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ABSTRACT 

In this paper, an efficient scheme to detect and classify faults 

in a system using kalman filtering and hybrid neuro-fuzzy 

computing techniques, respectively, is proposed. A fault is 

detected whenever the moving average of the Kalman filter 

residual exceeds a threshold value. The fault classification has 

been made effective by implementing a hybrid neuro-fuzzy 

Inference system. By doing so, the critical information about 

the presence or absence of a fault is gained in the shortest 

possible time, with not only confirmation of the findings but 

also an accurate unfolding-in-time of the finer details of the 

fault, thus completing the overall fault diagnosis picture of the 

system under test. The proposed scheme is evaluated 

extensively on a two-tank process used in industry 

exemplified by a benchmarked laboratory scale coupled-tank 

system.   
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1. INTRODUCTION 
Challenging design problems arise in modern fault diagnosis 

systems. Unfortunately, the classical analytical techniques 

often cannot provide acceptable solutions to such difficult 

tasks. This explains why soft computing techniques such as 

fuzzy logic, neural networks and evolutionary algorithm have 

become more and more popular in industrial applications of 

fault diagnosis. Process faults, if undetected, have a serious 

impact on process operation and efficiency, product quality, 

safety, productivity and pollution level. In order to detect, 

diagnose and correct these abnormal process behaviors, the 

use of efficient and advanced automated diagnostic systems is 

of great importance to modern industries. The main objective 

of fault detection and isolation (FDI) is to provide early 

warnings to operators, such that appropriate actions can be 

taken to prevent the breakdown of the system caused by the 

occurrence of faults. This will improve the reliability and 

safety of the system, and avoid unnecessary and costly 

downtimes. Complete reliance on human operators to monitor 

the conditions of the systems is often difficult, especially as 

engineering systems are becoming ever more complex. 

For example, in chemical processes, several kinds of failures 

may compromise safety and productivity. In fact, the 

occurrence of faults may reduce the efficiency of the process 

(e.g., lower product quality) or, in the worst scenarios, could 

lead to fatal accidents (e.g., temperature run-away) leading to 

injuries to personnel, environmental pollution and equipment 

damage. Major failures to be considered in chemical 

processes are: actuator failures (e.g., electric-power failures, 

pump failures, valves failures), process failures (e.g., abrupt 

variations of some process parameters, side reactions due to 

impurities in the raw materials) and sensor failures. To tackle 

these difficulties, Fault Diagnosis and Isolation (FDI) 

techniques need to be developed. 

The model-based approach is popular for developing FDI 

techniques [1][2]. It mainly consists of two stages [3]. The 

first one is to generate residuals by computing the difference 

between the measured output and the estimated output 

obtained from the model of the system. Any departure of the 

residuals from zero indicates that a fault has likely occurred 

[4]. However, these methods are developed mainly for linear 

systems assuming that a precise mathematical model of the 

system is available. This assumption, however, may be 

difficult to satisfy in practice, especially as engineering 

systems are becoming more complex and are in general 

nonlinear [5][6]. Several model-based studies on the detection 

and identification of faults and tuning parameters were 

considered in [7-8]. 

Soft computing techniques offer an emerging alternative 

approach to the classical FDI based on analytical techniques 

and can deliver economical and competitive solutions to real-

world problems. Their operation parallels the remarkable 

ability of the human mind to reason and learn in 

circumstances characterized by uncertainty and imprecision. 

As such and with their ability to acquire and use imprecise 

(incomplete) knowledge of the process under study, they 

complement the ability of classical FDI techniques which 

require precision, certainty and rigor. For example they allow 

the use of qualitative information from practicing operators 

which may play a vital role in achieving an accurate and 

robust diagnosis of faults in system components (e.g. motors) 

at early stages. 
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The paper is organized as follows: Section II reviews some 

related studies in this area, whereas Section III states the fault 

diagnosis problem at hand.  Section IV discusses the 

implementation and simulation results. Finally some 

conclusions are given Section V. 

2. OVERVIEW OF FDI TECHNIQUES      
of the work on quantitative model-based approaches has been 

based on using general input-output and state space models to 

generate residuals. These approaches can be classified into 

observer/filter-based, parity space and frequency domain 

methods. Good survey papers include [9-13]. The 

mathematical model-based approach adopted in this paper 

falls into the observer category. The basic idea behind the 

observer- or filter-based approaches is to estimate the outputs 

of the system from the measurements (or a subset of 

measurements) by using either observers in a deterministic 

setting or statistical filters (e.g. the Kalman filter) in a 

stochastic setting. Then, the weighted output estimation errors 

(or innovations in the stochastic case) are used as the 

residuals. Depending on the circumstances, one may use 

linear or nonlinear, full or reduced-order, fixed or adaptive 

observers (or Kalman filters) in the generation of residuals.  

