components are interacting with each other,

the dependency in between the components and the interface

protocols used for communication. For a network-based

application, system performance is based on network

communication. Therefore, selection of the appropriate

architectural style(s) for use in designing the software

architecture can make the difference between success and

failure in the deployment of a network-based application.

There are so many architectural styles available to represent

different network-based application. According to the

behavior of the application we have to choose the appropriate

architectural style.

In this paper we have surveyed different architectural styles

for Network-based application.

Keywords
Software architecture, software architectural style, network-

based application

1. INTRODUCTION
Software architecture has been a focal point for software

engineering research in the 1990s. Architecture has emerged

as a crucial part of the design process. Choosing a right

architectural style for a network based application needs the

knowledge of communication and the type of the application.

1.1. Software Architecture
Software architecture gives us the significant decision about

the organization of a software system. Software system

architecture is a system of computational components and

interactions among those components. Components are such

things as clients and servers, databases, filters, and layers in a

hierarchical system. Interactions among components at this

level of design can be simple and familiar, e.g. procedure call

and shared variable access.

The architecture not only define the structure and topology of

the system, but it also gives the interaction in between the

system requirements and elements of the constructed system,

thereby providing some rational for the design decisions. At

the architectural level, relevant system-level issues typically

include properties, e.g. capacity, throughput, consistency, and

component compatibility.

Software architecture is the set {Elements, Form, and

Rationale}. Thus software architecture is a set of architectural

elements that have a particular form. There are three different

classes of architectural elements: processing elements, data

elements and connecting elements. The processing elements

are those components that supply the transformation on the

data elements; the data elements are those that contain the

information that is used and transformed; the connecting

elements are the glue that holds the different pieces of the

architecture together. For example, procedure calls, shared

data, and messages are different examples of connecting

elements that serve to “glue” architectural elements together,

[1]

Architecture is the fundamental organization of a system,

embodying in its components, their relationships to each other

and the environment, and the principles governing its design

and evolution.

The software architecture of deployed software is determined

by those aspects which are the hardest to change.

1.1.1 Component
A software component is an architectural entity that (i)

encapsulates a subset of the system’s functionality and/or

data, (ii) restricts access to that subset via an explicitly

defined interface, and (iii) has explicitly defined dependencies

on its required execution context.

1.1.2 Connector
A software connector is an architectural element, effecting

and regulating interactions among components.

1.1.3 Configuration
An architectural configuration is a set of specific associations

between the components and connectors of a software

system’s architecture.

1.2. Architectural Styles
A style defines a family of architectures that satisfy the

constraints. Styles allow one to apply specialized design

knowledge to a particular class of systems and to support that

class of system design with style-specific tools, analysis, and

implementations.

1.3. Network-based Application
A distributed system is one that looks to its users like an

ordinary centralized system, but runs on multiple, independent

CPUs. In contrast, network-based systems are those capable

International Journal of Computer Applications (0975 – 888)

Volume 47– No.20, June 2012

23

of operation across a network, but not necessarily in a fashion

that is transparent to the user, [2].

2. Architectural Styles for Network-based

Applications

2.1 Pipe & Filter (PF)
In this style each component has a set of inputs and a set of

outputs. A component known as filter reads data steams as its

inputs and produces data streams as its outputs. This is usually

accomplished by applying a local transformation to the input

streams and computing incrementally, so the output begins

before input is consumed, [3]. The filters are totally

independent entities and do not share state with other filters.

The advantages of the pipe and filter style are as follows.

First, they allow the designer to understand the overall

input/output behavior of a system as a simple composition of

the behaviors of the individual filters. Second, they support

reuse: any two filters can be hooked together, provided they

agree on the data which is being transmitted between them.

Third, systems are easy to maintain and enhance: new filters

can be added to existing systems and old filters can be

replaced by improved once. Fourth, they permit certain kind

of specialized analysis, such as throughput and deadlock

analysis. Finally, they naturally support concurrent execution.

Each filter can be implemented for a separate task and can be

potentially executed in parallel with other filters, [3].

Disadvantages of the PF style are as follows. First, pipe-and-

filter systems often lead to batch organization of processing.

