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ABSTRACT 
The essential problem in many data mining applications is 

mining frequent item sets   such as the discovery of 

association rules, patterns, and many other important 

discovery tasks. Fast and less memory utilization for solving 

the problems of frequent item sets are highly required in 

transactional databases.  Methods for mining frequent item 

sets have been implemented using a prefix-tree structure, 

known as an FP-tree, for storing compressed information 

about frequent item sets which is too large to fit in memory. 

GenMax, a search based algorithm is used for mining 

maximal frequent item sets. GenMax uses a number of 

optimizations to prune the search space. It uses a technique 

called progressive focusing to perform maximal checking, and 

differential set propagation to perform fast frequency 

computation. The proposal in this paper present an improved 

index based enhancement on GenMax algorithm for effective 

fast and less memory utilized pruning of maximal frequent 

item sets and closed frequent item sets. The proposed model 

reduce the number of disk I/Os and make frequent item set 

mining scale to large transactional databases. Experimental 

results shows a comparison  of improved index based 

GenMax and existing GenMax for efficient pruning of  

maximal frequent and closed frequent item sets in terms of 

item precision and fastness. 
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1. INTRODUCTION 
In recent Data mining research, mining of association rules 

from large data sets has been addressed efficiently.  Mining 

frequent itemsets is an initial requirement for mining 

association rules. Frequent item set mining has many 

applications such as association rule mining, inductive 

databases, and query expansion[1]. From these applications, 

fast implementations of frequent itemset mining problems are 

needed. For a given large data base of set of items 

transactions, we need to find all frequent itemsets, where a 

frequent itemset is one that occurs in at least a user-specified 

percentage of the data base. Many of the proposed itemset 

mining algorithms are a variant of Apriori, which employs a 

bottom-up, breadthfirst search, that enumerates every single 

frequent itemset[2].  In many applications (especially in dense 

data) with long frequent patterns enumerating all possible 2m 

- 2 subsets of a m length pattern (m can easily be 30 or 40 or 

longer) is computationally unfeasible. Thus, there has been 

recent interest in mining maximal frequent patterns in these 

”hard” dense databases.  

The problem of mining maximal frequent patterns can be 

formally stated as follows[3]: Let I = {i1, i2, i3,  . . . , i m } be 

a set of m distinct items. Let D denote a database of 

transactions, where each transaction has a unique identifier 

(tid) and contains a set of  items. The set of all tids is denoted 

T = {t1, t2, tm,  . . . , tn }. A set X  I is also called an  

temset. An itemset with k items is called a k-itemset. The set t 

( X )  T, consisting of all .the transaction tids which contain 

X as a subset, is called the tidset of  X. For. convenience we 

write an itemset {A, C, W} as ACW. and its tidset { 1,3,4,5} 

as t ( X ) = 1345.  The support of an itemset X denoted by 

σ(x) is the number of transactions in which that itemset occurs 

as a subset. This σ(x) = | t(x)|. An itemset is frequent if its 

support is more than or equal to some threshold minimum 

support value. We denote the set of all frequent itemset as FI. 

A frequent itemset is called maximal if it is not a subset of any 

other frequent itemset. The set of all maximal frequent itemset 

is denoted by MFI.  

Bayardo [4] devised the MaxMiner algorithm to efficiently 

mine long patters from databases. Which abandons a bottom-

up traversal and uses a look ahead technique to identify long 

patterns along with its subsets. Agrawal et. al. [5] formulated 

the DepthProject, that aims at depth first generation of long 

patterns. It is fast when compared to the previous MaxMiner. 

Burdick et. al. [6] proposed the MAFIA algorithm, which 

integrates depth-first traversal of itemset lattice with effective 

pruning mechanism. It generates the maximal frequent 

itemsets for the transactional databases. This algorithm mines 

the superset of maximal frequent itemset and requires a post 

pruning step to eliminate non maximal patterns. 

