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ABSTRACT     

A graph G (V, E) is said to be Hamiltonian if it contains a 

spanning cycle. The spanning cycle is called a Hamiltonian 

cycle of G and G is said to be a Hamiltonian graph. A 

Hamiltonian path is a path that contains all the vertices in V 

(G) but does not return to the vertex in which it began. In this 

paper, we study Hamiltonicity of 3-connected, 3-regular 

planar bipartite graph G with partite sets V=M  N. We shall 

prove that G has a Hamiltonian cycle if G is balanced with M 

= N. For that we present an algorithm for a bipartite graph 

KM,N where M>3, N>3 and M,N both are even to possess a 

Hamiltonian cycle. In particular, we also prove a theorem for 

S proper subset (M or N) of V the number of components W 

(G-S) = S implies the graph has a Hamiltonian path.  

 

Keywoeds    
Hamiltonian Cycle, bipartite, 3-connected, 3-regular, proper 

subset, Hamiltonian path. 
 

1. INTRODUCTION 
A path P of a graph G is a Hamiltonian path if P visits every 

vertex of G once. Similarly, a cycle C is a Hamiltonian cycle 

if it visits each vertex once. A graph is Hamiltonian if it has a 

Hamiltonian cycle. 
 

Note that if C: U1 → U2 →U3→ . . . →Un is a Hamiltonian 

cycle, and then so is Ui → . . . Un → U1 → . . . Ui-1 for each 

i[1,n] and thus we can choose where to start a cycle.  

 

Hamiltonian paths and cycles are named after William Rowan 

Hamilton, who devised a puzzle in which a Hamiltonian cycle 

or path along polyhedron edges of a dodecahedron was 

sought. Although, Hamilton solved this particular puzzle, 

evaluation Hamiltonian cycles or paths in arbitrary graphs are 

proved expected among the hardest problems of information 

retrieval [1, 2]. As a result, instead of complete 

characterization, most researchers aimed to find sufficient 

conditions for a graph to process a Hamiltonian cycle or path. 

In this paper, we focus on 3-connected, 3-regular planar 

bipartite graph to be Hamiltonian. 

The study of Hamiltonian cycles and Hamiltonian paths in 

general and special graphs has been fueled by practical 

applications and by the issues of complexity. The problem of 

finding whether a graph G is Hamiltonian is proved to be NP- 

Complete for general graphs [3]. The problem remains NP-

complete [3] (1) if G is planar, cubic, 3-connected, and has no 

face with less than 5 edges, (2) if G is bipartite, (3) if G is the 

square of a graph, (4) if a Hamiltonian path for G is given as 

part of the instance. On the other hand the problem of finding 

whether a graph G contains a Hamiltonian path is also proved 

to be NP-Complete for general graphs [3]. Again, it remains 

NP-complete for conditions (1) and (2) mentioned above. 

Even the variant, in which either the starting point or the end 

point or both are specified in the input instance, is also NP-

Complete. No easily testable characterization is known for 

Hamiltonian graphs. Nor there exist any such condition to test 

whether a graph contains a Hamiltonian path or not. This is 

why tremendous amount of research has been done in finding 

the sufficient conditions for the existence of Hamiltonian 

cycles or Hamiltonian paths in graphs. The existing conditions 

in the literature exploits many graph parameters among which 

degree of vertices, especially pair wise nonadjacent vertices, 

is worth-noting. We first present some of the famous degree 

related conditions below. 

 

To the best of our knowledge, the quest for good sufficient 

degree based conditions for Hamiltonian cycles or paths dates 

back to 1952 when Dirac presented the following theorem, 

where ( ) denotes the degree of the minimum degree vertex 

of the graph  . 

 Theorem 1 (see [4]). If   is a simple graph with   vertices, 

where   ≥ 3 and ( ) ≥  /2, then   contains a Hamiltonian 

cycle. 

 A very useful theorem and quite general (the only restriction 

is that each vertex should have |E|/2 adjacent or more) was 

proved by Dirac: 

 

 Throrem [Dirac’s Theorem]2.If every vertex of a connected 

graph with 3 or more vertices is adjacent to at least half of the 

remaining vertices, then the graph has a Hamilton circuit. 

 
The existence of Hamilton cycles in 2-connected, k-regular 

graphs have been investigated in [5, 6] by various authors. 

The results of these works show that, except for two kinds of 

graphs of order 3k + 4 (they are not 3-connected), all 2-

connected, k-regular graphs, k ≥ 14, on at most 3k + 4 vertices 

are Hamiltonian.  
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In particular, a set of vertices in a graph is independent if no 

two of the vertices in the set are adjacent. A graph is cubic if 

every vertex of the graph has degree three. 

