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ABSTRACT  
Clustering is important task for any recommendation 

system. Clustering method suggested by many 

researchers for search engine optimization. Search engine 

help user for better searching by user’s query 

recommendation. Clustering is helpful for finding actual 

relation between different queries which are not same as 

they seems. But do clustering of user query is also a 

difficult task because of user enters lots of type and 

varying queries. Many time these queries may very short 

to get their real meaning and also can generate different 

meanings. Any single query may have various meaning 

on other hand many different query words may have 

common meaning for searching contents.  Lots of 

clustering methods are given in last decades for search 

engine optimization but these methods unable to proper 

utilization various information hidden in user query log. 

This paper gives a novel clustering approach based on to 

identify query similarity and apply SOM clustering for 

effective clustering results. We propose a novel similarity 

matrix for user queries by uses of URL clicked by user 

trough searching results. Text similarity and time 

similarity are also measure for calculating similarity 

between two queries. This method shows good results 

within clustering performance to compare with other 

existing methods.  

1. INTRODUCTION  
Clustering of program queries has attracted vital attention 

in recent years. Several program applications like query 

recommendation need query agglomeration as a pre-

requisite to operate properly. Indeed, agglomeration is 

critical to unlock verity price of query logs. However, 

agglomeration search queries effectively are kind of 

difficult, owing to the high diversity and capricious input 

by users. Search queries are sometimes short and 

ambiguous in terms of user necessities. Many alternative 

queries might confer with one construct, whereas one 

query might cowl several ideas. Existing current 

agglomeration ways, like K-Means or DBSCAN cannot 

assure sensible leads to such a various atmosphere. 

Clustered agglomeration offers sensible results however 

is computationally quite pricey. This paper presents a 

unique agglomeration approach supported a key insight – 

program results may themselves be wont to determine 

query similarity. This work proposes query matter 

similarity and time thresholds for a lot of strong approach 

that leverages search query logs. This can be wont to 

develop a awfully economical and correct formula for 

agglomeration queries. This system can useful for varied 

search engines and search applications like query 

suggestions, result ranking, query alterations, 

sessionization, and cooperative search. 

With the event in data technology, the net [1] has clad to 

be a huge data repository covering virtually each space, 

within which an individual's user may be concerned. In 

spite of recent advances in net program technologies, 

there are still several things within which user is 

bestowed with unwanted and non- relevant pages within 

the high most results of the hierarchal list. Program 

usually has difficulties in forming a pithy and precise 

illustration of the response pages appreciates a user 

query. Providing a group of websites supported user 

query words isn't an enormous drawback in program. The 

problem arises at the user finish as he must sift through 

the long result list, to search out his desired content. This 

drawback is remarked as data Overkill drawback [2]. 

The design [3] of the program is shown in Figure1. 

 

Fig. 1.  Architecture of Search Engine 

There are three parts in programmed referred to as 

Crawler, skilled worker and Ranking mechanism. The 

crawler is additionally known as mechanism that 

navigates the online and downloads the online pages. The 

downloaded pages area unit transferred to associate 

classification module and erect the index supported the 

keywords in individual pages. once a query  is being 

floated by a user, it means that the query transferred in 

terms of keywords on the interface of a quest engine, the 

query mainframe section examine the query keywords 

with the index and precedes the URL’s of the pages to 

the shopper. However gifting the pages to the shopper a 

ranking mechanism is completed by the search engines to 

present the foremost relevant pages at the highest and 

fewer vital pages at all-time low.  

As of nowadays, the indexed net contains a minimum of 

thirty billion pages [3]. In fact, the general net could 

comprise over one trillion distinctive URLs, a lot of and 

a lot of that is being indexed by search engines each day. 

Out of this quagmire of knowledge, users usually 

rummage around for the relevant info that they require by 

move search queries to go looking engines. The matter 

that the search engines face is that the queries area unit 

terribly various and sometimes quite imprecise and/or 

ambiguous in terms of user needs. Many various queries 

could ask one thought, whereas one query could 

correspond to several ideas. To arrange and convey some 

order to the current huge unstructured dataset, search 

engines cluster these queries to cluster similar things 
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along. To extend usability, most business search engines, 

like Google, Yahoo!, Bing, and raise additionally 

augment their search facility through extra services like 

query recommendation or query suggestion. These 

services create it a lot of convenient for users to issue 

queries and acquire correct results from the programmed, 

and so area unit quite valuable. From the programmed 

perspective, effective clump of search queries could be a 

necessary pre-requisite for these services to perform well. 

As a result of all of those reasons, clump of program 

queries has attracted vital attention in recent years. 