Although filters can process data incrementally, they are

inherently independent, so the designer must think of each

filter as providing a complete transformation of input data to

output data. In particular, because of their transformational

character pipe-and-filter systems are typically not good at

handling interactive applications. Second, they may be

hampered by having to maintain correspondence between two

separate but related streams. Third, depending on the

implementation, they may force a lowest common

denominator on data transmission, resulting in added work for

each filter to parse and unparsed its data. This, in turn, can

lead both to loss of performance and to increase in complexity

in writing the filters themselves.

2.1.1Uniform Pipe-and-Filter
An improved version of the pipe-filter style is obtained by

adding the constraint that all filters must have the same

interface. The Unix operating system is the primary example

of this style. In the Unix operating system, filter processes

have an interface consisting of one input data stream of

characters and two output data streams of characters. A new

application can be formed by independently developed filters

which allows restricted interface. It is very simple to

understand the working of a filter.

The disadvantage of the uniform interface is that it may

reduce network performance if the data needs to be converted

to or from its natural format.

2.2 Client-Server (CS)
It is very popular architecture for network-based applications.

There is one server component which performs all the tasks

requested by the client component by a connector. The server

can reject the request and sends a response back to the client.

A client is a triggering process and a server is a reactive

process. A client component makes request and waits for a

response from the server. The server waits for a request and

after receiving the request it responds to that request. Server is

a non-terminating process and may serve more than one

client, [4].

So many constraints can be added with this client –server to

produce a simple server component to make it scalable.

2.2.1 Layered System (LS) and Layered-

Client-Server (LCS)
A layered system is organized hierarchically, each layer

provids service to the layer above it and serving as a client to

the layer below it. [3].

Layered systems have several desirable properties. First, they

support design based on increasing levels of abstraction, by

which a implementer can partition a complex problem into a

sequence of incremental steps.

Second, they support enhancement and finally, they support

reuse.

On the contrary there are so many disadvantages with the

layered system. First, not all systems are easily structured in a

layered fashion. Second, it is quite difficult to find right levels

of abstraction.

Layered-Client-Server adds proxy and gateway component

with the client-server style. Proxy server is nothing but a

shared server for one or more than one client, which accepting

the request and forwards them to the server component. A

gateway component is a normal server to the client or proxy

component which can forward the services to its inner-layer

server.

Architecture based on layered-client-server are referred to as

two-tiered, three-tiered, or multi-tiered architecture in the

information systems literature, [5].

LCS is also a solution for managing identity in a large scale

distributed system, where complete knowledge of all servers

would be prohibitively expensive. Instead, servers are

organized in layers in such a manner that rarely used services

are handled by intermediaries rather then directly by each

client, [4].

2.2.2 Client-Stateless-Server (CSS)
It is one of the variants of client-server style. After adding the

constraint of no session state on server component in the

client-server style, it becomes the Client-Stateless-Server

style. Whenever client wants to request the server the client

component has to provide all the necessary information to the

server component to execute the request. No information is

stored in the server component.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.20, June 2012

24

These improve the quality like visibility, scalability and

reliability. But it increases the per-instance overhead.

2.2.3 Client-Cache-Stateless-Server (C$SS)
It is the variant of the Client-stateless-server and cache style

by adding the cache components. In this a cache is inserted in

between the server component and client Component. Request

is received by the cache component first. It improves the

efficiency and performance.

This style is used in Sun Microsystems’ NFS, [6].

2.2.4 Layered -Client-Cache-Stateless-Server

(LC$SS)
It is another variant of the layered-client-server style and

client-cache-stateless-server style obtained by adding the

proxy and/or gateway component. Its advantages and

disadvantages are derived from the advantages and

disadvantages of its parent styles.

This style is used in Internet domain name system i.e., DNS

and the Hypertext transfer protocol i.e. HTTP.

2.2.5 Remote Session
It is one of the verities of the client-server style. In this style,

one session is created in between the client and the server by

which the use of client component should minimize compare

to server component. In other words it minimizes the

complexity or reuse of client component compare to server

component.

This style is used in TELNET or FTP.