 

Dirac [7] showed that if G is a graph with m ≥3 vertices and if 

every vertex of G has a degree 
 

 
 or more, then G is 

Hamiltonian. Dirac’s work has been extended in [7], but these 

results all require the existence of vertices of degree at least
 

 
. 

Avoiding this latter requirement, Gordon [8] recently proved 

the following: 

 

Theorem 3(see [8]). Let G be a finite graph with 2n vertices in 

which every vertex has degree at least n - 1. Then either G is 

Hamiltonian, G has a subgraph isomorphic to Kn+l,n-l G has a 

subgraph isomorphic to  G2n,b for some b ≤ n, or G has a 

subgraph isomorphic to H, where G2n,b and H are precisely 

defined non-Hamiltonian graphs. 

 

As a consequence of Gordon’s theorem, if n ≥3 and if C is a 

2-connected graph with 2n vertices which is regular of degree 

n - 1, then G is Hamiltonian. 

 

A conjecture which has stood the test of time and which 

appears to be very difficult to prove was proposed by Barnette 

(problem 5 in [10]). Barnette suggested that every 3- 

connected cubic bipartite planar graph was Hamiltonian. Very 

little progress has been made on this problem. One of the few 

results towards the conjecture can be found in Holton, Manvel 

and McKay [9]. 

 

Theorem 4 (see [9]). Let G be a 3-connected cubic bipartite 

planar graph. If  IVGI≤64, then G is Hamiltonian. 

 

Taking up the theme regarding the number of Hamiltonian 

cycles in a Hamiltonian graph, Thomassen [11] has provided a 

condition for a bipartite Hamiltonian graph to have a second 

Hamiltonian cycle. 

 

Theorem 5(see [11]). Let G be a Hamiltonian graph with 

bipartition A, B and let H be a Hamiltonian cycle in G. If 

every vertex of B has degree at least 3, then G has a 

Hamiltonian cycle other than H. 

 

A Kuratowski subgraph of G is a subgraph of G that is a 

subdivision of K5 or K3,3. A minimal non-planar graph is a 

non-planar graph such that every proper subgraph is planar. 

 

Theorem(Kuratowski, 1930) 6. A graph G is planar iff G does 

not contain a subdivision of K5 or K3,3. 

 

In this paper, we show that every 3-connected, 3-regular 

planar bipartite graph is Hamiltonian. For that, we show a 

Lemma, that proves M=N for a balanced bipartite graph G 

where M and N are two partite set. After that we proposed an 

algorithm that possesses a Hamiltonian cycle from a bipartite 

graph. Then we have proved a theorem if component is equal 

to proper subset, and then the graph is Hamiltonian. Here M 

and N are considered as a proper subset of V of G and M is 

equal to N. When M or N is deleted from G, then the number 

of components is equal to proper subset that implies the graph 

has a Hamiltonian path.   

The rest of the paper is organized as follows. In Section 2, we 

present some preliminary notations and results needed 

throughout the paper. Section 3 presents our main results. 

Finally, conclude in Section 4. 

2. PRELIMINARIES 
A graph G can be defined as a pair (V, E), where V is a set of 

vertices, and E is a set of edges between the vertices E {(u, 

v) | u,v  V}. We consider a graph G, which is 3-connected. 

A graph is 3-connected if removal of exactly 3 vertices makes 

the graph disconnected. The graph is also 3-connected, 3-

regular, because it contains exactly 3 edges for all of its 

vertices. We considering G that is 3-connected, 3-regular 

planar bipartite graph, because it contains no edge crossings 

and there exist two partite vertex sets (M and N) which are 

considered as the nonempty proper subset of V. A 

Hamiltonian cycle is a spanning cycle in a graph i.e. a cycle 

through every vertex and a Hamiltonian path is a spanning 

path. A graph containing a Hamiltonian cycle is said to be 

Hamiltonian. It is clear that every graph with a Hamiltonian 

cycle has a Hamiltonian path but the converse is not 

necessarily true [12].  

