
International Journal of Computer Applications (0975 – 8887)

Volume 41– No.16, March 2012

37

Indexed Enhancement on GenMax Algorithm for
Fast and Less Memory Utilized Pruning of MFI and CFI

C.Sathya C. Chandrasekar
 Assistant Professor in Computer Application Associate Professor in Computer Science
 Vellalar College for Women Periyar University

Erode, Tamil Nadu, India Salem, Tamil Nadu, India

ABSTRACT
The essential problem in many data mining applications is

mining frequent item sets such as the discovery of

association rules, patterns, and many other important

discovery tasks. Fast and less memory utilization for solving

the problems of frequent item sets are highly required in

transactional databases. Methods for mining frequent item

sets have been implemented using a prefix-tree structure,

known as an FP-tree, for storing compressed information

about frequent item sets which is too large to fit in memory.

GenMax, a search based algorithm is used for mining

maximal frequent item sets. GenMax uses a number of

optimizations to prune the search space. It uses a technique

called progressive focusing to perform maximal checking, and

differential set propagation to perform fast frequency

computation. The proposal in this paper present an improved

index based enhancement on GenMax algorithm for effective

fast and less memory utilized pruning of maximal frequent

item sets and closed frequent item sets. The proposed model

reduce the number of disk I/Os and make frequent item set

mining scale to large transactional databases. Experimental

results shows a comparison of improved index based

GenMax and existing GenMax for efficient pruning of

maximal frequent and closed frequent item sets in terms of

item precision and fastness.

General Terms

Computer Science, Data Mining, Association Rule Mining

Keywords

Indexing, Indexed GenMax, Itemset Mining

1. INTRODUCTION
In recent Data mining research, mining of association rules

from large data sets has been addressed efficiently. Mining

frequent itemsets is an initial requirement for mining

association rules. Frequent item set mining has many

applications such as association rule mining, inductive

databases, and query expansion[1]. From these applications,

fast implementations of frequent itemset mining problems are

needed. For a given large data base of set of items

transactions, we need to find all frequent itemsets, where a

frequent itemset is one that occurs in at least a user-specified

percentage of the data base. Many of the proposed itemset

mining algorithms are a variant of Apriori, which employs a

bottom-up, breadthfirst search, that enumerates every single

frequent itemset[2]. In many applications (especially in dense

data) with long frequent patterns enumerating all possible 2m

- 2 subsets of a m length pattern (m can easily be 30 or 40 or

longer) is computationally unfeasible. Thus, there has been

recent interest in mining maximal frequent patterns in these

”hard” dense databases.

The problem of mining maximal frequent patterns can be

formally stated as follows[3]: Let I = {i1, i2, i3, . . . , i m } be

a set of m distinct items. Let D denote a database of

transactions, where each transaction has a unique identifier

(tid) and contains a set of items. The set of all tids is denoted

T = {t1, t2, tm, . . . , tn }. A set X  I is also called an

temset. An itemset with k items is called a k-itemset. The set t

(X)  T, consisting of all .the transaction tids which contain

X as a subset, is called the tidset of X. For. convenience we

write an itemset {A, C, W} as ACW. and its tidset { 1,3,4,5}

as t (X) = 1345. The support of an itemset X denoted by

σ(x) is the number of transactions in which that itemset occurs

as a subset. This σ(x) = | t(x)|. An itemset is frequent if its

support is more than or equal to some threshold minimum

support value. We denote the set of all frequent itemset as FI.

A frequent itemset is called maximal if it is not a subset of any

other frequent itemset. The set of all maximal frequent itemset

is denoted by MFI.

Bayardo [4] devised the MaxMiner algorithm to efficiently

mine long patters from databases. Which abandons a bottom-

up traversal and uses a look ahead technique to identify long

patterns along with its subsets. Agrawal et. al. [5] formulated

the DepthProject, that aims at depth first generation of long

patterns. It is fast when compared to the previous MaxMiner.

