
International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 8, March 2015

17

Windows and Linux Random Number Generation

Process: A Comparative Analysis

Khudran Alzhrani
Department of Computer Science

University of Colorado Colorado Springs

Colorado Springs , United States

Amer Aljaedi
Department of Computer Science

University of Colorado Colorado Springs

Colorado Springs , United States

ABSTRACT
In this paper, we explore and analyze the structure and

functions of Random Number Generator (RNG) in Windows

and Linux opreating systems. And compare the capabilities of

their RNGs. It expected that this research would contribute to

awareness of the quality and security of the random number

generators implemented in Linux and Windows operating

systems. It provides unbiased academic research in facilitating

informed decision.

General Terms
Random number generator, entropy sources, Security,

Keywords

Windows CNG, True Random Bits, Linux RNG,

1. INTRODUCTION
Random Number generation plays a critical role in

cryptography and cryptanalysis. It is essential for many

cryptographic tasks such as keys generation, initialization

vectors, and cryptographic nonce. Therefore, variety of

cryptographic and security applications requires

cryptographically strong random numbers, which cannot be

predicted or estimated by adversaries. Weak or predictable

random number generator can cause catastrophic

consequences [1] [2] [3]. Practically, physical resources do

not generate sufficient entropy random bits (non-

deterministic), in the production environment. Thus, the

operating systems uses pseudorandom number generator that

seeded by entropy sources. In this order of magnitude, the

entropy seed is expanded to generate longer sequences of

random numbers that are indistinguishable and statistically

unrelated to previous or later generated numbers.

Windows OS Cryptography libraries provide some features

that could be used by Windows application developers. Some

of those features are encryption, decryption, key storage, hash

functions, signature and finally random number generation.

Crypt API (CAPI) and its random number generation

mechanism, was introduced in Windows XP and earlier

versions of Windows. Random number generation in Crypt

API used four SHA-1 functions seeded from system entropy.

SHA-1’s entropy sources and entropy pool reside on

Windows Kernel. RC4 is uses by SHA-1 to transmit generated

random numbers to the user side and uses MD4 to receive

additional entropy provided by the user [4] [5]. Serious

vulnerabilities found in Windows XP and Windows 2000

random number generator [6] motivated Microsoft Windows

to introduced Cryptography New Generation (CNG) in

windows vista. Windows CNG library and its Random

number generation are relatively new; there are very few

resources and papers regarding CNG random generation

mechanism. One paper highlighted some of the CNG library

general features and focused on CNG hash functions [7].

Other than that Windows documentation is the sole source

that provides a detailed information on Windows CNG RNG.

In Linux environment, Zvi Gutterman et al. [8] published a

paper that describes the algorithm of Linux random number

generator and identifies vulnerabilities in earlier Linux kernel

(version 2.6.10 of the Linux kernel). Due to the lack of

detailed documentation for Linux random number generator,

the authors stated that they performed combination of static

and dynamic reverse engineering to some parts of the Linux

kernel source code in order to analyze the algorithm of the

generator. Also, they implement a user-mode simulator of

Linux RNG to complete their analysis of the generator’s

behavior. Patric Lacharme et al. [9] discussed the architecture

of Linux random number generator with providing

mathematical details of the generator properties. In addition,

they contacted empirical test of the entropy estimator in Linux

random number generator. Yevgeniy Dodis et al. [10]

proposed a new security model for pseudorandom number

generation. They also provided security assessment of the

Linux random numbers generators. Furthermore, they

discussed the interfaces of Linux RNG, /dev/random and

/dev/unrandom. Boaz Barak et al. [11] presented a

theoretical model for pseudo-random generation, and they

discussed the applicability of their architecture in

/dev/(u)random in linux and pseudo-random number

generation in smartcards general Requirements for

randomness given in RFC 4086 [12]. NIST SP 800-90A [13]

provides a detailed guidelines and recommendations for the

generation of random bits using deterministic methods.

2. WINDOWS RNG

2.1 CNG Cryptographic Primitive
Most of the applications nowadays utilize cryptographic

algorithms either to secure its communications or to provide

security services to the end user. Windows has accommodated

it Operating Systems with Cryptographic Primitive Libraries

such Crypt API in earlier versions of Windows and CNG in

the recent ones. Many of CNG algorithms and physical

configuration constructed as defined in FIPS 140-2.

CNG functions and interfaces resided at kernel and user

modes. CNG.SYS is a cryptographic module that resides in

kernel mode and provides cryptographic services to Windows

kernel components and kernel mode applications. On the

other hand, bcryptprimitives.dll is a cryptographic module

that provides cryptographic services to user mode

applications. Both CNG.SYS and Bcryptprimitives.dll provide

cryptographic services through specific interfaces to offer

identical services. CNG introduced many new features such as

agility that considered as a threat [7]. Agility in CNG API

made it easier for the developers to use and adapt a new

algorithm or provider. Cryptographic functions a.k.a.

interfaces are used to access CNG API cryptographic

services such as a hash function, encryption, decryption,

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 8, March 2015

18

signature and random number generation. Each cryptographic

service is implemented with one or more algorithms. Random

Number Generation is treated differently than other

cryptographic services because it requires access to Windows

kernel in order to retrieve truly random bits generated by

Windows entropy sources. Random numbers are used widely

in so many well-known cryptographic algorithms such as

RC4; also, they are used in SSL/TLS protocols.