 

An independent set of a graph   = ( ,  ) is a set of vertices 

 ˊ⊆   such that all pairs of vertices  , v ∈  ˊ are nonadjacent 

in  . A graph can be decomposed into independent sets in the 

sense that the entire vertex set of the graph can be partitioned 

into pair wise disjoint independent subsets. Such independent 

subsets are called partite sets or simply parts. A graph is said 

to be a  -partite graph, if its vertex set can be decomposed 

into   partite sets but not fewer. So, a bipartite graph is a 

graph that can be decomposed into two partite sets but not 

fewer. Similarly, a tripartite graph is a graph that can be 

decomposed into three partite sets but not fewer. A 1-partite 

graph is the same as an independent set or an empty graph. 

One often writes   = (M ⋃ N,  ) to denote a bipartite graph 

whose partite sets are M and N. If |M| = |N| or M=N, that is, if 

the two partite sets have equal cardinality, then   is called a 

balanced bipartite graph. On the other hand, if ||M| −|N|| ≤ 1, 

then we say that   is a semi-balanced bipartite graph. Note 

that, by definition, a balanced bipartite graph is also a semi-

balanced bipartite graph. It is easy to see that, for a bipartite 

graph   to possess a Hamiltonian path,   must be semi-

balanced. Similar to the notation used for bipartite graphs, a 

tripartite graph with partite sets M, N, and P may be denoted 

by   = (M ⋃ N ⋃ P,  ). 

A nonempty set is a set containing one or more elements. Any 

set other than the empty set () is therefore a nonempty set. A 

proper subset S of a set S, denoted S  S, is a subset that is 

strictly contained in S and so necessarily excludes at least one 

member of S[13, 14]. The empty set is therefore a proper 

subset of any nonempty set. A component must be defined by 

a nonempty set. A component is the maximal sub-graph in 

which a path exists from every node to every other.  A 

connected graph has only one component. 

3. MAIN RESULT 
In this section we present our main results. We first state and 

prove the following useful Lemma. 

 

Lemma 1. If G (V,E) is a planar bipartite graph of M and N 

distinct set of vertices (M>3, N>3 and M, N both are even), 

where G is 3- connected 3-regular, then M = N and G is 

Hamiltonian. 

Proof. Suppose two different set of vertices M = {a1, a2, a3, 

……,an} and N={ b1,b2,b3,…..,bn}. As it is three regular all 

vertices in M and N sets are of degree three. Thus a1 degree is 

three, so a1 needs three vertex from N set’s for its connection. 

Also b1 needs three vertices from M sets. For that all vertices 

http://mathworld.wolfram.com/Set.html
http://mathworld.wolfram.com/Set.html
http://mathworld.wolfram.com/EmptySet.html
http://mathworld.wolfram.com/Subset.html
http://mathworld.wolfram.com/EmptySet.html
http://mathworld.wolfram.com/NonemptySet.html
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need three edges from N and M sets. But it is not possible to 

generate a 3- connected 3-regular planar bipartite graph with 

M=3 and N=3 because K3,3 is not planar (Theorem 6). We 

need at least 4 vertices in each of set M and N.  

 

 

Fig1:  A K3,4  bipartite graph.. 

        \\ 

In undirected graph u and v are connected, if it contains a path 

between u to v. Suppose, M has 3 and N has 4 nodes. As the 

graph is 3- connected 3-regular, M contains 3x3=9 and N 

contains 4x3 =12 edges. Here N has extra 3 edges which can’t 

participate in path shown in Figure 1. For path connection N 

set need extra one vertex for connecting extra 3 edges from M 

set. 

     

 

Fig. 2: 3-Connected 3-Regular bipartite Graph. 

     

If M and N both have 4 nodes, then M and N both contains 

4x3= 12 edges shown in Figure 2. To create paths in 3- 

connected 3-regular bipartite graph one set’s nodes total 

degree is same with another set’s nodes. When two set’s total 

nodes will be same, then two set’s total degree will be same. 

So there will be M=N.                     

Figure 2 is a non-planar bipartite graph. We surely need a 

formal algorithm to represent non-planar graph as a planar 

graph with Hamiltonian cycle.  

 

In this algorithm, we consider a bipartite graph KM,N where 

M>3, N>3 and M,N both are even. 

 

Algorithm: Hamiltonian_Cycle  

 

Input: A bipartite graph KM,N , Where M and N are both  

even bipartite set and  M>3, N>3. 

Output: A planar Hamiltonian cycle. 

Step 1. Partition M into Mi and Mj  

    where  i is 1<= i <= 
 

 
   and  

                j is  
 

 
+1<=  j <= M  

Step 2. Partition N into Nk and NL     

    where k is  1<=  k <= 
 

 
 and  

               L is  
 

 
+1 <= L <= N 

Step 3. For each i, 1<=  i <= 
 

 
  

    draw all node(s) vertically in odd position.  