Soft computing techniques are used to develop models 

required in FDI. Through the use of expert knowledge, rules 

and training, these techniques can provide models for a wide 

class of nonlinear systems with arbitrary accuracy. Among 

these techniques, neural networks are well recognized for 

their learning ability which allows them to approximate a 

wide class of nonlinear functions with an arbitrary accuracy 

[14]. For these reasons, they have been applied to many 

engineering problems [15-18], and used as models to generate 

residuals for fault detection [19]. However, these networks are 

inadequate in isolating faults, as they are black boxes in 

nature. Further, it is also desirable that a fault diagnostic 

system should be able to incorporate the experience of the 

operators [20] which cannot completely represented by a 

dynamical model. Fuzzy reasoning allows symbolic 

generalization of numerical data by fuzzy rules and supports 

the direct integration of the experience of the operators in the 

decision-making process of FDI in order to achieve a more 

reliable fault diagnosis [21]. An up-to-date application of FDI 

techniques to  motor fault detection and isolation  was 

recently published in a special section in [22]. In what 

follows, a brief literature review is presented under three 

sections comprising of fault diagnosis using expert systems, 

fuzzy logic, neural network and Genetic Algorithm. 

In recent years, the application of fuzzy logic to model-based 

fault diagnosis has gained increasing attention in both 

fundamental research and application. Rule-based feature 

extraction has been widely used in expert systems for many 

applications. Initial attempts at the application of expert 

systems for fault diagnosis can be found in the work of 

Henley [23] and Niida [24]. Structuring the knowledge-base 

through hierarchical classification can be found in [25]. Ideas 

on knowledge-based diagnostic systems based on the task 

framework can be found in [26]. A rule-based expert system 

for fault diagnosis in a cracker unit is described in [27]. More 

work on expert systems in chemical process fault diagnosis 

can be found in [28] and [29]. Wo et al. [30] presented an 

expert fault diagnostic system that uses rules with certainty 

factors. Leung and Romagnoli [31] presented a probabilistic 

model-based expert system for fault diagnosis. An expert 

system approach for fault diagnosis in batch processes was 

also discussed in Scenna [32]. Expert systems posses 

attractive features as they are knowledge based systems 

generated using input/output data and an inference engine 

built upon a set of rules defined by experts in the problem 

field. Nevertheless, major drawbacks of these systems include 

adaptivity to new and changing environment, the increasing of 

the number of rules.  

Soft computing have been seen by many researchers as an 

alternative to classical expert systems paradigm, and a 

considerable interest was shown in the literature regarding the 

application of soft computing to fault diagnosis. A number of 

papers address the problem of fault diagnosis using back-

propagation neural networks.  

In chemical engineering, Watanabe et al. [33], 

Venkatasubramanian and Chan [34], Ungar et al. [35] and 

Hoskins et al. [36] were among the first researchers to 

demonstrate the usefulness of neural networks for fault 

diagnosis. A detailed and thorough analysis of neural 

networks for fault diagnosis in steady-state processes was 

presented by Venkatasubramanian et al. [37]. This work was 

later extended to utilize dynamic process data by 

Vaidyanathan and Venkatasubramanian [38]. A hierarchical 

neural network architecture for the detection of multiple faults 

was proposed by Watanabe et al. [39]. Most of the work on 

the improvement of the performance of standard back-

propagation neural networks for fault diagnosis is based on 

the idea of explicit feature presentation to the neural networks 

by Fan et al. [40], Farell and Roat [41], Tsai and Chang [42], 

and Maki and Loparo [43]. Modifications to the selection of 

basis functions have also been suggested to the standard back-

propagation network with a view to improving both the 

accuracy and training time. For example, Leonard and Kramer 

[44] suggested the use of radial basis function networks for 

fault diagnosis applications.  

Genetic Algorithms (GAs) have been implemented for a wide 

variety of problems, both real-world (e.g. fault diagnosis and 

fault tolerant systems) and abstract (e.g. solving NP-complete 

problems [45]). The bulk of the GA literature is concerned 

with practical applications. For a very complete bibliography, 

see [46], which contains a comprehensive survey. 