In Microsoft Windows 8, kernel mode cryptographic primitive

library CNG.SYS shown on Figure 1 is accessed via four

logical interfaces CNG BCrypt, Legacy API, SystemPrng

interface and Entropy API. Entropy API logical interface is

used to collect truly random bits generated from entropy

sources to supply the Deterministic Random Bit Generator

(DRBG) algorithm reside on CNG.SYS. Random numbers

generated by CNG.SYS are utilized as seed to user or kernel

mode PRNG through SystemPrng logical interface [14].

Figure 1: CNG Boundaries

2.2 Windows Entropy Generation
2.2.1 At Booting Time.
As illustrated in Fig 2. Entropy pool is where entropy values

are stored and processed. At Windows booting time, an initial

entropy value is provided by Windows OS loader. Windows

load CNG.SYS and execute the cryptographic operations at

the booting time. Windows OS loader collects values from

following entropy sources : content of register value

HKLM\System\RNG\Seed, random number generated by

calling TPM_GetRandom if TPM is available, current system

time, OEM0 ACPI table contents, output of RDRAND CPU

instruction if supported, output of the UEFI random number

generator if booted from UEFI firmware, CPU timing and

optionally content of the registry value

HKL\System\RNG\ExternalEntropy provided by

administrator. Entropy source values are gathered, combined

and conditioned by SHA-512. Conditioning the entropy

source with SHA-512 distils the entropy into more uniformly

and nonbiased samples. According to Windows 8 security

policy for FIPS, SHA-512 is non-approved but allowed to be

used as NDRNG to seed another approved RNG algorithm.

SHA-512 can take up to 2128 as entropy input size and

divide entropy input into 1024-bit block pairs in order to

produce 512 bits as an output that stored in the entropy pool.

[13].

In Windows, there are several kind of tests performed on

entropy sources or algorithm such as health test and known

answer test. Non-DRNG or SHA-512 and all other RNG

algorithms come with a continuous RNG test applied to RNG

output. Continuous test performed as following: first blocks of

generated n bits compared with the next blocks of n bits. The

same comparison procedure is applied to the subsequent n-bit

blocks. If any two of n-bit block sequences are equal, then the

test result in failure. The Blocks of n-bit that passed

continuous RNG test sent to Windows kernel. The kernel will

populate entropy pool with true random bits generated by

entropy source implemented by Windows OS loader at

booting time [15].

Figure 2: Entropy Generation at Booting Time

2.2.2 At Regular Time.
Meanwhile, kernel and all other necessary files are loaded by

Windows OS Loader into the memory, and their integrity are

verified.Therefore, the execution control of Windows

instructions is granted to Windows kernel and the Windows

OS loader terminates its execution [16]. Then, Windows

entropy pool is filled with random values from three other

different resources high-resolution CPU cycle counter,

Trusted Platform Module, and RDRAND CPU instruction.

Those values are sent to the entropy pool without using any

hash function or conditioner [14].

2.2.3 RdRand Instruction
RdRand is one of the entropy sources deployed by Windows 8

entropy collector. It’s quite useful to understand how RdRand

instruction is generating random numbers. Intel Processors are

widely supported by Windows OS; many of those recently

implemented processors support RNG RdRand instruction,

which meets FIPS 140-2 and NIST SP800-90A requirement.

Generating random numbers with RdRand instruction is quite

similar to Windows random number generator process with

some differences. According to Intel’s digital random

number generator implementation guide, all the component

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 8, March 2015

19

used in RNG are hardware sources. Starting with the entropy

source that generates random bits at the rate of 3 GHZ. Then

those produced random bits conditioned by AES Block Cipher

with CBC mode MAC. 256 bits of conditioned entropy seeds

AES CTR_DRBG without the need to use a pool as an

intermediate.The reason is that the conditioner can produce

high-quality entropy stream with high speed, which is faster

than processing entropy that collected in the entropy pool.

AES CTR_DRBD generates a random number that seeded by

AES-CBC-MAC conditioner [17].

2.2.4 External entropy
Windows Application developer can provide their entropy

pool with additional entropy values specified in-kernel mode

code. Registered entropy sources could be resided either

within windows kernel or any other external device. Each

entropy source provider needs to be registered every time the

OS is booted because registration of entropy source doesn’t

hold after rebooting. Registered entropy sources populate

entropy pool with random values that in addition to Windows

entropy sources values. Windows developer can provide

additional entropy values as long as it desired, and then

registered entropy sources need to be unregistered[18][19].

2.3 AES CTR_DRBG
Entropy sources value accumulated in Windows entropy pool

and periodically requested to be used as a seed for a cascade

of two or four AES-256 bits in counter mode based on DRBG.