2.2.6 Remote Data Access (RDA)
The remote data access style, [5] is one of the varieties of the

client-server style. It is used in database query. In this a client

sends a database request in SQL format to a remote server.

The remote server gives response to the query in a large data

set which is further used by the client to perform any other

operation, like joining of tables and then retrieving the result.

In this style, a huge amount of data size can be reduced on the

server side without transmitting it across the network. It

improves the efficiency and visibility. Client should know the

same manipulation scheme of data as server. It decreases

scalability and reliability.

2.3 Mobile Code
It enables code to be transmitted to a remote host for

interpretation. This may be due to lack of local computing

power, lack of resources, or due to large data set remotely

located. In this code is treated as data, [7].

2.3.1 Virtual Machine (VM)
A virtual machine, sometimes called an abstract machine, is a

collection of modules that together provide a cohesive set of

services that other modules can use without knowing how

those services are implemented. It increases portability.

2.3.2 Remote Evaluation (REV)
In remote evaluation, a component on the source host has the

know-how but not the resources needed for performing a

service. The component is transferred to the destination host,

where it is executed using the available resources. The result

of the execution is returned to the source host. In remote

evaluation a software component is:

1. Redeployed at run time from a source host to a destination

host.

2. Installed on the destination host, ensuring that the software

system’s architectural configuration and any architectural

constraints are preserved.

3. Activated.

4. Executed to provide the desired service.

5. Possibly de-activated and de-installed.

2.3.3 Code-on-Demand (COD)
In code-on -demand, the needed resources are available

locally, but the know-how is not. The local subsystem thus

requests the components providing the know-how from the

appropriate remote hosts.

From a software architectural perspective, code-on-demand

requires the same steps as remote evaluation; the only

difference is that the roles of the target and destination hosts

are reversed.

2.3.4 Mobile Agent (MA)
If a component on a given host (i) has the know-how for

providing some service, (ii) has some execution state, and (iii)

has access to some, though not all, of the resources needed to

provide that service, the component, along with its state and

local resources, may migrate to the destination host, which

may have the remaining resources needed for providing

service. The component, along with its state, will be installed

on the destination host and will access all of the needed

resources to provide the service. Mobile agents are stateful

software components.

2.4 Replication

2.4.1 Replicated Repository
In this style more than one process provides the same service

which improves the accessibility and scalability. It improves

the performance. The client has the illusion that there is only

one server which provides the centralized service. Distributed

file system is the example of this.

2.4.2 Cache ($)
It is another variety of the replicated repository. Cache is easy

to implement. It improves the efficiency of the system.

2.5. Event-based Integration (EBI)
The event-based style is characterized by independent

components communicating solely by sending events through

International Journal of Computer Applications (0975 – 888)

Volume 47– No.20, June 2012

25

event-bus connectors. Components emit events to the event-

bus, which then transmits them to every other component.

The event-based style is highly suited to strongly decoupled

concurrent components, where at any given moment a

component either may be creating information of potential

interest to others or may be consuming information.

2.6 Some other Styles

2.6.1 C2
C2 style is the resulting style of layered & event based styles.

It is originally developed to support graphical user interface

applications, was found to be beneficial in a wide variety of

applications-indeed more so outside the domain of GUIs that

within. C2’s primary role in this presentation is showing how

elements of many styles may be judiciously combined to meet

variety of needs.

The advantages of C2 style are as follows: (i) Substrate

independent: ease in modifying the application to work with

new platforms. (ii) Accommodating heterogeneity: enabling

an application to be composed of components written in

diverse programming languages and running on multiple,

varying hardware platforms, communicating across a network.

(iii) Support for product lines: ease of substituting one

component for another to achieve similar but difficult

applications. (iv) Ability to design in the model-view-

controller style: but with very strong separation between the
model and the user interface elements. (v) Support for

network-distributed applications: wherein communication

protocol details are kept out of the components and confined

to connectors.

 The contribution of C2 is combining selected simple styles

into a coherent comprehensive approach.

