
International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.8, June 2015

26

Approximate String Matching Algorithms: A Brief

Survey and Comparison

Syeda Shabnam Hasan

Department of Computer
Science and Engineering
Ahsanullah University of
Science and Technology
Dhaka-1208, Bangladesh

Fareal Ahmed
Department of Computer
Science and Engineering
Ahsanullah University of
Science and Technology
Dhaka-1208, Bangladesh

Rosina Surovi Khan
Department of Computer
Science and Engineering
Ahsanullah University of
Science and Technology
Dhaka-1208, Bangladesh

ABSTRACT

Many database applications require similarity based retrieval

on stored text and/or multimedia objects. This is an area of

increasing research interest in the sectors of database, data

mining, information retrieval and knowledge discovery. This

paper presents a brief survey on the existing approximate

string matching algorithms by primarily demonstrating three

families of algorithms — the Brute force, the Lipschitz

Embeddings and the Ball Partitioning algorithms. While Brute

Force performs approximate string matching based on

distance measures of the query object from each string stored

in the database, Lipschitz Embeddings uses a far more

efficient approach which embeds the stored strings in database

in vector space so that the distances of embedded strings

approximates the actual distances. Ball Partitioning algorithm,

much more efficient than Brute force but less efficient than

Lipschitz algorithm, performs search in approximate string

matching based on distances where queries operate on an

arbitrary search hierarchy. The paper compares and makes an

analysis of these three algorithms which are suitable for

approximate matching of strings stored in database text files,

an issue much required in the context of similarity based

retrieval of objects. The work can be extended for future work

by taking into account a larger number of algorithms suited to

approximate string matching for the benefit of a wider scope

of comparisons and picking out the most optimal one.

General Terms

Algorithms for Approximate String Matching.

Keywords

Approximate String Matching Algorithm, Lipschitz

Embeddings Algorithm, Ball Partitioning Algorithm.

1. INTRODUCTION
Finding the occurrences of a given query string (pattern) from

a possibly very large text is an old and fundamental problem

in computer science. It emerges in applications ranging from

text processing and music retrieval to bioinformatics. This

task, collectively known as string matching, has several

different variations. The most natural and simple of these is

exact string matching, in which, like the name suggests, one

wishes to find only occurrences that are exactly identical to

the pattern string. This type of search, however, may not be

adequate in all applications if, for example, the pattern string

or the text may contain typographical errors. Perhaps the most

important applications of this kind arise in the field of

bioinformatics, as small variations are fairly common in DNA

or protein sequences. The field of approximate string

matching, which has been a research subject since the 1960's,

answers the problem of small variations by permitting some

error between the pattern and its occurrences. Given an error

threshold and a metric to measure the distance between two

strings, the task of approximate string matching is to find all

substrings of the text that are within (a distance of) the error

threshold from the pattern.

In this work we concentrate on approximate string matching

that uses so called unit-cost edit distance as the metric to

measure the distance between two strings. One possible

definition of the approximate string matching problem is the

following: Given a pattern string P = p1p2...pm and a text

string, T = t1t2...tn find a substring T(i…j) = ti…tj in T, which,

of all substrings of T, has the smallest edit distance to the

pattern P. The most common application of approximate

matchers until recently has been spell checking. With the

availability of large amounts of DNA data, matching of

nucleotide sequences has become an important application.

Approximate matching is also used to identify pieces of music

from small snatches and in spam filtering [1].

This paper presents a brief survey on approximate string

matching algorithms (section 2), followed by an elaborate

demonstration of three related algorithms — the Brute Force

algorithm for approximate string matching, the Lipschitz

Embeddings Algorithm and the Ball Partitioning Algorithm

and makes a comparison among these three algorithms. A

concise overview of edit distance is also discussed (in section

3).