AES-256 CTR is an RBG based on block cipher implemented

as defined in NIST special publication 800-90 [14].

CTR_DRBG consists of five functions and an internal state.

Update function is called by instantiate and reseed functions

and used to update or erase the internal state of CTR_DRBG

whenever an initial seed or reseed is requested. Instantiate and

reseed functions within CTR_DRBG take entropy values as

an input and produce a seed that should be kept as a secret and

only used once. While AES-256 CTR_DRBG uses 128 bit as

block length and 256 as key length, at least 128+256=384 bits

are used as seed length. It is worth mentioning that Windows

require any DRBG to be seeded with at least 256 bits of

entropy. CTR_DRBG is reseeded periodically or after 248 bit

of random number is generated from the current seed.

CTR_DRBG fourth function produces and stores random

numbers based on the number requested by SystemPrng

interface. Also, there is derivation function creates a new seed

from a previous seed martial this function is only required in

case of no sufficient entropy seed is provided. According to

NIST AES-256 CTR_DRBG that it could be implemented

without including derivation function. Internal state of AES-

256 is used to store some values related to AES algorithm and

other functions. Continuous RNG test is performed on the

output of AES-256 CTR_DRBG. The Continuous RNG test

used here is the same as the one previously explained, with

the exception that random number generated is stored in a

buffer pointed by SystemPrng Interface[14][13][15]. As

shown on Figure 3, Number of AES depends on whether

random number is requested from user or kernel mode. In

kernel mode cascade of two AES-256 CTR based on DRBG

will be seeded and produce random bits, while in user mode a

cascade of four AES-256 with counter mode based on DRBG

generates random number bits.

2.4 SystemPrng Interface
SystemPrng is a function used to fill a buffer with the random

bytes generated by AES CTR_DRBG (see Figure 3).

SystemPrng is a Boolean function and it has two parameters

namely pbRandomData and cbRandomData. The

cbRandomData parameter requests specific number of random

bytes to be retrieved from AES-256. The retrieved random

numbers are stored in buffer with address pointed at by

pbRandomData parameter. SystemPrng function can only be

directly called from kernel mode. However, SystemPrng

function can also be called indirectly using

BCryptGenRandom function. BCryptGenRandom is an

exported function to both kernel and user mode that seeds an

algorithm provider chosen by the developer with random

numbers populated in SystemPrng. Algorithm providers can

be initiated and created by BCryptOpenAlgorithmProvider
function [14] [18].

2.5 BCryptGenRandom Function
Respectively, CNG.SYS and bcryptprimitives.dll provide

their cryptographic operation services by exporting interfaces

or functions to kernel and user mode. It is relatively simple to

generate random numbers in Windows. The developer has to

load and create an algorithm provider using

BCryptOpenAlgorithmProvider function. Next,

BCryptGenRandom function generates random numbers by

the algorithm provider specified in

BCryptOpenAlgorithmProvider (See Figure 4). Finally,

BCryptCloseAlgorithmProvider function terminates the

algorithm provider.

Figure 3: Cryptographic Random Number Generation

Let’s take a look at those steps in more details,

BCryptOpenAlgorithmProvider function is used for loading

CNG providers. In BCryptOpenAlgorithmProvider function

takes four parameters. The first parameter is a pointer to a

variable where RNG algorithm providers handle is going to be

stored. The variable is defined as BCRYPT_ALG_HANDLE.

Second parameter is an an identifier for RNG algorithm

provider that will generate random bits. There are two

different RNG providers in CNG. Each RNG algorithm

provider implements a single RNG algorithm. Some providers

in CNG can represent more than one cryptographic algorithm,

and that is not the case for RNG providers. Other two

BCryptOpenAlgorithmProvider function parameters are

irrelevant to our topic [14] [18] [18]. All algorithm providers

seeded from the buffer pointed at by SystemPrng function and

then a continuous RNG test is performed on RNG output.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa375377(v=vs.85).aspx

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 8, March 2015

20

CNG RNG algorithm providers are as following: Default

RNG algorithm provider is AES-256 counter mode and its

CNG identifier “BCRYPT_RNG_ALGORITHM”. The

structure of AES-256 CTR_DRBG is already explained [8].

Dual_EC_DRBG is another algorithm provider that can be

identified with BCRYPT_RNG_DUAL_EC_ALGORITHM.

Dual_EC_DRBG is based on number theoretic hard problem:

given points P and Q on an elliptic curve of order n, find a

such that Q = aP. Dual_EC_DRBG can use P-256, P348 or

P521 as size of the base field or seedlen with output block

length equals to 240, 368 and 504 respectively. Minimum

required entropy for instantiate or reseed is 256 bits or equal

to maximum bits length of the keys. Dual_EC_DRBG uses

similar functions to the one used with AES-256 CTR_DRBG.

