
International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

25

 Architecting Distributed Domain Reducer in

Cloud Environment

Umar Khalid Farooqui

Manav Bharti University
Solan,H.P, India

Mohammad Hussain
M.G Institute of Management
&Technology ,G.B.T.U, India

Ashish Kumar Trivedi
Manav Bharti University

Solan, H.P, India

ABSTRACT

Clouds computing is a recent technology used to represent

a different way to architect and remotely manage

computing resources; it is sharing resources/information

as-a –service using internet. It describes both a platform

and type of application. A Cloud computing platform

dynamically provisions configures, reconfigures and de-

provision servers as needed. Servers in the cloud can be

physical machines or virtual machines. Cloud computing

also describes applications that are extended to be

accessible through the internet.

Here in this we would like to propose an architecture

which reduce huge data set into smaller one. Huge data set

could be list of document urls given by web services

which is to be filtered according to user specific search

criterion. It run jobs in parallel environment and also

schedule jobs automatically. Also we will propose a

technique by which it will clean up the data and reduce the

complexity. Hope that it will be more efficient and

effective.

Keywords

Cluster Container, Map Reduce, Persistence Storage, De-

provisioning, Cleanup.

1. INTRODUCTION
Cloud computing describes both a platform and type of

application .A cloud computing platform dynamically

provisions configures, reconfigures and de-provision

servers as needed. Servers in the cloud can be physical

machines or virtual machines. Advanced cloud typically

includes other computing resources such as storage area

network (SAN), network equipments, firewalls and other

security devices. [2]

The cloud applications are extended to be accessible

through the internet. It uses large data centers and

powerful servers that host web application and web

services. Any one with suitable internet connection and a

standard web browser can access a cloud application [2].

A cloud can be viewed as a pool of virtualized computer

resources, it can-

 Host a variety of different workloads including

batch style back end jobs and interactive user

facing applications.

 Allows workloads to be deployed and scaled out

quickly through the rapid provisioning of virtual

machines or physical machines.

 Support redundant self recovering, highly

scalable programming models that allow

workloads to recover from much unavoidable

hardware/software failure.

 Monitor resource use in real time to enable

rebalancing of allocations when needed[2].

A cloud is more than a collection of computer resources

because a cloud provides a mechanism to manage these

resources, management includes provisioning, change

request, workload rebalancing, de provisioning and

monitoring.

Cloud computing infrastructures can allow enterprises to

achieve more efficient use of their IT hardware and

software investments. Cloud computing permits

management of the group of system as a single entity.

The infrastructure can be a cost efficient model for

delivering information services, reducing IT management

complexity, promoting innovations and increasing

responsiveness through real time workload balancing.

Application built on cloud architecture runs in the cloud

where the physical location of the infrastructure is

determined by the provider, They take advantage of simple

APIs of internet accessible services that scale on demand

,that are industrial strength ,where the complex reliability

and scalability logic of the underlying service remains

implemented and hidden inside the cloud.

We would like to design an architecture that allows user to

filter the “Million Search Result” and hence reducing the

Huge Data Set into smaller one. The application runs in

parallel environment while the jobs are scheduled

automatically, we also provide a technique which will

cleanup the data and reduce the complexity and hope that

it will be more efficient and effective.

2. BACKGROUND

Cloud computing automate management of group of

systems as a single entity, cloud computing also describes

applications that are extended to be accessible through the

internet .Greg Boss, Linda et.al. Proposed architecture that

focuses on the core backend of the cloud computing

platform it does not address the user interface [2].

Aneka is a platform for deploying clouds, developing

applications, it provides a runtime environment and a set

of API that allows developers to build .NET applications

that leverage their computation on either public or private

clouds.

They propose a customizable and extensible service

oriented run time environment represented by a collection

of software container connected together [1]

Eucalyptus is an open source software framework for

cloud computing that implements Infrastructure as a

service (IaaS) system that gives user the ability to run and

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

26

control entire virtual machine instances developed across a

verity of physical resources. It is a portable modular and

simple to use infrastructure common to academics [4].