Burdick et. al. [6] proposed the MAFIA algorithm, which

integrates depth-first traversal of itemset lattice with effective

pruning mechanism. It generates the maximal frequent

itemsets for the transactional databases. This algorithm mines

the superset of maximal frequent itemset and requires a post

pruning step to eliminate non maximal patterns.

Karam Gouda et. al. [7] formulated the GenMax algorithm

that merges pruning with mining and returns the exact

maximal frequent itemsets. The GenMax algorithm utilizes a

backtracking search for efficiently enumerating all maximal

patterns. It uses a number of optimizations to quickly prune

away a large portion of the subset search space also a novel

progressive focusing technique is used to eliminate non-

maximal itemsets easily. Diffset propagation is followed here

for fast frequency checking We require an algorithm that also

enumerates the set of all maximal frequent itemsets combined

with the closed frequent itemsets for easy generation of

association rules. Another promising direction is to mine only

closed sets [8]; a set is closed if it has no superset with the

same frequency. The set of all such closed frequent itemsets is

called as CFI. Nevertheless, for some of the dense datasets,

even the set of all closed patterns would grow to be too large.

The only recourse is to mine the maximal patterns in such

domains. Knowing all maximal patterns (and their

frequencies) allows us to reconstruct the set of frequent

patterns. Knowing all closed patterns and their frequencies

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.16, March 2012

38

allows us to reconstruct the set of all frequent patterns and

their frequencies. In this paper, indexed based [9] progressive

deepening method is developed by extension of the GenMax

algorithm for mining maximal frequent item set. The method

first finds frequent data items at the top most level and then

progressively deepens the mining process into their frequent

descendants. One important assumption that we have made in

this study is to explore only the descendants of the frequent

items, since we consider if an item occurs rarely, its

descendants will occur even less frequently and, thus, are

uninteresting. It also enumerates all the possible closed

frequent item sets and construct an index for each MFI and

CFI generated for fast and less memory utilized pruning of

frequent item sets.

2. EXISTING WORK ON GENMAX

2.1 Backtracking Search

GenMax uses backtracking search to enumerate the maximal

frequent itemsets (MFI). The backtracking paradigm starts

with enumerating all frequent patterns. Backtracking

algorithms are useful for many combinatorial problems where

the solution can be represented as a set I = {io,i1, ...}, where

each ij is chosen from a finite possible set, Pj. Initially I is

empty; it is extended one item at a time, as the search space is

traversed. The length of l is the same as the depth of the

corresponding node in the search tree. Given a partial solution

of length 1, Il = {io, i1, ..., il-1}, the possible values for the next

item i1 comes from a subset Cl which is a subset of Pl called

the combine set. If y Є Pl - Cl, then nodes in the subtree with

root node I1 = {io, il,..., il-1, y} will not be considered by the

backtracking algorithm. Since such subtrees have been pruned

away from the original search space, the determination of Cl is

also called as pruning.

 

 

 

 

 

 1

1

1 1 l 1

1 1

 I ,C , l

For each x C

I I U x

 P y : y C and y x

 C FI _ Combine I ,P

FI Backtrack I ,C , 1

l l

l

l

l l

l l

l l l





  

 







  



 

FI Backtrack

 

 

 

1 1

1

1

_ I ,P

 C

 For each y P

If I y is frequent

 C C y

 Return C

l l

l

l

 











 

FI Combine

Fig 1: Backtrack Algorithm

Consider the backtracking algorithm for mining all frequent

patterns, shown in Figure 1. The main loop tries extending Il

with every item x in the current combine set C l. The first step

is to compute Il+1, which is simply Il extended with x. The

second step is to extract the new possible set of extensions, P

l+1, which consists only of items y in C l that follow x. The

third step is to create a new combine set for the next pass,

consisting of valid extensions. An extension is valid if the

resulting itemset is frequent. The combine set, C l+1, thus

consists of those items in the possible set, that produce a

frequent itemset when used to extend Il+1. Any item not in the

combine set refers to a pruned subtree. The final step is to

recursively call the backtrack routine for each extension. Thus

the presented backtrack method performs a depth-first

traversal of the search space.