Two points need to be selected over a filed with at least 2256

in size, In order to start the initiation function or reseed

function. Furthermore, generate function also used in

Dual_EC-DRBG. In case no seed was provided a derivation

function can be applied which employ hash function to create

a new seed from previous martial seed [13].

After RNG algorithm provider is loaded, the second step is to

generate a random number by calling BCryptGenRandom

interface. BCryptGenRandom is a control input interface used

by both CNG.SYS and bcryptprimitives.dll, in other words,

BCryptGenRandom is exported to both user and kernel

modes. BCryptGenRandom function used to fill a buffer

specified by OS component or Windows application

developer with random number generated by one of the two

RNG algorithms introduced previously. Those two RNG

algorithms are seeded from buffer pointed by SystemPrng

interface. BCryptGenRandom output is the final random

number generated which can also be used for key generation.

Random number generated by the specified Algorithm

provider is also tested using continuous RNG Test. As

depicted in Figure 4, BCryptGenRandom function takes four

parameters; the first parameter is a handle of algorithm

provider which is the BCRYPT_ALG_HANDLE variable

defined in BCryptOpenAlgorithmProvider. Second parameter

is address of the buffer that receives generated random

numbers. Third parameter is number of random number to be

generated or the buffer size. The last parameter is flag to

change the function behavior. The flag parameter can be one

of the following; set to zero,

BCRYPT_RNG_USE_ENTROPY_IN_BUFFER which

means use the generated numbers as an additional entropy,or

BCRYPT_USE_SYSTEM_PREFERRED_RNG to use the

system preferred random number generator

algorithm[14][18][19].

3. LINUX RNG

3.1 General Structure
The main components of Linux random number generator are

three pools which contain the internal state of RNG, and three

procedures that control the input and the output to/from the

generator and between the pools of the generator. These

procedures, also known as functions are described in section

III.C, section III.D and section III.E. The general structure of

Linux RNG is depicted in figure 5. The three pools have

different names based on their functionality. For instance, the

first one is entropy pool (or input pool), the second pool is

called blocking pool, and the third pool is nonblocking pool.

As we can infer from the pools’ names, the input pool

contains the entropy values that are collected from external

entropy sources. The size of this pool is 512 bytes (4094 bits)

that contains 128 of 32-bits words. Both the blocking and

nonblocking pools are output pools, they reseeded and

refreshed from the entropy pool and they have the same size

which is 128 bytes and so each contains 32 of 32-bits words.

All of the three pools has entropy counter which estimates the

amount of entropy in the pool and incremented when entropy

value are add and mixed into to the pool. This counter is

decremented when random bits are extracted from the pool,

the maximum value of this counter is the pool size which

indicates that the pool is full.

Figure 4: RNG from Developer Point of View

The difference between these two output pools is that the

blocking pool will stop generating PRN when there is on

enough entropy (based on the entropy counter of the pool) and

it waits until more entropy is transferred (reseeded) from input

pool, while the nonblocking pool will return as many random

bytes as requested without blocking even when there no

enough entropy. In case, the nonblocking pool does not

receive enough entropy, it will hash the content of its pool

using SHA-1, and the digest is mixed back to update the pool

(in this case the entropy counter of the nonblocking pool will

not increment).

In Linux environment, the API of RNG consists of two

character devices, /dev/random which is the interface for

the blocking pool and /dev/urandom the interface for

nonblocking pool. Both interfaces are accessible from user

space. For kernel space, function get_random_bytes()

supplies the other Linux components with the requested

random bytes. This later function available only for Linux

functionalities [8] and it extracts random numbers from

nonblocking pool. The /dev/random is used to output

random bits from blocking pool while the interface

/dev/urandom outputs bits from nonblocking pool. The

designers of the Linux RNG commented about the difference

between the two character devices in source code of the

random number generator [20] "/dev/random is suitable for

use when very high quality randomness is desired (for

example, for key generation or one-time pads), as it will only

return a maximum of the number of bits of randomness (as

estimated by the random number generator) contained in the

entropy pool. The /dev/urandom device does not have this

limit, and will return as many bytes as are requested. As more

and more random bytes are requested without giving time for

the entropy pool to recharge, this will result in random

numbers that are merely cryptographically strong."

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 8, March 2015

21

Figure 5: General structure of Linux RNG

3.2 Entropy Collection
The Linux RNG relies on the kernel to gather environmental

noise from different devices in the machine as entropy

sources. These entropy values are used to initialize and seed

the generator [20]. The current implementation of Linux

kernel 3.14 uses four functions to gather the entropy values:

add_device_randomness(): this function gathers different

values (e.g. MAC addresses, serial numbers and Real Time

Clock [2]) that can be used only to initialize the input pool. It

used for devises that have little entropy such as Linux on

embedded systems.

add_input_randomness(): it collects the entropy from

input hardware (e.g., keyboard and mouse activities.)

add_interrupt_randomness(): this function is called

when there is an interrupt, so it uses the value of the interrupt

event as entropy input for random generator.

add_disk_randomness(): this function collect entropy

events from hard disk when the hard derivers call it, it gathers

the seek time of block layer request events.