Karam Gouda et. al. [7] formulated the GenMax algorithm 

that merges pruning with mining and returns the exact 

maximal frequent itemsets. The GenMax algorithm utilizes a 

backtracking search for efficiently enumerating all maximal 

patterns. It uses a number of optimizations to quickly prune 

away a large portion of the subset search space also a novel 

progressive focusing technique is used to eliminate non-

maximal itemsets easily. Diffset propagation is followed here 

for fast frequency checking We require an algorithm that also 

enumerates the set of all maximal frequent itemsets combined 

with the closed frequent itemsets for easy generation of 

association rules. Another promising direction is to mine only 

closed sets [8]; a set is closed if it has no superset with the 

same frequency. The set of all such closed frequent itemsets is 

called as CFI. Nevertheless, for some of the dense datasets, 

even the set of all closed patterns would grow to be too large. 

The only recourse is to mine the maximal patterns in such 

domains. Knowing all maximal patterns (and their 

frequencies) allows us to reconstruct the set of frequent 

patterns. Knowing all closed patterns and their frequencies 
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allows us to reconstruct the set of all frequent patterns and 

their frequencies. In this paper, indexed based [9] progressive 

deepening method is developed by extension of the GenMax 

algorithm for mining maximal frequent item set. The method 

first finds frequent data items at the top most level and then 

progressively deepens the mining process into their frequent 

descendants. One important assumption that we have made in 

this study is to explore only the descendants of the frequent 

items, since we consider if an item occurs rarely, its 

descendants will occur even less frequently and, thus, are 

uninteresting. It also enumerates all the possible closed 

frequent item sets and construct an index for each MFI and 

CFI generated for fast and less memory utilized pruning of 

frequent item sets. 

2. EXISTING WORK ON GENMAX 

2.1 Backtracking Search 

GenMax uses backtracking search to enumerate the maximal 

frequent itemsets (MFI). The backtracking paradigm starts 

with enumerating all frequent patterns. Backtracking 

algorithms are useful for many combinatorial problems where 

the solution can be represented as a set I = {io,i1, ...}, where 

each ij is chosen from a finite possible set, Pj. Initially I is 

empty; it is extended one item at a time, as the search space is 

traversed. The length of l is the same as the depth of the 

corresponding node in the search tree. Given a partial solution 

of length 1, Il = {io, i1, ..., il-1}, the possible values for the next 

item i1 comes from a subset Cl which is a subset of Pl called 

the combine set. If y Є  Pl - Cl, then nodes in the subtree with 

root node I1 = {io, il,..., il-1, y} will not be considered by the 

backtracking algorithm. Since such subtrees have been pruned 

away from the original search space, the determination of Cl is 

also called as pruning. 

 

 

 

 

 

 

 

  1

1

1 1 l 1

1 1

 I ,C , l 

For each x C

I  I U x        

        P y :  y C and y x      

          C  FI _ Combine I ,P

FI Backtrack I ,C , 1

l l

l

l

l l

l l

l l l





  

 







  



 

FI Backtrack

 

 

 

 

1 1

1                                               

1

_ I ,P      

   C             

   For each y P

If I y  is frequent          

   C C  y

 Return C

l l

l

l

 











 

FI Combine

 

Fig 1: Backtrack Algorithm 

Consider the backtracking algorithm for mining all frequent 

patterns, shown in Figure 1. The main loop tries extending Il 

with every item x in the current combine set C l. The first step 

is to compute Il+1, which is simply Il extended with x. The 

second step is to extract the new possible set of extensions, P 

l+1, which consists only of items y in C l that follow x. The 

third step is to create a new combine set for the next pass, 

consisting of valid extensions. An extension is valid if the 

resulting itemset is frequent. The combine set, C l+1, thus 

consists of those items in the possible set, that produce a 

frequent itemset when used to extend Il+1. Any item not in the 

combine set refers to a pruned subtree. The final step is to 

recursively call the backtrack routine for each extension. Thus 

the presented backtrack method performs a depth-first 

traversal of the search space. 

2.2 MFI Mining algorithm 

There are two main ingredients to develop an efficient MFI 

algorithm. The first is the set of techniques used to remove 

entire branches of the search space, and the second is the 

representation used to perform fast frequency computations. 