The Google File System is a scalable distributed file

system for large distributed data-intensive applications. It

provides fault tolerance while running on inexpensive

commodity hardware, and it delivers high aggregate

performance to a large number of clients. While sharing

many of the same goals as previous distributed file

systems, their design was driven by observations of their

application workloads and technological environment,

both current and anticipated that reflect a marked departure

from some earlier file system assumptions. They present

file system interface extensions designed to support

distributed applications, discuss many aspects of their

design, and report measurements from both micro-

benchmarks and real world use. [5]

Map Reduce is a programming model and an associated

implementation for processing and generating large data

sets. Users specify a map function that processes a

key/value pair to generate a set of intermediate key/value

pairs, and a reduce function that merges all intermediate

values associated with the same intermediate key. Many

Real world tasks are expressible in this model [6].

3. METHODOLOGY

Map Reduce is a software framework introduced by the

google in 2004 to support distributed computing on large

datasets on clusters of computers. The framework is

inspired by Map and Reduce functions commonly found in

functional programming.

Map Reduce libraries have been written in c++, c#, Erlang,

java, perl, pythen, and other programming language.

Map reduce is not a data storage or management system, it

is an algorithmic technique for the distributed processing

of large amount of data (Google web crawler is a real life

example).

Hadoop Map reduce is an open source distributed

processing framework that allows computation of large

datasets by splitting the datasets into manageable chunks,

spreading it across a fleet of machines and managing the

overall process by launching jobs, process it and at the end

aggregate the job output in to a final result .

It works in three phases

1) Map Phase

2) Combine Phase

3) Reduce Phase

A map phase transforms the input into an intermediate

representation of key value pairs.

A combine phase combines and sorts by the keys. And a

reduce phase recombines the intermediate representation

into final output. Developer implements two interfaces

Mapper and Reducer, while hadoop takes care of all the

distributed processing (automatic parallelization, job

scheduling, job monitoring, and result aggregation).

In hadoop there is a master process running on one node to

oversee a pool of slave processes (workers) running on

separate nodes .Hadoop splits the input into chunks. These

chunks are assigned to slaves, each slave perform the map

task(logic specified by the user) on each pair found in the

chunk and writes the result locally and inform the master

of the completed status .hadoop combines all the results

and sorts the results by the keys the master then assigns

keys to the reducers. The reducer pulls the result using an

iterator, runs the reduce task (logic specified by the user),

and sends the final output back to distributed file system.

The Map and Reduce functions of Map Reduce are both

defined with respect to data structured in (key, value)

pairs. Map takes one pair of data with a type in one data

domain, and returns a list of pairs in a different domain:

Map (K1, V1) → list (k2, v2)

The Map function is applied in parallel to every item in the

input dataset. This produces a list of (K2, V2) pairs for each

call. After that, the Map Reduce framework collects all

pairs with the same key from all lists and groups them

together, thus creating one group for each one of the

different generated keys.

The Reduce function is then applied in parallel to each

group, which in turn produces a collection of values in the

same domain:

Reduce (K2, list (V2)) → list (V3)

Each Reduce call typically produces either one value v3 or

an empty return, though one call is allowed to return more

than one value. The returns of all calls are collected as the

desired result list.

Thus the Map Reduce framework transforms a list of (key,

value) pairs into a list of values. These behaviors is

different from the typical functional programming map and

reduce combination, which accepts a list of arbitrary

values and returns one single value that combines all the

values returned by map.

It is necessary but not sufficient to have implementations

of the map and reduce abstractions in order to implement

Map Reduce. Distributed implementations of Map Reduce

require a means of connecting the processes performing

the Map and Reduce phases. This may be a distributed file

system. Other options are possible, such as direct

streaming from mappers to reducers, or for the mapping

processors to serve up their results to reducers that query

them.

3.1 Algorithm
The web service which crawl massive data creates a super

set of URL‟s, the super set of URL‟s be represented as-

Super Set= {A, B, C, D………….Z},

Where each A, B...and so on, are it self a set of URL‟s,

which can be represented as-

A= {a1, a2, a3……….an},

B= {b1, b2, b3….bn}‟

.

.

Z= {z1, z2, z3………zn}.

Here each a1, b1… are individual URL.

The set of URL‟s are then passed to the proposed

application as first input and the request pattern as second

input, the I/O container will be responsible for maintaining

a compressed file as input which keeps these sets (A to Z)

in ordered fashion and hence create a list of sets and assign

a unique “LocationPointer” to each set, Now each arbitrary

set and its corresponding locationpointer is applied as (key,

value) pair to a distributed map/reduce function.

http://en.wikipedia.org/wiki/Data_domain
http://en.wikipedia.org/wiki/Data_domain
http://en.wikipedia.org/wiki/Data_domain
http://en.wikipedia.org/wiki/Distributed_file_system
http://en.wikipedia.org/wiki/Distributed_file_system
http://en.wikipedia.org/wiki/Distributed_file_system

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

27

The map function return these (key, value) pairs in a

different domain.