2.2 MFI Mining algorithm

There are two main ingredients to develop an efficient MFI

algorithm. The first is the set of techniques used to remove

entire branches of the search space, and the second is the

representation used to perform fast frequency computations.

The basic MFI enumeration code used in GenMax is a

straightforward extension of FI-Backtrack. The main addition

is the superset checking to eliminate non-maximal itemsets, as

shown in Figure 2.

 

 

 

1, 1,

1

 1 1

 1 1 1

1

Invocation : MFI Backtrack ,F ,0

 – (I C)

For each x C

I I x

P y : y C and y x

If I P has a superset in MFI

Return / / all subsequent branches pruned

C FI combi

l

l

l

l

l

l

l

 

 

 



 





 



 

MFI Backtrack

 

 

1, 1 1

 1

 1

1

1, 1,

ne I P

 If C is empty

 If I has no super set in MFI

 MFI MFI I

Else

MFI Backtrack I C 1

l

l

l

l

l l l

 







 

 

 

Fig 2: Backtrack Algorithm for Mining MFI

After the construction of the possible set to check if I l+1U P1+1

is subsumed by an existing maximal set. If so, the current and

all subsequent items in Cl can be pruned away. After creating

the new combine set, if it is empty and Il+1 is not a subset of

any maximal pattern, it is added to the MFI. If the combine set

is non-empty a recursive call is made to check further

extensions.

2.3 Optimizing the Algorithm

The next step is to substantially speed up the subset checking

process. The main idea is to progressively narrow down the

maximal itemsets of interest as recursive calls are made. In

other words, we construct for each invocation of MFI-

Backtrack a list of local maximal frequent itemsets, LMFIl.

This list contains the maximal sets that can potentially be

supersets of candidates that are to be generated from the

itemset Il. The only such maximal sets are those that contain

all items in Il. This way, instead of checking if I l+1U P1+1 is

contained in the full current MFI, we check only in LM FI1

the local set of relevant maximal itemsets. This technique

called progressive focusing, is extremely powerful in

narrowing the search to only the most relevant maximal

itemsets, making superset checking practical on dense

datasets. Figure 3 shows the pseudo-code for GenMax that

incorporates this optimization. Any new maximal itemsets

from a recursive call are incorporated in the current LMFIl.

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.16, March 2012

39

 

 

 

 

 , 1, 1,

1

 1

1 1 1

 1 1 1

Invocation : LMFI backtrack , F , ,0

LMFI is an output parameter

 – I C LMFI

For each x C

I I x

P y : y C and y x

if I P has a superset in LMFI

 Return / / sub

l

l

l

l

l l

l

 

 

 

 





 



LMFI Backtrack

1

sequent branches pruned

LMFIl 

 

 

 

 1 1 1 1

1

 1

1 1

1, 1 1, 1 1

1 1 1

C Fl combine I , P

If C is empty

If I has no superset in LMFI

 LMFI =LMFI I

Else LMFI M LMFI ,x M

 LMFI Backtrack I C LMFI , 1

LMFI =LMFI LMFI

l l

l

l l

l l

l l

l

l

l

   







  







  

 



Fig 3: Mining MFI with Progressive focusing

2.4 Differential Sets Propagation

Despite the many advantages of the vertical format, when the

tidset cardinality gets very large (e.g., for very frequent items)

the intersection time starts to become inordinately large.

Furthermore, the size of intermediate tidsets generated for

frequent patterns can also become very large to fit into main

memory. GenMax uses a new format called Differential Sets

(diffsets) for fast frequency testing. The main idea of diffsets

is to avoid storing the entire tidset of each element in the

combine set. Instead we keep track of only the differences

between the tidset of itemset I1 and the tidset of an element x

in the combine set. These differences in tids are stored in what

we call the diffset, which is a difference of two tidsets at the

root level or a difference of two diffsets at later levels.

Furthermore, these differences are propagated all the way

from a node to its children starting from the root.