The basic MFI enumeration code used in GenMax is a 

straightforward extension of FI-Backtrack. The main addition 

is the superset checking to eliminate non-maximal itemsets, as 

shown in Figure 2.  
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Fig 2: Backtrack Algorithm for Mining MFI 

After the construction of the possible set to check if I l+1U P1+1 

is subsumed by an existing maximal set. If so, the current and 

all subsequent items in Cl can be pruned away. After creating 

the new combine set, if it is empty and Il+1 is not a subset of 

any maximal pattern, it is added to the MFI. If the combine set 

is non-empty a recursive call is made to check further 

extensions. 

2.3 Optimizing the Algorithm 

The next step is to substantially speed up the subset checking 

process. The main idea is to progressively narrow down the 

maximal itemsets of interest as recursive calls are made. In 

other words, we construct for each invocation of MFI-

Backtrack a list of local maximal frequent itemsets, LMFIl. 

This list contains the maximal sets that can potentially be 

supersets of candidates that are to be generated from the 

itemset Il. The only such maximal sets are those that contain 

all items in Il. This way, instead of checking if I l+1U P1+1 is 

contained in the full current MFI, we check only in LM FI1 

the local set of relevant maximal itemsets. This technique 

called progressive focusing, is extremely powerful in 

narrowing the search to only the most relevant maximal 

itemsets, making superset checking practical on dense 

datasets. Figure 3 shows the pseudo-code for GenMax that 

incorporates this optimization. Any new maximal itemsets 

from a recursive call are incorporated in the current LMFIl. 
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Fig 3: Mining MFI with Progressive focusing 

2.4 Differential Sets Propagation 

Despite the many advantages of the vertical format, when the 

tidset cardinality gets very large (e.g., for very frequent items) 

the intersection time starts to become inordinately large. 

Furthermore, the size of intermediate tidsets generated for 

frequent patterns can also become very large to fit into main 

memory. GenMax uses a new format called Differential Sets 

(diffsets) for fast frequency testing. The main idea of diffsets 

is to avoid storing the entire tidset of each element in the 

combine set. Instead we keep track of only the differences 

between the tidset of itemset I1 and the tidset of an element x 

in the combine set. These differences in tids are stored in what 

we call the diffset, which is a difference of two tidsets at the 

root level or a difference of two diffsets at later levels. 

Furthermore, these differences are propagated all the way 

from a node to its children starting from the root.  
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Fig 4: Diffset Propagation 

2.5 Final Algorithm 

The complete GenMax algorithm is shown in Figure 5, which 

ties in all the optimizations mentioned above. GenMax 

assumes that the input dataset is in the vertical tidset format. 

First GenMax computes the set of frequent items and the 

frequent 2-itemsets, using a vertical-to-horizontal recovery 

method. This information is used to reorder the items in the 

initial combine list to minimize the search tree size that is 

generated. GenMax uses the progressive focusing technique 

of LMFI-Backtrack, combined with diffset propagation of FI-

diffset-combine to produce the exact set of all maximal 

frequent itemsets. 
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Fig 5: GenMax Algorithm 

3. THE PROPOSED ALGORITHM 

3.1 Mining Closed Frequent Itemset CFI 

It is important to point out the relationship between frequent 

itemsets, closed frequent itemsets and maximal frequent 

itemsets. As mentioned earlier closed and maximal frequent 

itemsets are subsets of frequent itemsets but maximal frequent 

itemsets are a more compact representation because it is a 

subset of closed frequent itemsets. Therefore all frequent 

itemsets are uniquely determined by the Closed itemsets and 

can be determined by the join operation on the frequent 

concepts. Closed frequent itemsets are more widely used than 

maximal frequent itemset because when efficiency is more 

important that space, they provide us with the support of the 

subsets so no additional pass is needed to find this 

information. 