Map (k1 , v1) List (k2 , v2)

Map function is distributed and in parallel environment

provisioned by Cluster Container, it produce various list of

k2 , v2, these lists are then combined (intermediate result)

and passes to reduce function, the reduce function finally

aggregate these intermediate results and produce final

result. Distributed map/reduce operation is pictorially

represented in Fig 1.

List1 (k 2, v2)

List2 (k2 , v2)

.

. Reduce (K2 , List (V2))

.

List n (k2 , v2)

 List (V3)

Distributed Map (Final Result)

 Fig 1: Pictorial Representation of Map/Reduce

3.2 Pseudo-codes
Void Map (LocationPointer, URLSET);

//URLSET is a sub set of huge data set from I/O container

//LocationPointer serves the basis for key, it is provided by

//I/O container

For each URL in URLSET

EmitIntermidiate (“RequestPattern”, URL);

Void Reduce (“RequestPattern”, URLSET)

For each “RequestPattern” in URLSET

Append (URL, NEWURLSET);

Emit (NEWURLSET);

3.3 Our approach
The context diagram is shown in fig2. The web service that

crawls web produce a huge data set (i.e. list of sorted

document URLs), this huge data set is given as primary

input to this application and another input is given by the

user as „request patterns‟.

Fig 2: Context Diagram

It will then return a filtered sub set of document links as

final output. Since the overall process is asynchronous,

user can get the status of their job using getStatus().

The approach is to build an application that scales with

demand, while keeping the cost of upfront investment

down and to get response in a reasonable amount of time.

It is important to distribute the job in to multiple tasks and

to perform a distributed search application that run those

tasks on multiple nodes in parallel. The application is

modular it does its processing in four phases as shown in

fig 3.

The initialization phase is responsible for validating and

initiating the processing of a user request, starts all the job

process initiating master and slave clusters.

The service phase is responsible for monitoring the

clusters, perform map reduce, and checking for success

and failure. The de provisioning phase is responsible for

billing and de provisioning all the processes and instances.

The cleanup phase is responsible for deleting the transient

data from the persistent storage. This application is

modular and use following components

I/O Container: For retrieving input data sets and for storing

output data sets.

Buffers: For durable buffering requests and to make the

entire controller asynchronous.

Fig 3: Phases of Application

Persistence Storage: For storing intermediate status, logs,

and user data.

Cluster Container: For distributed processing, automatic

parelellization and job scheduling.

The detailed work flow is shown in fig 4.

As application starts, buffers are created if not already

created and all the controller threads are started. Each

controller thread starts polling their respective buffer for

any message.

When a start message is received an initialization message

is post in the init buffer, the initialization controller thread

pickup the initialization message and execute the task,

update the status and timestamps in the persistent storage it

also post a new message in the service buffer and deletes

the message from the init buffer after processing.

The initialization task starts clusters and starts

Map/Reduce task, it run map tasks on slave nodes in

parallel. Each map task takes files (multithreaded in

List of documents

UrLs

Request

Pattern

s

Subset of Input

dataset that

conform the

requested

patterns

Application

USER

getStaus()

Initialization

Phase

Service Phase

Deprovisioning

Phase

Cleanup Phase

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

28

background) from I/O container and writes the match

result along with a description of up to 5 matches locally

and then the combine/reduce task combines and sorts the

result and consolidates the output .The final result are

stored on the I/O Container‟s output bucket.

The service controller thread pickup this message,

validates the status/error in the persistent storage and

execute the task updates the status in the database post a

new message in the de provisioning buffer and billing

buffer and deletes the message from service buffer after

processing.

During service phase it checks for the cluster status (job

tracker success/failure) in regular intervals, updates the

persistence storage (database) items with status/error and

output file in the I/O container.

The de provisioning controller thread pickup this message

from the de provisioning buffer and executes the de

provisioning task, updates the status and timestamps in

persistent storage, deletes the message from the de

provisioning buffer after processing, this kills the process,

terminates the instances of clusters and finally disposes of

the infrastructure.

The billing task gets information of usage calculates the

billing and passes it to billing service.

The cleanup phase archive the persistent storage‟s (the

database‟s) data with user info.