2. RELATED WORKS
A number of researchers have presented variations on

approximate string matching algorithms. Luis M. S. Russo,

Gonzalo Navarro, Arlindo L. Oliveira, and Pedro Morales

focused on indexed approximate string matching [2]. They

studied approximate string matching algorithms for

Lempel-Ziv compressed indexes and for compressed suffix

trees/arrays. Lempel-Ziv indexes split the text into a sequence

of so-called phrases of varying length. They are efficient to

find the (exact) occurrences that lie within phrases, but those

that span two or more phrases are costlier. Luis M. S. Russo,

Gonzalo Navarro, Arlindo L. Oliveira, and Pedro Morales

started by adapting the classical method of partitioning into

exact search to self-indexes, and optimized it over a

representative of either class of self-index. Then, they showed

that a Lempel-Ziv index can be seen as an extension of the

classical q-samples index and they improved hierarchical

verification to extend the matches of pattern pieces to the left

or right which largely reduced the accesses to the text, which

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.8, June 2015

27

are expensive in self-indexes. Zheng Liu, James Borneman,

Tao Jiang presented a fast algorithm for approximate string

matching called FAAST [3]. It aimed at solving a popular

variant of the approximate string matching problem, the

k-mismatch problem, whose objective is to find all

occurrences of a short pattern in a long text string with at most

k mismatches. FAAST generalizes the well-known

Tarhio-Ukkonen’s k-mismatches algorithm. In the

Tarhio-Ukkonen algorithm, the shift distance is calculated as

the minimum one such that there exists at least one match

when aligning the rightmost k + 1 text characters in the

current alignment with the pattern after a shift. In order to

achieve faster matching process, FAAST instead calculates

the shift distance as the minimum one such that the rightmost

k + x characters of the current aligned text will have at least x

matches after the shift. Here, x generally takes a small integer

value, e.g., two or three. Theoretically, they proved that

FAAST on average skips more characters than the

Tarhio-Ukkonen algorithm in a single shift, and makes fewer

character comparisons in an entire matching process.

Bit-vector algorithm of Myers is one of the most notable

recent algorithms in the area of approximate string matching

algorithms. The main idea of this algorithm is to parallelize

the dynamic programming matrix by using bit-vectors to

encode the list of m (arithmetic) differences between

successive entries in a column of the dynamic programming

matrix. Heikki Hyyro, Kimmo Fredriksson, Gonzalo Navarro

explored different ways to increase the bit-parallelism for

approximate string matching by modifying the bit-vector

algorithm of Myers when the pattern is short or if the

maximum number of differences permitted is moderate with

respect to the alphabet size [4]. They showed how multiple

patterns can be packed in a single computer word so as to

search for multiple patterns simultaneously. They showed two

ways to do this. The first one permits searching for several

patterns simultaneously. The second one boosts the search for

a single pattern by processing several text positions

simultaneously. William I. Chang and Eugene L. Lawler

explored the research area of approximate string matching in

sub linear expected time [5]. They defined the approximate

substring matching problem and gave efficient algorithms

based on their techniques. Special cases include several

applications to genetics and molecular biology. For example,

even allowing errors, they found long common blocks of the

text and pattern (local similarities), or selected from among a

set of text fragments — ones that overlap one end of the

pattern (sequence assembly). These are common tasks in

DNA sequence analysis. Gonzalo Navarro [6] focused on the

problem of string matching that allows errors, also called

approximate string matching. The general goal is to perform

string matching of a pattern in a text where one or both of

them have suffered some kind of (undesirable) corruption. An

Some examples are recovering the original signals after their

transmission over noisy channels, finding DNA subsequences

after possible mutations, and text searching where there are

typing or spelling errors.

3. EDIT DISTANCE AND APPROXIMATE

STRING MATCHING

The edit distance ed (P, T) between the strings P and T is

defined in general as the minimum cost of any sequence of

edit operations that edits P into T or vice versa. Differing in

their choices of the allowed set of edit operations and their

costs, for example the following types of edit distance have

appeared in the literature.

 Levenshtein edit distance

 Damerau edit distance

 Weighted/generalized edit distance

 Hamming distance

 Longest common subsequence

Approximate string matching is closely related to edit

distance. It refers to searching for approximate matches of a

pattern string P from a usually much longer text string T,

where edit distance is used as a measure of similarity between

P and the substrings of T. [7]

The work in this paper concentrates on Levenshtein edit

distance in which the allowed edit operations are insertion,

deletion or substitution of a single character, and each

operation has the cost = 1. This type of edit distance is

sometimes called unit-cost edit distance. Levenshtein edit

distance is perhaps the most common form of edit distance,

and often the term edit distance is assimilated to it [8]. The

following algorithm of Levenshtein edit distance fills the

(integer) entries in a matrix m whose two dimensions equal

the lengths of the two strings (s1, s2) whose edit distances

being computed; the (i, j)-th entry of the matrix will hold

(after the algorithm is executed) the edit distance between the

strings consisting of the first i characters of s1 and the first j

characters of s2. The central dynamic programming step is

depicted in Lines 8-10 (fig. 1), where the three quantities

whose minimum is taken correspond to substituting a

character in s1, inserting a character in s1 and inserting a

character in s2 [9].