 

For any Closed Itemset X, there exists a Closed Tidset  Y, 

with the property :Y = t(X). The Pair  X × Y is called a 

Concept. Therefore all frequent itemsets are uniquely 

determined by the Closed itemsets and can be determined by 

the join operation on the frequent concepts. A large number of 

generalized frequent itemsets may cause of high 

computational time. Instead of mining all generalized frequent 

itemsets, we can mine only a small set of generalized closed 

frequent itemsets and then result in reducing computational 

time. Here we proposed an indexed algorithm, by applying 

some constraints and conditional properties to efficiently 

enumerate only generalized closed frequent itemsets. The 

advantage of this approach becomes more dominant when 

minimum support is low and/or the dataset is dense. This 

approach makes us possible to mine the data in real situations.  

3.2 Indexed Enhancement on GenMax 

Algorithm  
Indexed GenMax performs a novel search for closed sets 

using subset properties of differential sets. The initial 

invocation is with a indexed class at a give tree node. All 

differences for pairs of elements are computed. However in 

addition to checking for frequency, indexed GenMax 
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eliminates branches and grows item sets using subset 

relationships among differential sets. This proposed Index 

based GenMax is the efficient item pruning model. The 

Indexed GenMax consists of indexed structure for tid set, 

GenMax maximal frequent item sets generator, differential 

sets, and resultant closed (minimal) frequent items with 

performance factors such as memory utilization and pruning 

time. The improved indexed based GenMax Algorithm as 

designed for the implementation process is presented below. 

 

Input:   Car Data transaction set TS,  

            minimum support value (min_supp),  

            item set. 

Output:  Complete set of frequent items (FI),  

GenMFI (maximal frequent item set), 

  GenCFI (closed frequent item),  

Index of GenMFI and GenCFI. 

1. INITIALIZATION 

1.1. Let DI = {i1,i2,...in} be a set of n distinct items 

1.2. Let TS denote a database of transaction set, 

where each transaction has unique identifier (tid) 

and a set of items 

1.3. The set of all tids is denoted S = {t1,t2,..,tm} 

1.4. A set x Є I is also called an item set 

1.5. An item set with k items is called a k-item set  

and let the items be denoted by i in item set x. 

1.6. Initialize min_supp and GMFI, GCFI to 0. 

2. PROCESS (transaction set) 

2.1. Scan the transaction set TS.  

2.2. By using x and min_supp, FI and NFI are generated. 

3. OBTAINING GMFI 

3.1. Frequent item set (FI) and NFI obtained from 2.2 

3.2. Generate GMFI 

3.3. for all item sets x Є FI 

3.4. for all item sets s Є NFI 

3.5.       if x is a subset of s  

3.6.       while superset(candidate item set) Є GMFI  

3.7.           GMFI = 0 

3.8.       while superset(candidate item set) € GMFI 

3.9.           candidate item set = GMFI 

3.10.       endif  

4. OBTAINING GCFI  

4.1. Let list=(i, count) 

4.2. for each x Є FI 

4.3.   if list <> superset in GCFI & support = min_sup 

4.4.      GCFI = GCFI U list 

4.5.  endif 

5. PERFORM INDEXING ON GMFI and GCFI 

5.1.  Using GMFI and GCFI  

5.2.       for n frequent items 

5.3.        store frequent item in index[j].list in vector (vec) 

5.4.          scan the transaction set  

5.5.         if vec < = IS  

5.6.   Perform(Tid,i) 

5.7.          Endif 

6. QUERY PROCESSING (Frequent item pruning) 

6.1. For (i <=x) 

6.2.     perform step 5 for indexed GMFI and GCFI 

6.3.      If (i=x) 

6.4.      Resultant frequent item dependent object is obtained 

6.5.    Otherwise perform with next item 

6.6. Endif 

 

Fig 5: Indexed GenMax Algorithm 

 

The implementation of Indexed GenMax for mining multiple-

level item sets i.e., maximal and closed, which uses a 

transaction id based information encoded indexed table 

instead of the original transaction table. This is because a data 

mining query is usually in relevance to only a portion of the 

transaction database of indexed hierarchy structure, instead of 

all the items. It is beneficial to first collect the relevant set of 

data and then work repeatedly on the task-relevant set. 

Encoding can be performed during the collection of task-

relevant data and, thus, there is no extra encoding pass 

required. Besides, an encoded string, which represents a 

position in a indexed table, requires fewer bits than the 

corresponding object-identifier or bar-code. Therefore, it is 

often beneficial to use an encoded indexed table, although our 

method does not rely on the derivation of such an encoded 

table because the encoding can always be performed on the 

pruning process itself. The steps of implementation are briefed 

as below. 