However, soft computing techniques remain inadequate for 

fault isolation when compared to their model-based 

counterparts. This prompted us, in this paper, to propose a 

hybrid genetic neuro-fuzzy approach to the FDI problem, 

which meets the requirements for a quick and reliable fault 

detection and isolation scheme. The proposed scheme has 

been evaluated on a laboratory-scale two-tank system. It is a 

widely used prototype used to illustrate typical processes used 

in the wastewater treatment plants, petro-chemical plants, and 

oil/gas systems. The main contribution of this paper is 

therefore to illustrate how the fusion of different soft 

computing techniques into a single hybrid FDI system , 

namely a genetic neuro-fuzzy system, can provide an accurate 

and reliable practical FDI systems. 
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3. THE FAULT DIAGNOSIS PROBLEM 

STATEMENT 
Fault is an undesirable factor in any process control industry. 

It affects the efficiency of system operation and reduces 

economic benefit to the industry. The early detection and 

diagnosis of faults in mission critical systems becomes highly 

crucial for preventing failure of equipment, loss of 

productivity and profits, management of assets, reduction of 

shutdowns. To have an effective fault diagnosis of highly non-

linear systems, hybrid techniques have been utilized here in 

the proposed genetic neuro-fuzzy Based- FDI.  

 

Fig 1: Implementation plan for the evaluation of the 

proposed scheme 

3.1 System Description 
The Benchmarked laboratory-scale process control system 

was used to collect data. The data was collected at a sampling 

time of 50 milliseconds. Different data sets were generated for 

the PI-based water level control system. Different fault 

scenarios were also been considered for the generation of the 

data sets.  

The proposed scheme was evaluated on the above- cited 

process control system. The scheme is carried out by jointly 

interpreting model outputs. The implementation plan for the 

proposed scheme is shown in the Figure 1.  

3.2 Experimental Setup 
The process Data was generated through an experimental 

setup as shown in Figure 2. A two-tank system was used in 

order to collect the data with the introduction of actuator, and 

sensor faults through the system as can be seen in the labview 

circuit window. An amplified voltage of 18 volts was used to 

handle the controller effectively for the changes/fluctuations 

produced in the system. So, the fault diagnosis was done here 

in a closed-loop identification setup where the controller tends 

to suppress the faults while it is performing its feedback 

control task. 

3.3 Process Data Collection and 

Description 
The process data was collected at 50-millisecond sampling 

time. The main objective of the benchmarked dual-tank 

system is to reach a reference height of 200 ml in the second 

tank. During this process, several faults were introduced such 

as leakage faults, sensor faults and actuator faults. Leakage 

faults were introduced through the pipe clogs of the system, 

knobs between the first and the second tank, etc. Sensor faults 

were simulated by introducing a gain in the circuit as if there 

was a fault in the level sensor of the tank. Actuator faults were 

simulated by introducing a gain in the setup for the actuator 

that comprises of the motor and pump. A PI controller was 

employed in order to reach the desired reference height. Due 

to the inclusion of faults, the controller was finding it difficult 

to reach the desired level. For this reason, the power of the 

motor was increased from 5 volts to 18 volts in order to 

provide it with the maximum throttle to reach the desired 

level. In doing so, the actuator performed well in achieving its 

desired level but it also suppressed the faults of the system. 

So, it made the task of detecting the faults. After the 

collection of data, techniques of estimating key parameters 

such as settling time, steady- state value, and coherence 

spectra can be used to help us get a useful insight into the 

fault. 

3.4 D. Model of the Coupled Tank System 
The physical system under evaluation is formed of two tanks 

connected by a pipe. The leakage is simulated in the tank by 

opening the drain valve. A DC motor-driven pump supplies 

the fluid to the first tank and a PI controller is used to control 

the fluid level in the second tank by maintaining the level at a 

specified level, as shown in Figure 3. A step input is applied 

to the dc motor- pump system to fill the first tank.  The 

opening of the drainage valve introduces a leakage in the tank. 

Various types of leakage faults are accompanied with a more 

detailed fault picture. The National Instruments LABVIEW 

package is employed to collect these data.   

 
(a) 

 
(b) 

Fig 2: (a) The two tank system with the Labview with a   

           DAQ and the amplifier for the magnified voltage 

(b) Labview block diagram of the experiment 
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Firstly, the data collected from the plant has been normalized 

which comprises of the pre-processing of the data. Then, the 

optimal cluster has been tested through ANFIS using the 

subtractive clustering technique. Then, the genetic 

optimization of the subtractive clustering radius has been 

performed and the performance has been validated by 

checking the root-mean square error and the performance 

targets.  