2.6.2 Distributed Objects (DO)
The distributed objects style represents a combination and

adaptation of several simple styles. This style is augmented

with the client-server style to provide the notion of distributed

objects, with access to those objects from, potentially,

different processes executing on different computers. In this

style, application functionality broken up into objects that can

run on heterogeneous hosts and can be written in

heterogeneous programming languages. Objects provide

services to other objects through well-defined provide

interfaces. Objects invoke methods across host, process, and

language boundaries via remote procedure calls (RPCs),

generally facilitated by middleware.

Distributed Objects is not an ideal style for every application.

Drawbacks include for example, that components in a

distributed objects style are required to explicitly specify

provided interfaces, but not to specify required interfaces.

Dependencies between objects may thus be deeply ingrained.

2.7. Representational State Transfer

(REST)
REST describes the architectural style used to guide the

development of the standard protocols that constitute the

WWW architecture. REST, as a set of design choices, drew

from a rich heritage of architectural principles and styles.

There are six REST principles, or RPs:

RP1: The key abstraction of information is a resource, named

by an URL. Any information that can be named can be a

resource presentation

RP2: The representation of a resource is a sequence of bytes,

plus representation metadata to describe those bytes. The

particular form of the representation can be negotiated

between REST components.

RP3: All interactions are context-free-each interaction

contains all of the information necessary to understand the

request, independent of any requests that may have preceded

it.

RP4: Components perform only a small set of well-defined

methods on a resource producing a representation to capture

the current or intended state of that resource and transfer that

representation between components. These methods are

global to the specific architectural instantiation of REST; for

instance, all resources exposed via HTTP are expected to

support each operation identically.

RP5: Idempotent operations and representation meta-data are

encouraged in support of caching and representation reuse.

RP6: The presence of intermediaries is promoted. Filtering or

redirection intermediaries may also use both the meta-data

and the representations within request or responses to

augment, restrict, or modify requests and responses in a

manner that is transparent to both the user agent and the origin

server.

Derivation of REST tree is as follows -

International Journal of Computer Applications (0975 – 888)

Volume 47– No.20, June 2012

26

3. CONCLUSIONS
In this paper, we presented different architectural styles for

network based applications. All the basic architectural styles

and the derivative architectural styles from the basic one are

discussed here. We compared all the architectural styles and

discussed there advantages and disadvantages as well.

REST provides a model not only for the development and

evaluation of new features, but also for the identification and

understanding of broken features.

The World Wide Web is arguably the world’s largest

distributed application. Understanding the key architectural

principles underlying the Web can help explain its technical

success and may lead to improvements in other distributed

applications, particularly those that are amenable to the same

or similar methods of interaction. REST contributes both the

rationale behind the modern Web’s software architecture and

a significant lesson in how software engineering principles

can be systematically applied in the design and evaluation of a

real software system.

After all the discussions we can conclude that REST is the

most useful architectural style for any network-based

application.

4. REFERENCES
[1] D. E. Perry and A. L. Wolf. Foundations for the study of

software architecture. ACM SIGSOFT Software

Engineering Notes, 17(4), Oct. 1992, pp. 40-52

[2] A. S. Tanenbaum and R. van Renesse. Distributed

Operating Systems. ACM Computing Surveys, 17(4),

Dec. 1985, pp. 419-470.

[3] D. Garlan and M. Shaw. An introduction to software

architecture. Ambriola & Tortola (eds.), Advances in

Software Engineering & Knowledge Engineering, vol. II,

World

[4] G. Andrews. Paradigms for process interaction in

distributed programs. ACM Computing Surveys, 23(1),

Mar. 1991, pp. 49-90.

[5] A. Umar. Object-Oriented Client/Server Internet

Environments. Prentice Hall PTR, 1997.

[6] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.

Lyon. Design and implementation of the Sun network

filesystem. In Proceedings of the Usenix Conference,

June 1985, pp. 119-130.

[7] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding

code mobility. IEEE Transactions on Software

Engineering, 24(5), May 1998, pp. 342-361.

[8] Roy Thomas. Fielding Architectural Styles and the

Design of Networked-based Software Architectures.

Ph.D. dissertation, Information and Computer Science,

University of California-Irvine, Irvine, CA. 2000.