Step 1: Calculate frequent item sets at each concept level, 

until no more Frequent Item sets can be found 

Step 2: Indexing of Frequent Item(FI) set 

Step 3: Pruning the Index of FI for Closed and Maximal FI  

Step 4: Progressive Focusing approach on indexed structure 

Step 4.1: Fast retrieval of Frequent Item sets 

Step 4.2: Identification of Precise Frequent Item sets 

Uniform Support is the same minimum support for all levels 

i.e., one minimum support threshold. It is not needed to 

examine item sets containing any item whose ancestors do not 

have minimum support in the indexed GenMax model. If 

support threshold is too high, it misses low level associations. 

If the support threshold is too low, it generates too many high 

level associations. Reduced Support is the reduced minimum 

support at lower levels to evaluate the closed frequent items 

with efficient index structure for different possible strategies 

to prune the item sets from large scalable data mining 

application such as  market basket analysis, genome property 

structures, medical disease diagnosis etc., 

4. PERFORMANCE EVALUATION 
To analyze the performance of the indexed GenMax item 

pruning, we used Pentium Dual core processor 2.5 GHz with 

2 GB of main memory running under Windows XP. The 

training sample consists of transactions in car databases taken 

from UCI repository. The total number of items, being 100, 

the number of potentially frequent item sets to be 30, and the 

total number of transactions were 3000. The scale-up tests on 

total number of items, average size of transactions, and total 

number of tuples, also performed to verify the efficiency of 

the indexed GenMax item pruning model which showed 

satisfactory results briefed in below sections.  

4.1 Mining Frequent Item Set  
The transaction database is converted into an indexed encoded 

transaction table, according to the information above the 

generalized items in the item description. The maximal level 

of the concept hierarchy in the item table is set to 4. The 

number of the top level nodes keeps increasing until the total 

number of items reaches. The fan-outs at the lower levels are 

selected based on the normal distribution, and with a variance 

of 2.0. Not every strong rule so discovered (i.e., passing the 

minimum support and minimum confidence thresholds) is 

interesting enough to be presented to users. Two 

interestingness measures are proposed to filter redundant rules 

and unnecessary rules. The indexed based GenMax prune 

more precise frequent item set compared to that of existing 

GenMax algorithm (shown in Fig 6).  
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Fig 6: Frequent Itemsets Pruned by Indexed GenMax  

4.2 Pruning Time for Indexed based 

GenMax 
The pruning time for indexed based GenMax is low for 

mining maximal and closed frequent item set compared to that 

of existing GenMax (shown in Fig 7). The reduction of time 

in pruning for indexed GenMax is achieved due to the 

segregation of multilevel hierarchies of the item sets and 

mainly due to the indexing of transaction id based on the 

complete item set. However in case of GenMax the pruning is 

done for the frequent pattern on all levels of the item set. In 

case of  large transaction, without indexing sequence, exiting 

GenMax have to prune the frequent patterns from top to 

bottom for any nearest neighbor pattern also which consumes 

more time nearly 18% than the indexed GenMax.  
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Fig 7: Pruning time for mining MFI and CFI 

5. CONCLUSION 
The proposal in our work has implemented an improved and 

an index based enhancement on GenMax algorithm. This 

Indexed GenMax algorithm is used for effective fast and less 

memory utilized pruning of maximal frequent item and closed 

frequent item sets. The extension induces a search tree on the 

set of frequent closed item sets thereby we can completely 

enumerate closed item sets without duplications. The memory 

use of mining the maximal frequent item set does not depend 

on the number of frequent closed item sets, even if there are 

many frequent closed item sets. The top-down progressive 

deepening technique using indexing structure is developed for 

mining maximal and closed frequent items. The better 

performance of indexed GenMax algorithm depicted in the 

result section worked on different distributions of data. Our 

performance study shows that the indexed GenMax may have 

the best performance when compared to the conventional 

GenMax.  
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