EDIT DISTANCE (S1, S2)

1. int m[i, j] = 0

2. for i = 1 to |S1|

3. do m[i, 0] = i

4. for j = 1 to |S2|

5. do m[0, j] = j

6. for i = 1 to |S1|

7. do for j = 1 to |S2|

8. do m [i, j] =

9. min { m[i-1, j-1] + if (S1[i] = S2 [j]) then 0 else 1,

10. m [i – 1, j] +1,

11. m [i , j – 1] + 1 }

12. return m[|S1|, |S2|]

Fig. 1: Levenshtein edit distance algorithm to compute

edit distance between the pair of strings S1 and S2

4. BRUTE FORCE ALGORITHM FOR

APPROXIMATE STRING MATCHING
A brute-force approach would be to compute the edit

distances to the query object (q) from all N substrings of

text (T) and then choose the substring with the minimum edit

distance. The sequential steps are given below.

Steps:

1. Read N (say, 50) strings from the text file T.

2. Take an input (query object q) from the user.

3. Calculate the edit distances to query object q from all
N strings of T.

4. Find out the minimum edit distance.

5. Output will be the string which has the minimum edit
distance.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.8, June 2015

28

Example:

Let N = 5 and T is {been, bid, moon, sun, star}.

Suppose, the query object q is ‘seen’

The edit distances to query object q from all N strings of T

will be respectively {1, 4, 3, 2, 3}, the minimum of which is 1

and hence the output will be been

5. LIPSCHITZ EMBEDDINGS

ALGORITHM
A Lipschitz embedding is defined in terms of a set R of

subsets of S (the set of objects), where R = {A1, A2, …, Ak}.

The subsets Ai are termed the reference sets of the embedding.

Let d (o, A) be an extension of the distance function d to a

subset A of S, such that d (o, A) = min {d (o, x)}, where x is an

element of A. An embedding with respect to R is defined as a

mapping F such that F(o) =((d (o, A1), d (o, A2), …, d (o, Ak))

To elaborate on how a query is implemented, suppose that we

want to find the nearest object to a query object q. We first

determine the point F (q) corresponding to q. Next, we

examine the objects in the order of their distances from F (q)

in the embedding space. When using a multidimensional

index, this can be achieved by using an incremental nearest

neighbor algorithm. Suppose that point F(a) corresponding to

an object a is the closest point to F(q) at a distance of

∂(F(a), F(q)). We compute the distance d (a, q) between the

corresponding objects. At this point, we know that any object

x with ∂(F(x), F(q)) > d (a, q) cannot be the nearest neighbor

of q because, the contractive property then guarantees that

d (x, q) > d (a, q). Therefore, d (a, q) now serves as an upper

bound on the nearest-neighbor search in the embedding space.

We now find the next closest point F (b) corresponding to the

object b, subject to our distance constraint d (a, q).

 If d (b, q) < d (a, q), then b and d (b, q) replace object a and

d (a, q) as the current closest object and upper bound distance,

respectively; otherwise, a and d (a, q) are retained. This

search continues until encountering a point F (x) with the

property ∂(F (x), F(q)) > d (y, q), where the y is the current

closest object which is now guaranteed to be the actual closest

object to q. [10]

Algorithm:

Input: A text file T containing N strings (O1, O2, …, ON) and

a query object q.

Output: Nearest string to q with corresponding edit distance.

Steps:

1. Construct a text file R of k strings (A1, A2, …, Ak) by

choosing randomly from N strings of T.

2. Compute F(q), the array of edit distances of the query

object q to k strings of R, that is, F(q) = (d (q, A1),

d (q, A2), …, d (q, Ak)), where d (q, Aj) is the edit

distance between q and Aj. Here, 1 ≤ j ≤ k.

3. Compute F (Oi), the array of edit distances of each

string Oi in T to the k reference strings in R, that is,

F (Oi) = ((d (Oi, A1), (d (Oi, A2), …, d (Oi, Ak)). Here,

1 ≤ i ≤ N.

4. Calculate ∂ (F (Oj), F(q)), the distance between each

string Oj of T to query string q in the embedding space

where 1 ≤ j ≤ N, 1 ≤ i ≤ k, by using the following

formula.

