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ABSTRACT 

Many database applications require similarity based retrieval 

on stored text and/or multimedia objects. This is an area of 

increasing research interest in the sectors of database, data 

mining, information retrieval and knowledge discovery. This 

paper presents a brief survey on the existing approximate 

string matching algorithms by primarily demonstrating three 

families of algorithms — the Brute force, the Lipschitz 

Embeddings and the Ball Partitioning algorithms. While Brute 

Force performs approximate string matching based on 

distance measures of the query object from each string stored 

in the database, Lipschitz Embeddings uses a far more 

efficient approach which embeds the stored strings in database 

in vector space so that the distances of embedded strings 

approximates the actual distances. Ball Partitioning algorithm, 

much more efficient than Brute force but less efficient than 

Lipschitz algorithm, performs search in approximate string 

matching based on distances where queries operate on an 

arbitrary search hierarchy. The paper compares and makes an 

analysis of these three algorithms which are suitable for 

approximate matching of strings stored in database text files, 

an issue much required in the context of similarity based 

retrieval of objects. The work can be extended for future work 

by taking into account a larger number of algorithms suited to 

approximate string matching for the benefit of a wider scope 

of comparisons and picking out the most optimal one.  

General Terms 

Algorithms for Approximate String Matching.  

Keywords 

Approximate String Matching Algorithm, Lipschitz 

Embeddings Algorithm, Ball Partitioning Algorithm. 

1. INTRODUCTION 
Finding the occurrences of a given query string (pattern) from 

a possibly very large text is an old and fundamental problem 

in computer science. It emerges in applications ranging from 

text processing and music retrieval to bioinformatics. This 

task, collectively known as string matching, has several 

different variations. The most natural and simple of these is 

exact string matching, in which, like the name suggests, one 

wishes to find only occurrences that are exactly identical to 

the pattern string. This type of search, however, may not be 

adequate in all applications if, for example, the pattern string 

or the text may contain typographical errors. Perhaps the most 

important applications of this kind arise in the field of 

bioinformatics, as small variations are fairly common in DNA 

or protein sequences. The field of approximate string 

matching, which has been a research subject since the 1960's, 

answers the problem of small variations by permitting some 

error between the pattern and its occurrences. Given an error 

threshold and a metric to measure the distance between two 

strings, the task of approximate string matching is to find all 

substrings of the text that are within (a distance of) the error 

threshold from the pattern.  

In this work we concentrate on approximate string matching 

that uses so called unit-cost edit distance as the metric to 

measure the distance between two strings. One possible 

definition of the approximate string matching problem is the 

following: Given a pattern string P = p1p2...pm and a text 

string, T = t1t2...tn find a substring T(i…j) = ti…tj in T, which, 

of all substrings of T, has the smallest edit distance to the 

pattern P. The most common application of approximate 

matchers until recently has been spell checking. With the 

availability of large amounts of DNA data, matching of 

nucleotide sequences has become an important application. 

Approximate matching is also used to identify pieces of music 

from small snatches and in spam filtering [1].  

This paper presents a brief survey on approximate string 

matching algorithms (section 2), followed by an elaborate 

demonstration of three related algorithms — the Brute Force 

algorithm for approximate string matching, the Lipschitz 

Embeddings Algorithm and the Ball Partitioning Algorithm 

and makes a comparison among these three algorithms. A 

concise overview of edit distance is also discussed (in section 

3).  

2. RELATED WORKS 
A number of researchers have presented variations on 

approximate string matching algorithms. Luis M. S. Russo, 

Gonzalo Navarro, Arlindo L. Oliveira, and Pedro Morales 

focused on indexed approximate string matching [2]. They 

studied approximate string matching algorithms for 

Lempel-Ziv compressed indexes and for compressed suffix 

trees/arrays. Lempel-Ziv indexes split the text into a sequence 

of so-called phrases of varying length. They are efficient to 

find the (exact) occurrences that lie within phrases, but those 

that span two or more phrases are costlier. Luis M. S. Russo, 

Gonzalo Navarro, Arlindo L. Oliveira, and Pedro Morales 

started by adapting the classical method of partitioning into 

exact search to self-indexes, and optimized it over a 

representative of either class of self-index. Then, they showed 

that a Lempel-Ziv index can be seen as an extension of the 

classical q-samples index and they improved hierarchical 

verification to extend the matches of pattern pieces to the left 

or right which largely reduced the accesses to the text, which 
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are expensive in self-indexes. Zheng Liu, James Borneman, 