User can execute getStatus () on the service endpoint to

get the status of the overall system and download the

filtered result from the I/O container after completion.

Fig 4: Architectural View

4. CONCLUSION

The proposed architecture reduces the huge data set(i.e.,

Search result given by web services) in to smaller one(i.e.,

user centric data set) using map /reduce operation, performed

in distributed and parallel environment. In this architecture

every phase is responsible for its own scalability; they are

loosely coupled because of intermediate buffering and hence

independent to each other. The map/reduce operation for

filtering the result is performed parallel using cluster container

services. Number of clusters/nodes can be decreased or

increased on demand on pay per use basis; the billing

controller is responsible for it.

Building application on fixed and rigid infrastructure is not

fruitful for an organization, cloud architecture provides a new

way to build applications on demand infrastructures. The

proposed architecture depicts the way of building such

applications. Therefore without having an upfront investment

we are able to run a job massively distributed on multiple

nodes in parallel and scale incrementally on demand ,without

underutilizing the infrastructure and with in time.

Initialization

Controller

Service-

Buffer

Deprovi

sioning-

Buffer

Clusters

 I/O

Container

 Cluster

Container

Input

Output

Persistence

Storage

 Get File

 Put File

Service

Controller

Init

Buffe

rrr

Billing

Buffer

Billing

Controller

De-provisioning

Controller

International Journal of Computer Applications (0975 – 8887)

Volume 40– No.12, February 2012

29

5. REFERENCES
[1] Christian Vecchiola, Xingchen Chu, Rajkumar Buyya. In

High Speed and Large Scale Scientific Computing

(2010) Aneka: A Software Platform for .NET-based

Cloud Computing

[2] Greg Boss, Padma Malladi, Dennis Quan, Linda

Legregni, Harold Hall, “cloud computing”, 15 Feb-

2011. http://download.boulder.ibm.com/ibmdl/pub/

software/dw/wes/hipods/Cloud_computing_wp_final_8O

ct.pdf

[3] Deloitte: Cloud computing - A collection of working

papers, released September 17, 2009 and published on

July 31, 2009. http://www.bespacific.com/mt/

archives/022426.h

[4] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk et al.

In Proceedings of Cloud Computing and Its Applications

(October 2008)”The Eucalyptus: open-source cloud-

computing system"

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung, OSDI, “The Google File System”, Published by

ACM ... Barbara Liskov ,SOSP- 2003,

http://labs.google.com/papers/gfs-sosp2003.pdf

[6] Jeffrey Dean and Sanjay Ghemawat, “MapReduce:

Simplified Data Processing on Large Clusters”, OSDI

2004, 6th Symposium on Operating Systems Design and

Implementation. http://labs.google.com/papers/map

reduce-osdi04.pdf

[7] Junghoo Cho, Sridhar Rajagopalan “A Fast Regular

Expression Indexing Engine”, in Proceedings of the 18th

International Conference on Data Engineering (ICDE.02)

 [8] Junjie Peng, Xuejun Zhang , et.al,“Comparison of

Several Cloud Computing Platforms” in Second

International Symposium on Information Science and

Engineering ,IEEE(2009).

[9] Liang-Jie Zhang and Qun Zhou “CCOA: Cloud

Computing Open Architecture” in 2009 IEEE

International Conference on Web Services.

[10] Huaglory, Tianfield , “Cloud Computing Architectures”,

in 2011, IEEE.

[11] V. Sarathy et al, “Next generation cloud computing

architecture --enabling real-time dynamism for shared

distributed physical infrastructure”, 19th IEEE

International Workshops on Enabling Technologies:

Infrastructures for Collaborative Enterprises

(WETICE‟10), Larissa, Greece, 28-30 June 2010, pp. 48-

53.

[12] Mohamed Wahib, Masaharu Munetomo,et.al, “A

Framework for Cloud Embedded Web Services Utilized

by Cloud Applications”,in 2011, IEEE - World Congress

on Services.

[13] Huan Liu, Dan Orban, “Cloud MapReduce: a

MapReduce Implementation on top of a Cloud Operating

System”,in 2011 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing.

http://www.deloitte.com/assets/Dcom-UnitedStates/Local%20Assets/Documents/us_tmt_ce_CloudPapers_73009.pdf
http://www.deloitte.com/assets/Dcom-UnitedStates/Local%20Assets/Documents/us_tmt_ce_CloudPapers_73009.pdf
http://labs.google.com/papers/gfs-sosp2003.pdf