When the entropy event occurs, three 32-bits values are used

from that event as entropy input. The num value which

depends on the type of the event (e.g. the pressed key or the

position of the mouse), The jiffies value which is the time of

the event since the system was last booted [9], and the last

value is the CPU cycle.

3.2.1 Initialization
When the system starts up, it goes though certain sequence of

routines that limit the range of entropy events, and make them

predictable, especially the entropy events that originate for

hard disk which are deterministic [9]. For this reason, the

authors of the Linux generator highlight the importance of

using initialization script, which is packaged with most Linux

distribution. The script runs as one of the system sequences

when the system starts-up or shuts-down. Before the system

goes down the script reads and copies 512 bytes from

/dev/urandom and save it in a file. When the system starts

up, it reads from this file and copies the 512 bytes to

/dev/urandom. The /dev/urandom is a rewritable character

device and writing into this interface will update the content

of the input pool by the same amount of bytes as if they were

entropy values [8]. Moreover, these 512 bytes will be added

and mixed into the entropy pool by the Mixing function;

described in section III.D. Consequently, this effect will also

update the blocking and nonblocking pools since they are

refreshed and reseeded from the input pool. The added bytes

via writing into /dev/urandom will not increment the

entropy estimator of the input pool (the entropy estimator

described in section III.C).

3.3 Entropy Estimation
The estimation of entropy is curial part in generating random

numbers, especially for /dev/random as we mentioned

earlier, this interface will not return random bits if there is not

enough entropy in the blocking pool. The entropy counter in

blocking and nonblocking pools is incremented by the same

amount of bits that transferred from the input pool to each

one. When bits are extracted from one of these small pools,

the entropy counter of that pool will be decremented by the

same amount of the extracted bits.

Figure 6: Pseudo-code of the Mixing function for blocking

pool and non-blocking pool. i is index of the current

position in the pool, e is the added entropy in byte,

twist_table is a table with 8 constant words (each 32 bit).

[20]

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 8, March 2015

22

The entropy estimator of input pool is more complicated and

designed in a way that avoids overestimating the amount of

collected entropy. Patric Lacharme et al. [9] characterize this

estimator as "pessimistic" estimator. As described in the

source code [20] and in [9], the entropy estimator of the input

pool uses the time delay of the added entropy event

(jiffies) in three levels and computes the estimation of the

added entropy as follows:

Let Ti denote the time of the now event, Ti-1 the time of the

last event.

The first level of the time delay δa = Ti – Ti-1

The second level δ2
a = δa - δa-1

The third level δ3
a = δ2

a - δ
2
a-1

Then, the estimator will calculate the minimum absolute value

of the above deltas log2:

The entropy added by the event in Ti is

log2 (min | δa |,| δ
2
a |,| δ

3
a |).

Therefore, the estimator of the input pool stores the Ti-1 , δa-1 ,

δ2
a-1 between two events that generated from the same

entropy source, so the estimation of the entropy is performed

separately for each entropy source. In the end, all of these

estimations is summed up, and the entropy estimator

incremented accordingly. This estimator is decremented when

input pool transfers bits to one of the output pools. According

to the source code of the Linux RNG (kernel 3.14) [20], when

the input pool became full, RNG will send the new coming

entropy to the output pools reciprocally; until the two output

pools are 75% full.

3.4 Mixing Function
Whenever entropy added to the input pool or one of the output

pools, this entropy value is not added directly to that pool,

instead it is mixed and diffused into the pool by the mixing

function, which is LFSR-like function. This function is based

on modified TGFSR [8] (Twisted Generalized Feedback Shift

Register [21][22].) The designers of Linux RNG (kernel 3.14)

declared in the source code that they decided to use CRC-32

polynomial in the implementation of twist_table (see figure 6)

for maximal mixing and period over GF(232). Also, there are

additional polynomials used by mixing function that was

chosen base on the size of the pool. Therefore, the input pool

polynomial is (X128 + X104 + X76 + X51 + X25 + X +

1), and the blocking and nonblocking pools polynomial is

(X
32
 + X

26
 + X

19
 + X

14
 + X

7
 + X + 1). The authors of

Linux RNG justified their chose of this method for mixing the

entropy value [20] as follow "All that we want of mixing

operation is that it be a good non-cryptographic hash; i.e. it

not produce collisions when fed random data of the sort we

expect to see. As long as the pool state differs for different

inputs, we have preserved the input entropy and done a good

job." The mixing function is used by all of the three pools

(e.g. when entropy added to the input pool or entropy

transferred to one of the output pools.) Figure 6 shows the

algorithm of the mixing function for output pool. First, when a

new entropy is received by the input pool, each byte of this

entropy value will be extended to 32-bit word, using standard

C implicit cast [10]. This 32-bit word will be left rotated by 7

or 14 bits; this based on the current input position in the pool.