Tao Jiang presented a fast algorithm for approximate string 

matching called FAAST [3]. It aimed at solving a popular 

variant of the approximate string matching problem, the 

k-mismatch problem, whose objective is to find all 

occurrences of a short pattern in a long text string with at most 

k mismatches. FAAST generalizes the well-known 

Tarhio-Ukkonen’s k-mismatches algorithm. In the 

Tarhio-Ukkonen algorithm, the shift distance is calculated as 

the minimum one such that there exists at least one match 

when aligning the rightmost k + 1 text characters in the 

current alignment with the pattern after a shift. In order to 

achieve faster matching process, FAAST instead calculates 

the shift distance as the minimum one such that the rightmost 

k + x characters of the current aligned text will have at least x 

matches after the shift. Here, x generally takes a small integer 

value, e.g., two or three. Theoretically, they proved that 

FAAST on average skips more characters than the 

Tarhio-Ukkonen algorithm in a single shift, and makes fewer 

character comparisons in an entire matching process. 

Bit-vector algorithm of Myers is one of the most notable 

recent algorithms in the area of approximate string matching 

algorithms. The main idea of this algorithm is to parallelize 

the dynamic programming matrix by using bit-vectors to 

encode the list of m (arithmetic) differences between 

successive entries in a column of the dynamic programming 

matrix. Heikki Hyyro, Kimmo Fredriksson, Gonzalo Navarro 

explored different ways to increase the bit-parallelism for 

approximate string matching by modifying the bit-vector 

algorithm of Myers when the pattern is short or if the 

maximum number of differences permitted is moderate with 

respect to the alphabet size [4]. They showed how multiple 

patterns can be packed in a single computer word so as to 

search for multiple patterns simultaneously. They showed two 

ways to do this. The first one permits searching for several 

patterns simultaneously. The second one boosts the search for 

a single pattern by processing several text positions 

simultaneously. William I. Chang and Eugene L. Lawler 

explored the research area of approximate string matching in 

sub linear expected time [5]. They defined the approximate 

substring matching problem and gave efficient algorithms 

based on their techniques. Special cases include several 

applications to genetics and molecular biology. For example, 

even allowing errors, they found long common blocks of the 

text and pattern (local similarities), or selected from among a 

set of text fragments — ones that overlap one end of the 

pattern (sequence assembly). These are common tasks in 

DNA sequence analysis. Gonzalo Navarro [6] focused on the 

problem of string matching that allows errors, also called 

approximate string matching. The general goal is to perform 

string matching of a pattern in a text where one or both of 

them have suffered some kind of (undesirable) corruption. An 

Some examples are recovering the original signals after their 

transmission over noisy channels, finding DNA subsequences 

after possible mutations, and text searching where there are 

typing or spelling errors. 

3. EDIT DISTANCE AND APPROXIMATE 

STRING MATCHING  

The edit distance ed (P, T) between the strings P and T is 

defined in general as the minimum cost of any sequence of 

edit operations that edits P into T or vice versa. Differing in 

their choices of the allowed set of edit operations and their 

costs, for example the following types of edit distance have 

appeared in the literature. 