However, existing current clump strategies, like K-

Means or DBSCAN cannot assure smart ends up in such 

a various atmosphere. There area unit many challenges 

expose by the distinctive nature of the atmosphere. The 

first issue is to work out the way to live similarity 

between queries. To change a lot of precise info retrieval, 

a representative and correct descriptor is indispensable 

for computing the similarity between queries. 

The thought of query similarity was originally utilized in 

info retrieval studies [4]: measurement the similarity 

between the content-based keywords of 2 queries. 

However, the matter with victimization this within the 

query log atmosphere is that users’ search interests aren't 

continuously identical although the issued queries 

contain identical keywords. for example, the keyword 

“Apple” could represent a well-liked quite fruit whereas 

it's additionally the keyword of a well-liked company 

“Apple Iraqi National Congress.”. Hence, the utilization 

of content-based keywords descriptor is very restricted 

for this purpose. 

1.1 Query Logs 
The log keeps user’s queries and their clicks further as 

their browsing activities. The standard logs [5] of 

program embody the subsequent entries: 

1)  User IDs 

2) Query Q issued by the user 

3) Address u clicked by the user 

4)  Rank r of the address u clicked for the query Q  

5)  Time t at that the query has been submitted 

The information contained in query logs may be 

utilized in many ways [6, 7], example to produce context 

throughout search, to classify queries. Query log is 

shown in Table one. 

Table 1: Query Logs 

User 

Id 

Query 

Clicked 

URL r Time 

Admin Data 

Mining 

www.dming.com 6 12:10 

Admin Data 

ware 

housing 

www.dming.com 5 8:30 

Admin Data 

Mining 

www.google.com 5 11:10 

 

In this paper, we tend to survey the prevailing 

strategies for computing query recommendations. We 

tend to prohibit the scope of this survey to strategies that, 

given a user’s query, use it or rework it into another 

query, with a supposed intercalary price for the user’s 

exploration. We tend to propose a proper definition of 

this downside, specifically to visualize the advice of 

queries for exploration functions as a recommending 

perform A survey of query recommendation techniques 

for exploration taking as input: The query log, a specific 

query session known as the present session, a user 

profile, a instance, associated an expectation perform. 

Given these parameters this recommending perform 

outputs a group of suggested queries, every with a given 

rating indicating the interest of the query for the present 

session. 

Subsequently, to live similarity between 2 queries, the 

query illustration of a vector of URLs in a very 

clickthrough bipartite graph [8][9] has been adopted. 

even so, despite however giant the query log information 

set is, it's doable that the entire search intent of some 

queries might not be adequately portrayed by the 

obtainable click-through info. for example, in a very 

specific large-scale query log, there is also no clicked 

address for the query “Honda vs Toyota”. Therefore, 

although it's clearly relevant to the query “Honda”, on 

the idea of this click-through information, there's no 

similarity. Therefore, existing query log information isn't 

correct enough for analyzing users’ search intent, 

particularly for those queries with none clicked address. 

One more reason that causes quality is that the query log 

information comprises users’ click-through info in a very 

specific amount, whereas search interests may even 

modification over time. If we tend to utilize associate 

aggregative query logs collected in a very long amount to 

check and cluster queries, the accuracy is also wedged. 

2. RELATED WORK 
Therefore, describing queries solely by content-based 

keywords or strictly through click-through knowledge 

isn't forever correct for program query clump. During 

this paper, our main contribution is to propose a 

completely unique query descriptor for scrutiny queries. 

this is often supported a key insight – program results 

may themselves be wont to establish query similarity; 

and so incorporate each content and click on  through 

info [11][12][13][14]. Supported this, we tend to 

additionally outline a replacement similarity metric 

which will be utilized in any distance primarily based 

clump algorithmic rule. owing to the variety of queries 

and therefore the curse of spatiality, current clump 

algorithms have high machine price. we tend to 

additionally propose AN economical clump algorithmic 

rule to scale back machine price. we tend to compare the 

query clump results of our approach with many existing 

state of the art strategies and show that our algorithmic 

rule provides smart cohesion, separation on clustered 

queries and considerably reduced runtime. 

Query clump has its roots in keywords-based info 

retrieval analysis [4]. Since most of the keywords area 

unit ambiguous, analyzing the content of query keywords 

or phrases by ancient info retrieval techniques has several 

limitations. Following that, click-through query logs are 

mined to yield similar queries [20]. Beeferman and 

Berger [8] 1st introduced the agglomerate clump 

methodology to get similar queries mistreatment query 

logs however with limitations (noise and little variety of 

common clicks). The query clump approach adopted in 
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[21] uses a K-Means clump approach. K-Means 

algorithmic rule cannot adapt well in query clump case 

owing to the issue on specifying k. Wen et al. [22] 

analyzed each query contents and clickthrough bipartite 

graph and applied a density-based algorithmic rule 

DBSCAN [23] to cluster similar queries. The same as 

agglomerate query clump, DBSCAN algorithmic rule 

adopted in [22] needs high computation price. 