After that, it will be mixed (using xor) with other seven words

in the pool. These seven words are chosen based on the

polynomial discussed above. Then, multiplication in GF(232)

will be applied by using the lookup table, named "twist_table"

in the source code. Afterword, this 32-bit word will be added

to the current input position in the pool. It is important to

mention that the early versions of Linux RNG use slightly

different polynomial, which are (X128 + X103 + X76 + X51 +

X
25
 + X + 1) for input pool, and (X32 + X26 + X20 + X14

+ X
7
 + X + 1) for output pools. In 2012, Patric Lacharme et

al. [9] published a paper with mathematical analysis of the

early chosen polynomials for the mixing function. This paper

highlights that these previously used polynomials do not

achieve the maximal period since they are not primitives over

GF(2
32
), and they discussed and provided the right

polynomials that generate the maximal period. This paper has

taken attention of Linux developers, and they made these

polynomials irreducible according to Patric et al. paper in

latest Linux RNG (kernel 3.13 and 3.14).

Figure 7: The Extraction function of the Linux RNG.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 8, March 2015

23

3.5 Extraction Function
This function is used when random bits are requested via the

generator interfaces /dev/random, /dev/urandom ,kernel call

get_ramdom_byte, or when the entropy transferred from the

input pool into one of the output pools (e.g in case the output

pool does not have enough entropy). This output function is

considered the only non-linear cryptographic operation used

in Linux RNG as it uses SHA-1 to generate the requested

random bits and update the internal state of the pool in a

feedback manner. It also decrements the entropy counter of

that pool by the number of extracted bits. The generation of

the random bytes is performed in blocks of 10 output bytes. If

the requested random number is not a multiple of 10 bytes,

then the last bytes will be truncated according to the number

of the requested random bytes. Figure 7 shows the steps of

generating random bytes from input pool. As we can see, the

SHA-1 is used twice in the extraction function. First, the

whole pool is hashed by SHA-1, and the hash digest (5 words)

is mixed back to that pool by the mixing function. This

feedback (the mixed 20 bytes) updates and shifts 20 words of

the pool. This means that for every generated 10 bytes of

random number, 20 words in the pool will be updated and

shifted (total 640 bits are affected). This is one of the

mechanisms used to prevent backtracking (backtracking

resistance [9]). In case an adversary knows the internal state

of the pool and the current outputs, it will be very difficult for

the attacker to guess the previous outputs of that pool as the

state of the pool is changed and updated whenever random

bits are extracted from it. Also, if the generator receives

sufficient entropy inputs, It will be more difficult to predict

the future output. In the second step, other 16 words (512 bits)

will be extracted from the pool starting from the last input

position. The second SHA-1 will hash These words. Also, the

hash digest that produced by the first SHA-1 above will be

used as initialize value for the second SHA-1. The output

digests five words (20 bytes) of the second SHA-1 are folded

in half to generate 10 bytes as follow:

W0, W1, W2, W3, W4 denote the five words generated from

the second SHA-1 [8].

Then, they will be folded by using XOR {W0 XOR W3, W1

XOR W4, W2[0-15 bits] XOR W2[16-31 bits]}

Finally, these 10 bytes will be outputted, and the entropy

counter in that pool will be decremented.

4. COMPARATIVE ANALYSIS

4.1 Entropy Sources
Windows 8 utilizes a large number of entropy sources to

maintain high entropy in the pool. Large number of those

entropy sources doesn’t depend on the user input and provides

continues entropy including TPM random generator. An

experimental research on several TPM chips showed that the

entropy was not affected by the number of random bytes

generated [23]. Although there are a lot of entropy sources in

computer that can be utilized by RNG, the kernel of Linux

shortens its entropy collection on limited sources, in

compared to windows. Linux RNG receives entropy from four

collection functions described in section III.B. Some of them

will generate low entropy when Linux machine works as a

server (e.g., no user input from keyboard or mouse.)

Moreover, in the production environment Linux kernel itself

consumes alot of entropy through calls get_ramdom_bytes

[24]. This highlights the importance of the need to other

entropy sources as possible in order to feed the generator with

sufficient and continues entropy input.

4.2 Standards and Best Practices
The Linux RNG was designed with reference to some best

practice such as RFC 1750, which actually became obsolete

by RFC 4086, and the design of the generator does not follow

more acceptable standards such as NIST 800-90A. On other

hand, Windows 8 is compliant with well-known standards

FIPS 140-2 and NIST SP 800-(90A, 90B).

4.3 RNG Performance
The implementations of Mixing and Extraction functions in

Linux are aimed to speed the process of generating the

random values with maintaining the security and quality of

randomness. The designer of linux RNG utilized CRC-32-

IEEE 802.3 for the implantation of the mixing function, which

helps to update the internal states of the pools with less

overhead. This feedback mechanism makes Linux RNG

distinguish between other generators who rely intensively on

the use of the cryptographic hash functions, which would

increase the cost of processing and slow the generator.

Whereas, the speed of RNG process in Windows depends on

the chosen algorithm to generate the random number and the

developer implementation.