 

     

     

 

 

1 1

 1

1

1

I , P

C

For each y P

y‟ y

If level 0 then d y‟ t I – t y

Else d y‟ d y – d I

If y‟ min _ sup

C C y‟

Return C

l l

l

l

l



 







 

 





 





 

Fl diffset combine

Fig 4: Diffset Propagation

2.5 Final Algorithm

The complete GenMax algorithm is shown in Figure 5, which

ties in all the optimizations mentioned above. GenMax

assumes that the input dataset is in the vertical tidset format.

First GenMax computes the set of frequent items and the

frequent 2-itemsets, using a vertical-to-horizontal recovery

method. This information is used to reorder the items in the

initial combine list to minimize the search tree size that is

generated. GenMax uses the progressive focusing technique

of LMFI-Backtrack, combined with diffset propagation of FI-

diffset-combine to produce the exact set of all maximal

frequent itemsets.

 

    

 

1 2

1

1

1

Compute Fand F

Compute IF x for each item x F

Sort F decreasing in IF x , increasing in x

MFI

LMFI Backtrack ,F ,MFI,0 / / Use diffsets

Return MFI





 

 

GenMax

Fig 5: GenMax Algorithm

3. THE PROPOSED ALGORITHM

3.1 Mining Closed Frequent Itemset CFI

It is important to point out the relationship between frequent

itemsets, closed frequent itemsets and maximal frequent

itemsets. As mentioned earlier closed and maximal frequent

itemsets are subsets of frequent itemsets but maximal frequent

itemsets are a more compact representation because it is a

subset of closed frequent itemsets. Therefore all frequent

itemsets are uniquely determined by the Closed itemsets and

can be determined by the join operation on the frequent

concepts. Closed frequent itemsets are more widely used than

maximal frequent itemset because when efficiency is more

important that space, they provide us with the support of the

subsets so no additional pass is needed to find this

information.

For any Closed Itemset X, there exists a Closed Tidset Y,

with the property :Y = t(X). The Pair X × Y is called a

Concept. Therefore all frequent itemsets are uniquely

determined by the Closed itemsets and can be determined by

the join operation on the frequent concepts. A large number of

generalized frequent itemsets may cause of high

computational time. Instead of mining all generalized frequent

itemsets, we can mine only a small set of generalized closed

frequent itemsets and then result in reducing computational

time. Here we proposed an indexed algorithm, by applying

some constraints and conditional properties to efficiently

enumerate only generalized closed frequent itemsets. The

advantage of this approach becomes more dominant when

minimum support is low and/or the dataset is dense. This

approach makes us possible to mine the data in real situations.

3.2 Indexed Enhancement on GenMax

Algorithm
Indexed GenMax performs a novel search for closed sets

using subset properties of differential sets. The initial

invocation is with a indexed class at a give tree node. All

differences for pairs of elements are computed. However in

addition to checking for frequency, indexed GenMax

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.16, March 2012

40

eliminates branches and grows item sets using subset

relationships among differential sets. This proposed Index

based GenMax is the efficient item pruning model. The

Indexed GenMax consists of indexed structure for tid set,

GenMax maximal frequent item sets generator, differential

sets, and resultant closed (minimal) frequent items with

performance factors such as memory utilization and pruning

time. The improved indexed based GenMax Algorithm as

designed for the implementation process is presented below.

Input: Car Data transaction set TS,

 minimum support value (min_supp),

 item set.

Output: Complete set of frequent items (FI),

GenMFI (maximal frequent item set),

 GenCFI (closed frequent item),

Index of GenMFI and GenCFI.

1. INITIALIZATION

1.1. Let DI = {i1,i2,...in} be a set of n distinct items

1.2. Let TS denote a database of transaction set,

where each transaction has unique identifier (tid)

and a set of items

1.3. The set of all tids is denoted S = {t1,t2,..,tm}

1.4. A set x Є I is also called an item set

1.5. An item set with k items is called a k-item set

and let the items be denoted by i in item set x.