Meanwhile, Wen et al. linearly mix measures on content-

based similarity and cross-references primarily based 

similarity however it’s tough to line parameters for linear 

combination of 2 similarity metrics. However, our 

hierarchical search results knowledge (enforced by 

[11][12][13][14]) naturally contemplate each factors. 

Moreover, we've got compared the accuracy of our 

approach with the geometer distance primarily based 

query log clump [10]. Moreover, Kendall’s letter [16] 

and a few relevant measures [24] are often effective in 

mensuration the accuracy of clustered queries. Since our 

most vital contribution is in observant the very fact that 

search results are often wont to perform query clump, 

they could be effective metrics additionally. However, 

since search queries clump may be a acknowledge 

exhausting downside, there's no economical algorithmic 

rule that has been projected for clump queries with 

reference to existing top-k lists scrutiny measures. 

Finally, tend to use profile constant to live the cohesion 

and separation of query clump results. Larger profile 

constant indicates giant inter-cluster distances and little 

intra-cluster distances. Davies-Bouldin index [25][26] 

seeks identical objective on clump validation. the 

excellence between silhouette constant is that – 

decreased  index generates the simplest clump results. 

3. INFORMATION USED FOR 

QUERY PROCESS 
Although search and browse log knowledge offer nice 

opportunities for enhancing internet search, there are 

many challenges before such knowledge are often 

utilized in varied applications. First, the scale of log 

knowledge is sometimes terribly giant. In observe the 

scale of search and browse log knowledge at an 

exploration engine is usually at the magnitude of tens of 

terabytes day after day. Second, log knowledge area unit 

quite shouting. For instance, queries could also be issued 

by machines for experiments; user input in computer 

address boxes could also be redirected to look engines by 

internet browsers; and clicks on search result pages could 

also be arbitrarily created by users. 

To overcome noise and volume, one will combination 

raw log knowledge in preprocessing. By summarizing 

common patterns in data, the scale of information is often 

greatly reduced. Moreover, when aggregation, we tend to 

could prune patterns with low frequencies to scale back 

noise. 

One query is a way to summarize raw log knowledge for 

varied log mining tasks. In fact, search and browse log 

knowledge have terribly complicated knowledge 

structures with varied sorts of knowledge objects and 

relationships. the info objects could embody users, 

sessions, queries, search result pages, clicks on search 

results, and follow-up clicks. These differing types of 

information objects kind a hierarchy. At the highest level, 

every user incorporates a series of sessions, wherever 

every session contains a sequence of queries. In a query, 

a user could open many WebPages. Finally, a user could 

additional follow the hyperlinks within the WebPages of 

search results and browse additional WebPages. 

Additionally to the hierarchal relationship between 

differing types of information objects, the info objects at 

identical level typically kind a successive relationship. 

Here, we tend to introduce four sorts of knowledge 

account that area unit wide utilized in log mining, 

namely, query histograms, click-through bipartite, click 

patterns, and session patterns. Among the literature 

reviewed during this survey, ninetieth of the papers on 

log mining utilized a minimum of one in all the four sorts 

of knowledge account. 

3.1 Query Bar Graph 
A query bar graph represents the quantity of times every 

query is submitted to an exploration engine. As shown in 

Figure three, query bar graph contains query strings and 

their frequencies. As an easy statistics, query bar graph 

are often utilized in a good form of applications, like 

query motor vehicle completion and query suggestion. 

 

Fig 2. An example of click-through bipartite graph. 

In a click-through bipartite graph, nodes represent 

queries and URLs, and edges represent click relations 

between queries and URLs 

3.2 Click-through Bipartite 
A click-through bipartite graph, like Figure a pair of, 

summarizes click relations between queries and URLs in 

searches. The bipartite graph consists of a collection of 

query nodes and a collection of computer address nodes. 

A query and a computer address area unit connected by a 

position if the computer address is clicked by a user once 

it's came back as a solution to the query. A weight cij 

could also be related to AN edge eij, indicating the full 

variety of times URL uj is clicked with reference to 

query qi. Click-through bipartite is maybe the foremost 

wide used organization in log mining. As we are going to 

see within the following sections, it are often used for 

query transformation, query classification, document 

annotation, and plenty of alternative tasks. 