For each k, 1<= k <= 
 

 
  

    draw all node(s) vertically in even position. 

Step 4. For each j,  
 

 
 +1 <= j <=M  

    draw all node(s) vertically in even position  

    parallel to first vertical line drawn in step3. 

For each L,  
 

 
 <= L<= N  

    draw all node(s) vertically in odd position  

    parallel to first vertical line drawn in step3. 

Step 5. For each i, 1<= i <= M  

    draw line i to j both vertically and horizontally     

    where j is neighbor of i and j € N. 

Step 6. Draw line (i,k) and (j,L) with  

    i=1, k= 
  

 
,  j= M and  L= 

  

 
+1. 

Step 7. Planar Hamiltonian Cycle. 

 

 

This algorithm represents a non-planar graph to be planar 

Hamiltonian cycle. 

Figure 3 is drawn according to the proposed algorithm from 

Figure 2. 
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Fig. 3: A 3- connected 3-regular planar bipartite graph. 

Now, we present the following sufficient condition. 

Theorem 7. If a bipartite graph G is Hamiltonian and M=N, 

where M and N are distinct set of vertices, then for every 

nonempty proper subset S of V the number of component W 

(G-S) = S. 

Proof. Let, G (V, E) be a 3-connected 3-regulat planar 

bipartite graph, so M and N are distinct set of vertices of 

graph G, then V= M+N and M, N are nonempty proper subset 

of V. 

Deleting S from V of G we found W (G-S) where S is the 

nonempty proper subset of V and W (G-S) are the number of 

components. For Hamiltonian S will be distinct set of vertices. 

If M is removed from graph G, then number of components is 

equal to N because G is a bipartite graph of M, N nonempty 

proper distinct subset.  Since, in graph G, M = N, the number 

of components is equal to N or M which is equal to proper 

subset S. If M or N is deleted from V, then the number of 

components will be the same with the deleting vertices. So, 

Component is equal to Proper subset (W (G-S) = S), hence, 

the graph G is Hamiltonian. 

In this section, we consider two cases on Theorem 7. 

Case 1. In Figure 4 has two different set M = {a1, a2, a3, a4, 

a5, a6} and N = {b1, b2, b3, b4, b5, b6} with every node 

degree is three, so the graph is three regular and it is three 

connected bipartite graph. In graph G there is no edge 

crossing, so, the graph G is 3-connected 3-reguler planar 

bipartite graph. Here M and N are even and greater than three.   

Two proper subsets M and N (white and black) are exist in 

this graph. Since, V=M+N and bipartite graph is balanced 

(M=N), if we delete one proper subset that is the one partite 

set (N or M), then another partite set (M or N) which is 

another nonempty proper subset will be remaining in the 

graph. So, the number of components (W (G-S)) is equal to 

proper subset (S). Thus, graph is Hamiltonian according to 

proposed theorem. 

Case 2.  In Figure 5 exist three connected two even bipartite 

set M, N where M>3, N>3 and M=N. Here, every vertices 

degree is three and there is no edge crossing in graph G, so, 

the graph G is 3-connected 3-reguler planar bipartite graph. 

Two proper subsets M and N (white and black) are exist in the 

graph G. If one partite set (M) is deleted, in graph exist 

another partite set (N) because of V=M+N. 

 

Fig. 4: K6,6  3- connected 3-regular planar bipartite graph. 

Since, in graph G, M=N, the number of components (W (G-

S)) is equal to the proper subset (S) which implies the graph is 

Hamiltonian.  

 

Fig. 5: K4,4  3- connected 3-regular planar bipartite graph. 

4. CONCLUSION 
In this paper, we present a sufficient condition and algorithm 

for a 3-connected, 3-regular planar bipartite graph to process a 

Hamiltonian cycle. For that we proved a Lemma to show 

partite set of elements are equal hence the graph is balanced 

and proposed an algorithm that processed a graph to be planar 

and Hamiltonian where partite set of elements are even and 

greater than 3. The algorithm is run in the polynomial time. 

We also proved a theorem to satisfy that deleting any one 

partite set of elements which is proper subset of bipartite 

graph equal to number of components since, partite set of 

elements are equal. Thus the components are equal to proper 

subset, and then the graph is Hamiltonian.   

Our proposed algorithm is worked for a 3-connected, 3-

regular planar bipartite graph where partite set of elements are 

must be even and greater than 3. Anyone can develop an 

algorithm that works for any number of partite set of 

elements. 
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