1.6. Initialize min_supp and GMFI, GCFI to 0.

2. PROCESS (transaction set)

2.1. Scan the transaction set TS.

2.2. By using x and min_supp, FI and NFI are generated.

3. OBTAINING GMFI

3.1. Frequent item set (FI) and NFI obtained from 2.2

3.2. Generate GMFI

3.3. for all item sets x Є FI

3.4. for all item sets s Є NFI

3.5. if x is a subset of s

3.6. while superset(candidate item set) Є GMFI

3.7. GMFI = 0

3.8. while superset(candidate item set) € GMFI

3.9. candidate item set = GMFI

3.10. endif

4. OBTAINING GCFI

4.1. Let list=(i, count)

4.2. for each x Є FI

4.3. if list <> superset in GCFI & support = min_sup

4.4. GCFI = GCFI U list

4.5. endif

5. PERFORM INDEXING ON GMFI and GCFI

5.1. Using GMFI and GCFI

5.2. for n frequent items

5.3. store frequent item in index[j].list in vector (vec)

5.4. scan the transaction set

5.5. if vec < = IS

5.6. Perform(Tid,i)

5.7. Endif

6. QUERY PROCESSING (Frequent item pruning)

6.1. For (i <=x)

6.2. perform step 5 for indexed GMFI and GCFI

6.3. If (i=x)

6.4. Resultant frequent item dependent object is obtained

6.5. Otherwise perform with next item

6.6. Endif

Fig 5: Indexed GenMax Algorithm

The implementation of Indexed GenMax for mining multiple-

level item sets i.e., maximal and closed, which uses a

transaction id based information encoded indexed table

instead of the original transaction table. This is because a data

mining query is usually in relevance to only a portion of the

transaction database of indexed hierarchy structure, instead of

all the items. It is beneficial to first collect the relevant set of

data and then work repeatedly on the task-relevant set.

Encoding can be performed during the collection of task-

relevant data and, thus, there is no extra encoding pass

required. Besides, an encoded string, which represents a

position in a indexed table, requires fewer bits than the

corresponding object-identifier or bar-code. Therefore, it is

often beneficial to use an encoded indexed table, although our

method does not rely on the derivation of such an encoded

table because the encoding can always be performed on the

pruning process itself. The steps of implementation are briefed

as below.

Step 1: Calculate frequent item sets at each concept level,

until no more Frequent Item sets can be found

Step 2: Indexing of Frequent Item(FI) set

Step 3: Pruning the Index of FI for Closed and Maximal FI

Step 4: Progressive Focusing approach on indexed structure

Step 4.1: Fast retrieval of Frequent Item sets

Step 4.2: Identification of Precise Frequent Item sets

Uniform Support is the same minimum support for all levels

i.e., one minimum support threshold. It is not needed to

examine item sets containing any item whose ancestors do not

have minimum support in the indexed GenMax model. If

support threshold is too high, it misses low level associations.

If the support threshold is too low, it generates too many high

level associations. Reduced Support is the reduced minimum

support at lower levels to evaluate the closed frequent items

with efficient index structure for different possible strategies

to prune the item sets from large scalable data mining

application such as market basket analysis, genome property

structures, medical disease diagnosis etc.,

4. PERFORMANCE EVALUATION
To analyze the performance of the indexed GenMax item

pruning, we used Pentium Dual core processor 2.5 GHz with

2 GB of main memory running under Windows XP. The

training sample consists of transactions in car databases taken

from UCI repository. The total number of items, being 100,

the number of potentially frequent item sets to be 30, and the

total number of transactions were 3000. The scale-up tests on

total number of items, average size of transactions, and total

number of tuples, also performed to verify the efficiency of

the indexed GenMax item pruning model which showed

satisfactory results briefed in below sections.

4.1 Mining Frequent Item Set
The transaction database is converted into an indexed encoded

transaction table, according to the information above the

generalized items in the item description. The maximal level

of the concept hierarchy in the item table is set to 4. The

number of the top level nodes keeps increasing until the total

number of items reaches. The fan-outs at the lower levels are

selected based on the normal distribution, and with a variance

of 2.0. Not every strong rule so discovered (i.e., passing the

minimum support and minimum confidence thresholds) is

interesting enough to be presented to users. Two

interestingness measures are proposed to filter redundant rules

and unnecessary rules. The indexed based GenMax prune

more precise frequent item set compared to that of existing

GenMax algorithm (shown in Fig 6).