4.4 Algorithm Security Strength
One of the most influential aspects that affect the quality of

generated random number is the security strength of the

deployed random number generation algorithms. There are

four different mechanisms in Windows RNG lifecycle that

adopted standardized cryptographic algorithms. SHA-512

used for combining the entropy sources values gathered via an

entropy source implemented by Windows OS Loader during

booting time. AES 256 and Dual EC are applied in different

phases of RNG lifecycle in order to generate random number

or seed. Cryptographic security strength of those algorithms

defined the overall security of Windows RNG. According to

NIST Special Publication 800-57 part 1, SHA-512 and AES-

256 have 256 bits of security strength which is acceptable

until 2031 and beyond. In the case of elliptic curve depends

on chosen size of the field or seedlen. For example, 521 bits

of seedlen equals to 256 bits of security strength. Linux RNG

deploy non-cryptographic algorithm for Mixing function

(CRC-32-IEEE-802.3) and SHA-1 for Extraction function.

The Mixing function updates the internal states of the pools

whenever Extraction function is called and when a new

entropy added to the input pool or entropy transferred from

the input to output pools. Also, as we discussed earlier, the

extraction process uses the SHA-1 twice. The first hash digest

is used to feedback the pool and the second hash digest used

to generate the random bytes. Therefore, the combination of

these two functions together provides backtracking resistance,

which makes predicting the internal states of the pools

difficult.

4.5 Booting Entropy
Windows provide various types of entropy sources, and it

performs both mixing and conditioning on collected entropy

values to eliminate the possibility of estimating or predicting

the initial values that populate the entropy pool. Linux

employs a different strategy (that pointed out by Linux

developers) which is the assurance of entropy continuity when

the system starts up by the initialization step discussed in

section III.B.1. This action can assist to avoid using entropy

values of the system starting-up routines that could be

predictable.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 8, March 2015

24

4.6 RNG Tests and Conditions
Windows Performs a series health test on Windows entropy

sources to validate its availability and quality. Also, entropy

source values are conditioned to meet the requirements and

conditions provided by security standards. Furthermore, all

random number generator algorithms apply these continues

RNG tests on their output to ensure the quality of randomness

for the generated number.

4.7 Evaluation
Linux RNG is part of open source project that allows security

researchers to evaluate and analyze its security strength. In

our analysis, we were able to locate, in the source code, the

different features and structures between latest Linux RNG

and earlier versions. While other random number generators

that included in proprietary software do not allow this

opportunity for their users, which raises some security

concerns. Windows doesn’t provide enough resources and

references that might help to evaluate its RNG. Also there are

no research papers on RNG functions in CNG.

4.8 Variety of RNG Algorithms/Interfaces
Developer can choose from two RNG algorithms either AES-

256 or Dual EC. This Variety is not provided by most other

operating systems nowadays. The Linux RNG provides two

output interfaces for user space, which gives the user variety

of choices of high-quality randomness over speed and vice

versa. If the user prefers high availability over the quality of

randomness, then he can use /dev/urandom as this interface

was designed to provide random output as much as the user

request without blocking.

4.9 User Authentication
Windows CNG and Linux don’t authenticate the users and

processes that mean anyone with legitimate or compromised

privileges can implement and use cryptographic services

provided by the operating system.

4.10 Security Threats
There are many research papers that targeted RNG process

and studied the impact of such weaknesses, but there is

another kind of threats that take advantage of the algorithm

properties. For example, some of the documents leaked by

Edward Snowden stated that NSA had inserted a backdoor

into Windows RNG algorithm (Dual_EC_DRBG) which is

standardized by NIST. Also, it has been discussed in the

literature [4] that denial of service attack could be mounted in

blocking pool (in Linux RNG) if the attacker were able to

gain access to the system.

4.11 Pool Accessibility
Windows OS restrict its users from accessing or manipulating

the entropy pool or even retrieving random bits generated by

the internal RNG. While, the interface /dev/urandom in Linux

RNG is writable by any user who has access to the system.

4.12 Secure Programming
Windows CNG uses several interfaces that provide an

additional layer of security. For instance, Data Input Interface

takes data and options as input parameters, but entered data

are handled and controlled in the control interface. There are

also Output and Status Interfaces.

5. CONCLUSION
Window utilizes cryptographic secure random number

generation concept in its RNG process, whereas Linux

emphasis on the performance and speed of RNG. Since

random numbers are widely used in cryptographic functions,

more research need to be done in this area to explore the

strength and weaknesses of RNG algorithms and

implementation. Moreover, Windows provides its developer

with higher entropy availability based on the quality of

entropy sources employed in seeding DRBG. This statement

also needs to be validated through empirical experiment.

Since Linux is an open source and its RNG code is accessible,

it is easier to debug and to prove its security strength. Reverse

engineering of Windows RNG to test its security is still an

open problem that should also considered in future research.

6. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their constructive comments and suggestions. Also, Special

thanks go to Saudi Arabian Cultural Mission in USA for the

fund and support.

7. REFERENCES
[1] I. Goldberg and D. Wagner, “Randomness and the

Netscape browser,” Dr. Dobb's Journal, January 1996.