 Levenshtein edit distance 

 Damerau edit distance 

 Weighted/generalized edit distance 

 Hamming distance 

 Longest common subsequence 

Approximate string matching is closely related to edit 

distance. It refers to searching for approximate matches of a 

pattern string P from a usually much longer text string T, 

where edit distance is used as a measure of similarity between 

P and the substrings of T. [7] 

The work in this paper concentrates on Levenshtein edit 

distance in which the allowed edit operations are insertion, 

deletion or substitution of a single character, and each 

operation has the cost = 1. This type of edit distance is 

sometimes called unit-cost edit distance. Levenshtein edit 

distance is perhaps the most common form of edit distance, 

and often the term edit distance is assimilated to it [8]. The 

following algorithm of Levenshtein edit distance fills the 

(integer) entries in a matrix m whose two dimensions equal 

the lengths of the two strings (s1, s2) whose edit distances 

being computed; the (i, j)-th entry of the matrix will hold 

(after the algorithm is executed) the edit distance between the 

strings consisting of the first i characters of s1 and the first j 

characters of s2. The central dynamic programming step is 

depicted in Lines 8-10 (fig. 1), where the three quantities 

whose minimum is taken correspond to substituting a 

character in s1, inserting a character in s1 and inserting a 

character in s2 [9].  

EDIT DISTANCE (S1, S2) 
 

1. int  m[i, j] = 0 

2. for i = 1 to |S1| 

3. do m[i, 0] = i 

4. for j = 1 to |S2| 

5. do m[0, j] = j 

6. for i = 1 to |S1| 

7. do for j = 1 to |S2| 

8. do m [i, j] =  

9.     min { m[i-1, j-1] + if (S1[i] = S2 [j]) then 0 else 1, 

10.               m [i – 1, j ] +1, 

11.               m [i , j – 1] + 1 } 

12. return  m[ |S1|, |S2|] 
 

Fig. 1: Levenshtein edit distance algorithm to compute 

edit distance between the pair of strings S1 and S2 

4. BRUTE FORCE ALGORITHM FOR 

APPROXIMATE STRING MATCHING  
A brute-force approach would be to compute the edit 

distances to the query object (q) from all N substrings of 

text (T) and then choose the substring with the minimum edit 

distance. The sequential steps are given below. 

Steps: 

1. Read N (say, 50) strings from the text file T. 

2. Take an input (query object q) from the user. 

3. Calculate the edit distances to query object q from all 
N strings of T. 

4. Find out the minimum edit distance. 

5. Output will be the string which has the minimum edit 
distance. 
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Example:  

Let N = 5 and T is {been, bid, moon, sun, star}. 

Suppose, the query object q is ‘seen’ 

The edit distances to query object q from all N strings of T 

will be respectively {1, 4, 3, 2, 3}, the minimum of which is 1 

and hence the output will be been 

5. LIPSCHITZ EMBEDDINGS 

ALGORITHM  
A Lipschitz embedding is defined in terms of a set R of 

subsets of S (the set of objects), where R = {A1, A2, …, Ak}. 

The subsets Ai are termed the reference sets of the embedding. 

Let d (o, A) be an extension of the distance function d to a 

subset A of S, such that d (o, A) = min {d (o, x)}, where x is an 

element of A. An embedding with respect to R is defined as a 

mapping F such that F(o) =( (d (o, A1), d (o, A2), …, d (o, Ak))   

To elaborate on how a query is implemented, suppose that we 

want to find the nearest object to a query object q. We first 

determine the point F (q) corresponding to q. Next, we 

examine the objects in the order of their distances from F (q) 

in the embedding space. When using a multidimensional 

index, this can be achieved by using an incremental nearest 

neighbor algorithm. Suppose that point F(a) corresponding to 

an object a is the closest point to F(q) at a distance of 

∂(F(a), F(q)). We compute the distance d (a, q) between the 

corresponding objects. At this point, we know that any object 

x with ∂(F(x), F(q)) > d (a, q) cannot be the nearest neighbor 

of q because, the contractive property then guarantees that 

d (x, q) > d (a, q). Therefore, d (a, q) now serves as an upper 

bound on the nearest-neighbor search in the embedding space. 

We now find the next closest point F (b) corresponding to the 

object b, subject to our distance constraint d (a, q). 