 
  

 

Fig 3: Two-tank diagram 

4. IMPLEMENTATION AND 

SIMULATION RESULTS 
The model of the system for a fault-free, which is obtained 

from the system identification process described in the 

previous section, is given by: 

0 0( 1) ( ) ( ) ( )x k A x k B u k d w k+ = + - +        (1) 

0( ) ( ) ( )y k C x k ku= +  

zero-mean white plant and measurement noise signals, 

respectively, with covariance’s: 

( ) ( )TQ E w k w ké ù= ë û, and ( ) ( )TR E v k v ké ù= ë û      (2) 

The plant noise, ( )w k , is a mathematical artifice introduced to 

account for the uncertainty in the a-priori knowledge of the 

plant model. The larger the covariance Q  is, the less accurate 

the model ( )0 0 0, ,A B C is and vice versa.  The Kalman filter 

is given by: 

( )0 0 0 0
ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )x k A x k B u k d K y k C x k+ = + - + -       (3) 

0
ˆ( ) ( ) ( )e k y k C x k= -  

whered is the delay and e (k) the residual, 0K  is the filter 

gain. The larger the Kalman filter gain 0K is, the faster the 

response of the filter will be and the larger the variance of the 

estimation error becomes. Thus, there is a trade-off between a 

fast filter response and a small covariance of the residual. An 

adaptive on-line scheme is employed to tweak the a- priori 

choice of the covariance matrices so that an acceptable trade-

off between the Kalman filter performance and the covariance 

of the residual is reached. Appendix 1 gives the full details of 

the mathematical model,  including the linearized version, of 

the dual-tank process.  A PI controller, with gains pk and Ik , 

is used to maintain the level of the Tank 2 at the desired 

reference input r .  

It is worth pointing out here that the fault-free model of the 

system is identified using a recursive least-squares 

identification scheme. The order of the estimated model was 

iterated to obtain an acceptable model structure using a 

combination of the AIC criterion and the identified pole 

locations. The identified model is essentially a second-order 

system with a delay even though the theoretical model is of a 

fourth order. Using the fault-free model together with the 

covariance of the measurement noise, R, and the plant noise 

covariance, Q, the Kalman filter model was finally derived. 

As it is difficult to obtain an estimate of the plant covariance, 

Q, a number of experiments were performed under different 

plant scenarios to tune the Kalman gain, 0K  

( )0 0 0 0
ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )x k A x k B u k d K y k C x k+ = + - + -    (4) 

0
ˆ( ) ( ) ( )e k y k C x k= -  

The Kalman filter was evaluated under different fault 

scenarios for an on-off controller, a P controller, and a PI 

controller, as shown in Figure 4.   

 

4.1 ANN-Based Fault Diagnosis 
The analysis of the ANN is a difficult task and it requires a 

wide experience in selecting the training sets, activation 

functions and the number and size of the hidden layers for the 

application at hand. A generic model of the ANN in fault 

diagnosis is as shown in Figure 5. 

4.2 Subtractive Clustering ANFIS-Based 

Fault Diagnosis  
The Subtractive Clustering technique has been applied here in 

order to form hybrid versions of Neuro-Fuzzy.  GA+ANFIS 

method is made up of six layers. The first layer is a input 

layer, characterizing the crisp inputs. The second layer 

performs the fuzzification of the crisp inputs into linguistic 

variables, through Gaussian transfer functions. The third is the 

rule layer, which applies the product t-norm to produce the 

firing strengths of each rule. This is followed by a 

normalization layer, at which each node calculates the ratio of 

a rule’s firing strength to the sum of all rules firing strengths. 

The fifth layer performs the inversion. The last layer does the 

defuzzification, where an output is obtained as the summation 

of all incoming signals. The procedure for the Subtractive 

Clustering proceeds by defining a cluster center based on the 

density of surrounding data points. All the data points within 

the Radii of this point form then a cluster. This scheme was 

repetitively implemented so as   to get a final trained ANFIS. 

It was shown that the Predicted ANFIS performs better in 

following the Original output when the radius is 0.7 rather 

than when the radius is 0.2 as shown in Figure 6. As can be 

seen from the previous section that a slight change in the 

radius of subtractive clustering yields noticeable a change in 

the results. So, the genetic optimization of the parameters is 

used in order to get a close-to-optimal value of the clustering 

radius value that will lead to a better tracking of faults. Figure 

7 shows the four various process phases in which the 

performance of the genetic optimization scheme was assessed. 