[Online].

Available:http://www.cs.berkeley.edu/~daw/papers/ddj-

netscape.html.

[2] Z. Gutterman and D. Malkhi, “Hold Your Sessions: An

Attack on Java Session-Id Generatio,” in A. J. Menezes,

(Ed.): CT-RSA 2005, LNCS 3376, pp. 44–57, 2005.

[Online].

Available:http://research.microsoft.com/pubs/64680/gm0

5.pdf.

[3] CVE-2008-0166, “Debian generated SSH-Keys working

exploit,” [Online]. Available:

http://www.securityfocus.com/archive/1/archive/1/49211

2/100/0/threaded

[4] M. Howard, D. LeBlanc, Writing secure code, Second

Ed, Microsoft Press, 2002.

[5] M. Howard, D. Leblanc, and J. Viega. 24 Deadly Sins of

Software Security: Programming Flaws and How to Fix

Them. McGraw-Hill, New York City, NY, USA, 2009.

[6] L. Dorrendorf, Z. Gutterman, and B. Pinkas. 2007.

Cryptanalysis of the windows random number generator.

In Proceedings of the 14th ACM conference on

Computer and communications security (CCS '07).

ACM, New York, NY, USA, 476-485.

DOI=10.1145/1315245.1315304.

[7] K. Lee, Y. Lee, J. Park, K. Yim, and I. You, "Security

Issues on the CNG Cryptography Library (Cryptography

API: Next Generation)," Innovative Mobile and Internet

Services in Ubiquitous Computing (IMIS), 2013 Seventh

International Conference on , pp.709,713, July 2013.

[8] Z. Gutterman and B. Pinkas, and T Reinman, "Analysis

of the Linux random number generator," In IEEE

Symposium on Security and Privacy (2006), IEEE

Computer Society, pp. 371–385.

[9] P. Lacharme, A. Röck, V. Strubel, and M. Videau, “The

Linux pseudorandom number generator revisited,”

Cryptology ePrint Archive, Report 2012/251, 2012,

[Online]. Available: http://eprint.iacr.org/2012/251.pdf

[10] Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergnaud, and

D. Wichs, "Security Analysis of Pseudo-Random

Number Generators with Input: /dev/random is not

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 8, March 2015

25

Robust," The 2013 ACM SIGSAC conference on

Computer & communications security, pp. 647-658.

[11] B. Barak and S. Halevi. A model and architecture for

pseudo-random generation with applications to

/dev/random. In ACM Conf. on Comp. and

Communications Sec. - CCS 2005, pages 203–212, 2005.

[12] Randomness Requirements for Security, RFC 4086, June

2005.

[13] E. Barker and J. Kelsey. Recommendation for Random

Number Generation Using Deterministic Random Bit

Generators, NIST Special Publication 800-90A, January

2012.

[14] Kernel Mode Cryptographic Primitives Library

(CNG.SYS), v. 1.1 , Security Policy for FIPS 140-2

Validation, July17, 2013.

[15] Implementation Guidance for FIPS PUB 140-2 and the

Cryptographic Module Validation Program. NIST-

Communication Security Established Canada.

April,2014.

[16] BitLocker® Windows OS Loader (WINLOAD), v.1.1 ,

Security Policy for FIPS 140-2 Validation , July17, 2013.

[17] Intel Corporation. 2012. Intel Digital Random Number

Generator (DRNG) Software Implementation Guide.

[Online]. Available: http://software.intel.com/en-

us/articles/inteldigital- random-number-generator-drng-

softwareimplementation- guide. (Aug. 2012).

[18] Cryptographic Primitives Library

(BCRYPTPRIMITIVES.DLL), v.1.1 , Security Policy

for FIPS 140-2 Validation , July17,2013.

[19] Microsoft, "Cryptography API: Next Generation",

Microsoft Developer Network . [Online]. Available:

http://msdn.microsoft.com/enus/

[20] Linux Cross Reference, [Online]. Available:

http://lxr.free-

electrons.com/source/drivers/char/random.c

[21] M. Matsumoto and Y. Kurita. Twisted GFSR generators.

ACM Transactions on Modeling and Computer

Simulation, 2(3):179–194, 1992.

[22] M. Matsumoto and Y. Kurita. Twisted GFSR generators

II. ACM Transactions on Modeling and Computer

Simulation, 4(3):254–266, 1994.

[23] A. Suciu and T. Carean, "Benchmarking the True

Random Number Generator of TPM

Chips." CoRRabs/1008.2223 (2010) . [Online].

Available: http://arxiv.org/abs/1008.2223.

[24] T. Vuillemin, F. Goichon, C. Lauradoux, and G.

Salagnac. " Entropy transfers in the Linux Random

Number Generator". hal-00738638, version 1 - 4, 2012.

[25] Linux programmer’s Manual. [Online]. Available:

http://man7.org/linux/man-pages/man4/random.4.html

IJCATM : www.ijcaonline.org