    
   

1

1
1

, ,
,

p p
k

j i i

j p
i

d O A d q A
F O F q

k


           

 

5. Find the minimum value among ∂ (F(Oi), F(q)), for

1 ≤ i ≤ N. If the minimum is ∂ (F(Om), F(q)), then find

d (Om, q).

6. For i = 1 to N do

if ∂ (F(Oi), F(q)) > d (Om, q) then

 edit_distance = d (Om, q) and nearest_string = Om

 else if d(Oi, q) < d (Om, q) then

 edit_distance = d (Oi, q) and nearest_string = Oi

7. Show the edit_distance and nearest_string to the user.

6. BALL PARTITIONING ALGORITHM
In this method, we pick a pivot element p randomly from S

containing, say, 50 strings/objects. The p is termed as a

vantage point. The algorithm computes the median r of the

distances of the other objects to the pivot p, and then divides

the remaining objects into roughly equal sized subsets S1 and

S2 as follows.

    1 \ , S o S p d p o r    and

    2 \ , S o S p d p o r  

Thus, the objects in S1 are inside the ball of radius r around p,

while the objects in S2 are outside this ball. Applying this rule

recursively leads to a binary tree, called the ‘vantage point

tree’ (or, vp-tree) where the pivot objects are stored in each

internal node, with the left and right sub trees corresponding

to the subsets inside and outside the corresponding ball,

respectively. In the leaf nodes of the vp-tree, we would store

one or more objects, depending on the desired capacity.

Pivot Selection: Pivot is chosen randomly in this algorithm

and in the vp-tree, the ball radius is always chosen as the

median so that the two subsets are roughly equal in size.

Search: Visit left child if and only if max{d (q, p) – r, 0} ≤ ɛ

and the right child if and only if max{r – d (q, p), 0} ≤ ɛ

Definitions of symbols:

Radius of pivot: r

Query object: q

Pivot object: p

Edit distance of pivot and query object: ɛ

Another notation of edit distance of pivot and query: d {q, p}

The ball partitioning algorithm is divided into the following

two parts.

a) CREATING VP-TREE:

1. Read N (say, 50) strings from a text file.

2. Select a pivot (p) randomly from N strings.

3. Compute edit-distance (d) of the pivot from the other

remaining strings.

4. Values of edit-distances (from pivot to others) will be

kept in an array.

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.8, June 2015

29

5. Sort the values of the array and find out the median

value using the formula of median.

6. The median is the radius (r) of pivot. A flag value will

be increased.

7. Take this pivot and radius as the input of VP-tree’s first

node.

8. Similarly, repeat the above steps 2 – 6 and find out

pivot for each step. If the pivot’s radius, say rˊ, is less

than its parent node’s radius r and rˊ ≥ 0, then put it on

left node and if rˊ ≥ r then put it on right node. In

step 2, each time N decreases by 1.

9. This process will continue until each internal node ends

at leaf with a child or we can keep a cluster of strings

at each leaf.

b) SEARCHING PHASE:

1. Take an input of query object (q).

2. After a value is assigned in the VP-tree (pivot and

radius), find the edit distance of pivot and the query

object. And if max {d (q, p) – r, 0} ≤ E, then visit

the left node; otherwise don’t. Also, if

max {r – d (q, p), 0} ≤ E, then visit the right node;

otherwise don’t. Here, E is the edit-distance

between the pivot and query object.

3. Keep the edit-distance and the pivot in an array of

structure.

4. Repeat the above steps 1 – 3 of the searching phase

until we get the child of each node.

5. Now find the minimum edit distance of all edit

distances, and the corresponding pivot which will be

the nearest neighbor of the query object.

7. ANALYSIS

Lipschitz Embedding Algorithm uses a straight forward

procedure to match an approximate string to the query string.

It creates reference strings and uses mathematical formula to

find out minimum edit distance and the corresponding nearest

string to the query string. On the other hand, the Ball

Partitioning Algorithm creates a VP-tree and visits the left and

right nodes of the tree to find minimum edit distance and the

corresponding string which is nearest to the query string. The

execution time increases with the increase of visited nodes.