3.3 Click Patterns 
Click patterns summarize positions of clicked URLs in 

search results of queries. To be specific, every search 

result (also called search impression) Iq with respect to 

query q are often portrayed by Iq=(q;L), wherever L may 

be a list of triples (u,p,c), wherever u is that the universal 

resource locator of a page, p is that the position of the 

page, and c indicates whether or not the page is clicked. 

The identical search results are more collective to 1 click 

pattern Pq =(q;L;cc), wherever cc is that the variety of 

search results, samples of click patterns. In follow, an 
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inventory L solely includes the highest N URLs. 

Compared with a click-through bipartite, click patterns 

contain richer info. A click-through bipartite solely 

represents collective clicks of URLs, whereas click 

patterns more represent the positions of the clicked URLs 

furthermore as unclicked URLs. As are going to be seen 

within the later sections, click patterns will facilitate 

several tasks in search, like classifying steering and 

informational queries, learning pairwise document 

preference, building ordered click models, and predicting 

user satisfaction. 

3.4 Session Patterns 
Session patterns summarize transitions among queries, 

clicks, and browses at intervals search sessions. In fact, 

session patterns are often outlined in several ways in 

which looking on specific applications. As an example, 

sequences of queries as sessions and extract frequent 

query sequences as session patterns. In different cases, 

session patterns might involve not solely queries 

however additionally clicked URLs. as an example, 

outlined session patterns supported sequences of queries 

and their clicked URLs. Since session patterns represent 

users’ search behaviors in an exceedingly additional 

precise means, it's been used extensively. As are going to 

be seen later, session patterns are wide utilized in tasks 

like query transformation, document ranking, and user 

satisfaction prediction. 

4. QUERY SIMILARITIES FOR 

SEARCH LOGS 
We currently develop the machinery to outline the query 

connection supported internet search logs. Our live of 

connection is geared toward capturing two necessary 

properties of relevant queries, namely:  

1) Queries that regularly seem along as 

reformulations and  

2) Queries that have evoked the users to click on 

similar sets of pages.  

4.1 Search Behaviour  
We derive three kinds of graphs from the search logs of 

an advert computer programmed. The query 

reformulation graph, QRG, represents the connection 

between a combine of queries that area unit doubtless 

reformulations of every different. The query click graph, 

QCG, represents the connection between 2 queries that 

regularly cause clicks on similar URLs. The query fusion 

graph, QFG, merges the data within the previous 2 

graphs. All 3 graphs area unit outlined over a similar set 

of vertices VQ, consisting of queries that seem in a 

minimum of one among the graphs, however their edges 

area unit outlined otherwise. 

4.1.1 Query Reformulation Similarity 
One way to spot relevant queries is to think about query 

reformulations that area unit usually found inside the 

query logs of an exploration engine. If two queries that 

area unit issued consecutively by several users occur 

oftentimes enough, they're doubtless to be reformulations 

of every different. to live the connection between two 

queries issued by a user, the time-based metric, simtime, 

makes use of the interval between the timestamps of the 

queries inside the user’s search history. In distinction, 

our approach is outlined by the applied math frequency 

with that two queries seem next to every different within 

the entire query log, over all of the users of the system.  

To this end, based on the query logs, we construct the 

query reformulation Similarity, QRS=(VQ,EQR), whose 

set of edges, EQR, are constructed as follows: for each 

query pair (qi,qj), where qi is issued before qj within a 

user’s day of activity, we count the number of such 

occurrences across all users’ daily activities in the query 

logs, denoted countr(qi,qj). Assuming infrequent query 

pairs are not good reformulations of each other, we filter 

out infrequent pairs and include only the query pairs 

whose counts exceed a threshold value,r. For each (qi, qj) 

with countr(qi, qj)>=Tr, we add a directed edge from qi 

to qj to EQR. The edge weight, wr(qi,qj), is defined as 

the normalized count of the query transitions 

wr qi , qj =
countr qi , qj 

 count(qiqk)(q i ,qk )ϵεQR

 

4.1.2 Query Top-K search Similarity 
The key procedure for clustering queries is measuring the 

similarity or distance between all queries. Since the top-

klist along with the weight sequence Ωgives a topk 

ranked list, we could use theKendall’s tau [38] as the 

underlying distance metric. However, Kendall’s tau is 

not that effective if the top-klists have little overlap, 

which is quite often for search engine query URL lists. 