International Journal of Computer Applications (0975 – 8887)

Volume 41– No.16, March 2012

41

Frequent Itemsets Pruned

0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500

Transaction Items

F
re

q
u

e
n

t
It

e
m

s
e
t

GenMax

Indexed GenMax

Fig 6: Frequent Itemsets Pruned by Indexed GenMax

4.2 Pruning Time for Indexed based

GenMax
The pruning time for indexed based GenMax is low for

mining maximal and closed frequent item set compared to that

of existing GenMax (shown in Fig 7). The reduction of time

in pruning for indexed GenMax is achieved due to the

segregation of multilevel hierarchies of the item sets and

mainly due to the indexing of transaction id based on the

complete item set. However in case of GenMax the pruning is

done for the frequent pattern on all levels of the item set. In

case of large transaction, without indexing sequence, exiting

GenMax have to prune the frequent patterns from top to

bottom for any nearest neighbor pattern also which consumes

more time nearly 18% than the indexed GenMax.

Pruning Time for Itemset Mining

0

10

20

30

40

50

60

70

80

500 1000 1500 2000 2500

Transaction Items

P
ru

n
in

g
 T

im
e
 (

S
e
c
)

GenMax

Indexed GenMax

Fig 7: Pruning time for mining MFI and CFI

5. CONCLUSION
The proposal in our work has implemented an improved and

an index based enhancement on GenMax algorithm. This

Indexed GenMax algorithm is used for effective fast and less

memory utilized pruning of maximal frequent item and closed

frequent item sets. The extension induces a search tree on the

set of frequent closed item sets thereby we can completely

enumerate closed item sets without duplications. The memory

use of mining the maximal frequent item set does not depend

on the number of frequent closed item sets, even if there are

many frequent closed item sets. The top-down progressive

deepening technique using indexing structure is developed for

mining maximal and closed frequent items. The better

performance of indexed GenMax algorithm depicted in the

result section worked on different distributions of data. Our

performance study shows that the indexed GenMax may have

the best performance when compared to the conventional

GenMax.

6. REFERENCES
[1] Go‟sta Grahne, and Jianfei Zhu, “ Fast Algorithms for

Frequent Itemset Mining Using FP-Trees ” IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 17, NO. 10, OCTOBER 2005

1347

[2] J. Han, J. Pei, and Y. Yin. Mining frequent patterns

without candidate generation. In Proceedings of ACM

SIGMOD‟00, pages 1–12, May 2000.

[3] G. Grahne and J. Zhu. High performance mining of maxi-

mal frequent itemsets. In SIAM‟03 Workshop on High

Performance Data Mining: Pervasive and Data Stream

Mining, May 2003.

[4] R. J. Bayardo, “Efficiently mining long patterns from

databases”, In ACM SIGMOD Conference, June 1998.

[5] R. Agrawal, C. Aggarwal, and V. Prasad, “Depth First

Generation of Long Patterns”, In ACM SIGKDD

Conference, August, 2000.

[6] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: a

maximal frequent itemset algorithm for transactional

databases”, In International Conference on Data

Engineering, April, 2001.

[7] Karam Gouda and Mohammed j. Zaki, “GenMax: An

Efficient Algorithm for Mining Maximal Frequent

Itemsets” , In IEEE International Conference on Data

Mining and Knowledge Discovery, Volume 11, pp. 1–

20, 2005.

[8] J. Pei, J. Han, and R. Mao. CLOSET: An efficient

algorithm for mining frequent closed itemsets. In ACM

SIGMOD‟00 Workshop on Research Issues in Data

Mining and Knowledge Discovery, pages 21–30, 2000.

[9] E. Baralis, T. Cerquitelli, and S. Chiusano, “Index Support

for Frequent Itemset Mining in a Relational DBMS”, In

proceedings of 21st International Conference on Data

Engineering (ICDE „05), Tokyo, pp. 754-765, April

2000.