The Brute Force Algorithm for the approximate string

matching uses the most inefficient way to find out nearest

string. It calculates edit distances of all the text strings from

the query string and then checks all the distances to find out

the minimum distance. In Lipschitz Embeddings and Ball

Partitioning Algorithms, this checking is not applicable,

because both of them follow some different mathematical

procedures to find the expected results. As a result, among the

three approximate string matching algorithms, the fastest is

the Lipschitz Embeddings Algorithm, then the Ball

Partitioning Algorithm and the slowest is the Brute Force

Algorithm. In order to evaluate the practical performances of

these three approximate string matching algorithms, we have

implemented them using the programming language C,

following a homogeneous procedure, using the same input

text file having 50 strings to make the comparisons

significant. Here, the input text file, named as

‘Staff_name.txt’, has been extracted from a data-table of a

standard database management system.

Snapshots of the results and execution times of the three

algorithms, applied on the Staff_name.txt file, are presented

below, in the ascending order of their execution times (i.e.,

from the fastest to the slowest).

Fig 2: Snapshot of the input file Staff_name.txt

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.8, June 2015

30

Fig 3: Snapshot of the execution time (i.e., 21 sec.) and results of the Lipschitz Embeddings Algorithm

Fig 4: Snapshot of the execution time (i.e., 22 sec.) and results of the Ball Partitioning Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 120 – No.8, June 2015

31

Fig 5: Snapshot of the execution time (i.e., 25 sec.) and results of the Brute Force Algorithm

8. CONCLUSION AND FUTURE WORK

In this paper we have presented some existing approximate

string matching algorithms, explored their characteristics and

implemented them in the C programming language. As we

have found, their execution times are different. The Lipschitz

Embeddings Algorithm is faster than the Ball Partitioning and

Brute Force Algorithms. On the other hand Ball Partitioning

Method needs too much memory than the others. We have

used real life data and converted database tables into text files

and applied the approximate string matching algorithms on

these input text files.

This research work may be extended along several possible

directions. For example, there are many other advanced

approximate string matching algorithms having different

characteristics and usefulness which can be used for wider

comparisons. Besides, we have worked on text files having 50

strings each, which can be expanded by including more

strings — say, 1000 strings or more. Also, in Ball Partitioning

Method, clusters of strings may be represented at the leaves

for the sake of saving the storage space. Furthermore, these

methods can be applied for similarity search which plays a

leading role in the modern multimedia databases and for many

other database applications involving complex objects.

9. REFERENCES
[1] Approximate String Matching. Available Online source:

http://en.wikipedia.org/wiki/Approximate_string_m

atching. Last accessed: July 2011.

[2] Luis M. S. Russo, Gonzalo Navarro, Arlindo L. Oliveira

and Pedro Morales, “Approximate string matching with

compressed indexes”, Algorithms, Volume 2, Iss ue 3,

Pages 1105–1136, September 2009.

[3] Zheng Liu, James Borneman and Tao Jiang, “A fast

algorithm for approximate string matching on gene

sequences”, in 16th Annual Symposium on

Combinatorial Pattern Matching, LNCS, Springer-

Verlag, pages 79–90, June 2005.

[4] Heikki Hyyro, Kimmo Fredriksson and Gonzalo

Navarro, “Increased bit -parallelism for approximate and

multiple string matching”, Journal of Experimental

Algorithmics (JEA), Volume 10, article 2.6, December

2005.

[5] William I. Chang and Eugene L. Lawler, “Approximate

string matching in sublinear expected time”, 31st Annual

Symposium on Foundations of Computer Science (FOCS

1990), vol.1, pages 116–124, October 1990.

[6] Gonzalo Navarro, “A guided tour to approximate string

matching”, Journal of ACM Computing Surveys,

(CSUR), Vol. 33, No. 1, pages 31–88, March 2001.

[7] Heikki Hyyro, “Practical methods for approximate string

matching”, Acta Electronica Universitatis Tamperensis,

2003.

[8] V. Levenshtein, “Binary codes capable of correcting

deletions, insertions and reversals”, Soviet Physics

Doklady, 10 (8), pages 707–710, 1966.

[9] Christopher Manning, Prabhakar Raghavan and Hinrich

Schutze, “Introduction to Information Retrieval”,

Cambridge University Press, 2008.

[10] Gísli R. Hjaltason and Hanan Samet, “Properties of

embedding methods for similarity searching in metric

space,” IEEE transactions on pattern analysis and

machine intelligence, Vol. 25, No. 5, pages 530–549,

May 2003

[11] Gísli R. Hjaltason and Hanan Samet, “Index-driven

similarity search in metric spaces”, ACM Transactions

on Database Systems, Vol. 28, No. 4, pages 517–580,

December 2003.

IJCATM : www.ijcaonline.org