 If d (b, q) < d (a, q), then b and d (b, q) replace object a and 

d (a, q) as the current closest object and upper bound distance, 

respectively; otherwise, a and d (a, q) are retained. This 

search continues until encountering a point F (x) with the 

property ∂(F (x), F(q)) > d (y, q), where the y is the current 

closest object which is now guaranteed to be the actual closest 

object to q. [10] 

Algorithm: 

Input: A text file T containing N strings (O1, O2, …, ON) and 

a query object q. 

Output: Nearest string to q with corresponding edit distance. 

Steps: 

1. Construct a text file R of k strings (A1, A2, …, Ak) by 

choosing randomly from N strings of T. 

2. Compute F(q), the array of edit distances of the query 

object q to k strings of R, that is, F(q) = (d (q, A1), 

d (q, A2), …, d (q, Ak)), where d (q, Aj) is the edit 

distance between q and Aj. Here, 1 ≤ j ≤ k. 

3. Compute F (Oi), the array of edit distances of each 

string Oi in T to the k reference strings in R, that is, 

F (Oi) = ( (d (Oi, A1), (d (Oi, A2), …, d (Oi, Ak)). Here, 

1 ≤ i ≤ N. 

4. Calculate ∂ (F (Oj), F(q)), the distance between each 

string Oj of T to query string q in the embedding space 

where 1 ≤ j ≤ N, 1 ≤ i ≤ k, by using the following 

formula.  

    
   

1

1
1

, ,
,

p p
k

j i i

j p
i

d O A d q A
F O F q

k


           

   

5. Find the minimum value among ∂ (F(Oi), F(q)), for 

1 ≤ i ≤ N. If the minimum is ∂ (F(Om ), F(q)), then find 

d (Om, q).  

6. For i = 1 to N do 

if  ∂ (F(Oi ), F(q)) > d (Om, q) then  

 edit_distance = d (Om, q) and nearest_string = Om 

      else if d(Oi, q) < d (Om, q) then  

  edit_distance = d (Oi, q) and nearest_string = Oi 

7. Show the edit_distance and nearest_string to the user. 

6. BALL PARTITIONING ALGORITHM  
In this method, we pick a pivot element p randomly from S 

containing, say, 50 strings/objects. The p is termed as a 

vantage point. The algorithm computes the median r of the 

distances of the other objects to the pivot p, and then divides 

the remaining objects into roughly equal sized subsets S1 and 

S2 as follows.  

    1 \ , S  o S p  d p  o r      and 

    2 \ , S  o S p  d p  o r     

Thus, the objects in S1 are inside the ball of radius r around p, 

while the objects in S2 are outside this ball. Applying this rule 

recursively leads to a binary tree, called the ‘vantage point 

tree’ (or, vp-tree) where the pivot objects are stored in each 

internal node, with the left and right sub trees corresponding 

to the subsets inside and outside the corresponding ball, 

respectively. In the leaf nodes of the vp-tree, we would store 

one or more objects, depending on the desired capacity. 

Pivot Selection: Pivot is chosen randomly in this algorithm 

and in the vp-tree, the ball radius is always chosen as the 

median so that the two subsets are roughly equal in size. 

Search: Visit left child if and only if max{d (q, p) – r, 0} ≤ ɛ 

and the right child if and only if max{r – d (q, p), 0} ≤ ɛ  

Definitions of symbols:  

Radius of pivot: r 

Query object: q 

Pivot object: p 

Edit distance of pivot and query object: ɛ 

Another notation of edit distance of pivot and query: d {q, p}  

The ball partitioning algorithm is divided into the following 

two parts. 

a) CREATING VP-TREE: 

1. Read N (say, 50) strings from a text file. 

2. Select a pivot (p) randomly from N strings. 

3. Compute edit-distance (d) of the pivot from the other 

remaining strings. 

4. Values of edit-distances (from pivot to others) will be 

kept in an array. 
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5. Sort the values of the array and find out the median 

value using the formula of median. 

6. The median is the radius (r) of pivot. A flag value will 

be increased. 

7. Take this pivot and radius as the input of VP-tree’s first 

node. 

8. Similarly, repeat the above steps 2 – 6 and find out 

pivot for each step. If the pivot’s radius, say rˊ, is less 

than its parent node’s radius r and rˊ ≥ 0, then put it on 

left node and if rˊ ≥ r then put it on right node. In 

step 2, each time N decreases by 1. 