The original graph is drawn in red which is showing step sizes 

that indicate different levels of faults. 
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Fig 4: Kalman filter results for an (a) On-Off and (b) PI 

Controller: for Flow and Height under various leakage 

magnitudes 

The green graph shows the prediction with the subtractive 

clustering technique followed the blue graph in each of all the 

four phases which is showing the genetic optimization of the 

radius parameter of the sub-clustering technique.  When 

implemented in the genetic algorithm, these functions give the 

best fitness function value as follows: Fitness Function 

Value:0.187462 

 

4.3 Discussion 
In this paper, a hybrid FDI scheme, involving a model-based 

kalman filter approach and a model-free genetic neuro-fuzzy 

approach, was proposed and evaluated on a lab-scale 

benchmarked process control system exemplified by a two-

tank system.. A good comparison of the techniques can be 

seen in the histograms shown in Figures 6 and 7. In Figure 8, 

it can be seen, that when the radius of the subtractive 

clustering is chosen randomly, it leads to improvements in the 

results. The chart in Figure 9  shows the comparison with the 

error rates between fuzzy, ANN, ANFIS and the proposed 

genetic neuro-fuzzy method.  It is important to note here that 

the error rate for the GANFIS is the least one because the 

genetic algorithm has well performed in the optimization of 

the subtractive clustering. Further research is also ongoing in 

optimizing the ANN and FIS structures. 

 
Fig 5: Evaluation of Neural Network-Based Fault 

Diagnosis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Predicted ANFIS using Clustering radius: 0.2 
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Fig 7: Various Fault level Prediction through 2 phases 
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Fig 8: Subtractive clustering radius tuning 
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Fig 9: Comparison of error rates 

 

5. CONCLUSION 
In this paper, we presented a model-free approach to the fault 

diagnosis problem, based on a combination of different 

learning strategies like ANN, adaptive neuro-fuzzy and 

ANFIS.  This model-free approach detects a presence of a 

possible fault from the profiles of the sensor outputs. Changes 

in the fault signatures such as settling time, and the steady-

state value, give a quick indication that a fault may be in the 

making. An abrupt change in the sensor output profile 

indicates a possible onset of a fault. As such, this model-free 

approach can be made an effective part of an overall 

integrated approach that tackles both fault detection and 

isolation where the isolation part would be handled by an 

additional section using a model-based approach. 
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7.  APPENDIX  
The mathematical model of a benchmark model of a cascade 

connection of a dc motor and a pump relating the input to the 

motor, u, and the flow, iQ , is a first-order system : 

( )i m i mQ a Q b u                             (A1) 

Four random Phases for trained subcluster ANFIS with GA  

where
ma and 

mb are the parameters of the motor-pump 

system and ( )u is a dead-band and saturation type of 

nonlinearity.  It is assumed that the leakage Q  occurs in tank 

1 and is given by: 

12dQ C gH                               (A2) 

With the inclusion of the leakage, the liquid level system is 

modeled by: 

   1

1 12 1 2 1i

dH
A Q C H H C H

dt
       (A3) 

    2

2 12 1 2 0 2

dH
A C H H C H

dt
           (A4) 

where (.) (.) 2 (.)sign g  ,  1Q C H  is the leakage 

flow rate,  0 0 2Q C H is the output flow rate, 
1H is the 

height of the liquid in tank 1, 
2H is the height of the liquid in 

tank 2, 
1A  and 

2A  are the cross-sectional areas of the 2 tanks, 

g=980
2/ seccm  is the gravitational constant, 

12C  and 
oC  

are the discharge coefficient of the inter-tank and output 

valves, respectively. The model of the two-tank fluid control 

system, shown above in Figure 3, is of a second order and is 

nonlinear with a smooth square-root type of nonlinearity.  For 

design purposes, a linearized model of the fluid system is 

required and is given below in (5) and (6): 

           1

1 1 1 1 2i

dh
b q a h a h

dt
                   (A5) 

 2

2 1 2 2

dh
a h a h

dt
                      (A6) 

where
1h and 

2h are the increments in the nominal (leakage-

free)  heights
0

1H and 
0

2H : 

0

1 1
0 0 0

1 1 2 2

1
, ,

2 2 ( ) 2 2

dbC C
b a

A g H H gH
  


,

2 1
0 0

2 12 2 2 2

do dC C
a a

gH gH
   

  

where 
iq , q  , 

0q ,
1h  and 

2h  are the increments in 

iQ ,Q ,
oQ ,

0

1H and 
0

2H , respectively, the parameters 
1a  

and 2a  are associated with linearization whereas the 

parameters   and   are respectively associated with the 

leakage and the output flow rate, i.e. 
1q h ,

2oq h  
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