9. This process will continue until each internal node ends 

at leaf with a child or we can keep a cluster of strings 

at each leaf. 

b) SEARCHING PHASE:  

1. Take an input of query object (q). 

2. After a value is assigned in the VP-tree (pivot and 

radius), find the edit distance of pivot and the query 

object. And if max {d (q, p) – r, 0} ≤ E, then visit 

the left node; otherwise don’t. Also, if             

max {r – d (q, p), 0} ≤ E, then visit the right node; 

otherwise don’t. Here, E is the edit-distance 

between the pivot and query object.  

3. Keep the edit-distance and the pivot in an array of 

structure. 

4. Repeat the above steps 1 – 3 of the searching phase 

until we get the child of each node.  

5. Now find the minimum edit distance of all edit 

distances, and the corresponding pivot which will be 

the nearest neighbor of the query object. 

7. ANALYSIS  

Lipschitz Embedding Algorithm uses a straight forward 

procedure to match an approximate string to the query string. 

It creates reference strings and uses mathematical formula to 

find out minimum edit distance and the corresponding nearest 

string to the query string. On the other hand, the Ball 

Partitioning Algorithm creates a VP-tree and visits the left and 

right nodes of the tree to find minimum edit distance and the 

corresponding string which is nearest to the query string. The 

execution time increases with the increase of visited nodes. 

The Brute Force Algorithm for the approximate string 

matching uses the most inefficient way to find out nearest 

string. It calculates edit distances of all the text strings from 

the query string and then checks all the distances to find out 

the minimum distance. In Lipschitz Embeddings and Ball 

Partitioning Algorithms, this checking is not applicable, 

because both of them follow some different mathematical 

procedures to find the expected results. As a result, among the 

three approximate string matching algorithms, the fastest is 

the Lipschitz Embeddings Algorithm, then the Ball 

Partitioning Algorithm and the slowest is the Brute Force 

Algorithm. In order to evaluate the practical performances of 

these three approximate string matching algorithms, we have 

implemented them using the programming language C, 

following a homogeneous procedure, using the same input 

text file having 50 strings to make the comparisons 

significant. Here, the input text file, named as 

‘Staff_name.txt’, has been extracted from a data-table of a 

standard database management system.  

Snapshots of the results and execution times of the three 

algorithms, applied on the Staff_name.txt file, are presented 

below, in the ascending order of their execution times (i.e., 

from the fastest to the slowest). 

 

 

 

 

Fig 2: Snapshot of the input file Staff_name.txt  
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Fig 3: Snapshot of the execution time (i.e., 21 sec.) and results of the Lipschitz Embeddings Algorithm 

 

 

 

Fig 4: Snapshot of the execution time (i.e., 22 sec.) and results of the Ball Partitioning Algorithm  
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Fig 5: Snapshot of the execution time (i.e., 25 sec.) and results of the Brute Force Algorithm  

 

8. CONCLUSION AND FUTURE WORK  

In this paper we have presented some existing approximate 

string matching algorithms, explored their characteristics and 

implemented them in the C programming language. As we 

have found, their execution times are different. The Lipschitz 

Embeddings Algorithm is faster than the Ball Partitioning and 

Brute Force Algorithms. On the other hand Ball Partitioning 

Method needs too much memory than the others. We have 

used real life data and converted database tables into text files 

and applied the approximate string matching algorithms on 

these input text files. 

This research work may be extended along several possible 

directions. For example, there are many other advanced 

approximate string matching algorithms having different 

characteristics and usefulness which can be used for wider 

comparisons. Besides, we have worked on text files having 50 

strings each, which can be expanded by including more 

strings — say, 1000 strings or more. Also, in Ball Partitioning 

Method, clusters of strings may be represented at the leaves 

for the sake of saving the storage space. Furthermore, these 

methods can be applied for similarity search which plays a 

leading role in the modern multimedia databases and for many 

other database applications involving complex objects. 
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