Additionally, scalability is an essential concern for search 

engine query clustering. Computing Kendall’s tau is not 

very efficient in large number of top-k lists’ 

comparisons, which is necessary in clustering queries. To 

improve this, we propose a new similarity measure for 

comparing top-k lists. With top-k lists, the similarity 

between two different queries qx and qy can be measured 

through their two sorted URL sets Lqx (k) and Lqy (k). 

First, we identify the common URLs in Lqx (k) and Lqy 

(k). Since the maximum number of common URLs is 

limited tok, we denote these common URLs as{∀di 

∈Lqx (k)∩Lqy (k) wherei ∈[1,m] and m≤k}. However, 

simply comparing the two lists through their common 

URLs such as by using the Jaccard coefficient [38], or 

Euclidean distance is not sufficiently accurate. The 

similarity between two queries is determined not only in 

terms of the number of common URLs, but also 

according to the ranks of each common URL in two top-

k lists. For instance, “Apple” and “Apples” have many 

common URLs in the search results. If we do not 

consider the influence resulting from the positions of 

each URL, the similarity between these two queries 

might be very large. However, the first few URLs of 

“Apple” are related to “Apple Inc.” and fruit related 

URLs are ranked not so high, whereas the search results 

of “Apples” have an inverse order of these two meanings. 

Actually, they are two totally different searches. Hence, 

the ranks of the same URL in both queries’ topk lists 

impact the precision of the similarity as well. As 

illustrated in Section II-A, a common URL in Lqx(k) and 

Lqy(k)should have different relevance weight according 

to their ranks. Hence, our similarity measure should 

consider two factors: the relevance weight in two top-k 

lists and the “rank transition” (the rank difference in two 

queries’ top k lists). We thus define the Transition 

Similarity between two queries qx and qy as follows: 

(1) 



International Journal of Computer Applications (0975 – 8887)  

Volume 109 – No. 8, January 2015 

36 

Here, m is the number of common URLs in Lqx (k)and 

Lqy (k), rx (i) and ry (i) represent the rank of common 

URL di in Lqx(k) and Lqy (k), respectively, and 

|rx(i)−ry(i)| denotes the rank difference of di. 

Since|rx(i)−ry(i)| might be0, and has an anti-monotonic 

relationship with the similarity, we use the inverse value 

of|rx(i)−ry(i)|+1to measure the similarity w.r.t. rank 

difference. 

4.1.3 Text Similarity 
On a different note, we may assume that two query 

groups are similar if their queries are textually similar. 

Textual similarity between two sets of words can be 

measured by metrics such as the fraction of overlapping 

words or characters. We can thus define the following 

two text based relevance metrics that can be used in place 

of sim. 

Simtext(sc,si) is defined as the fraction of common 

words between qc and qi as follows: 

 

4.2 Final Query Similarity 
The Final Query Similarity, the query click graph 

calculated by reformation similarity, top-k search 

similarity and text similarity. As follows:  

wf qi , qj = a × wr qi , qj +b × wc qi , qj 

+ c × wtxt  qi , qj  

The relative contribution of the two weights is controlled 

by a, and we denote a query final similarity constructed 

with a particular value of a, b and c such as a+b+c =1 for 

FQS. 

4.3 Proposed Algorithm 
Fig 3 explains proposed work flowchart and overall 

proposed algorithm in sequential manner may be given as 

follow. 

Algorithm for Search Engine Query Clustering Using 

SOM  

Input: 

The queries Dataset containing the current query id, time, 

rank and click urls. 

A set of existing query groups S={s1,…., sm} 

A similarity threshold th, 0<th<1 

Output: The query group s that best matches Sc, or a new 

one if necessary 

Step 1:  Set the initial parameters 

Let the users, S={s1, s2, s3, ….., sn} 

Current query and clicks, {qc,clkc}. 

Weight of query Time Similarity =wr 

Weight of Query Top-K=wc 

Weight of Text similarity graph=wtxt 

a =0.33, b =0.33, c= 0.33 

Step 2: load Query log data set. 

Step 3: Feature Extraction of time , query click , URLs 

etc . 

Simtime(sc,si)=1/time (qc)-time(qi)  

Step 4: Creation of Query Reformulation similarity. 

Weight is calculated as 

{ 

wr qi , qj =
countr qi , qj 

 count(qiqk)(q i ,qk )ϵεQR

 

Step 5: Creation of Query Top-K by click url. 

Weight is calculated as 

wc qi , qj =
 min(countc qi , uk , countc qj , uk )uk

 countc qj , uk uk

 

Step 6: Creation of Text similarity  

Weight is calculated as 

wtxt  qi , qj =
words(qi) ∩words(qj)

words(qi) ∪words(qj)
 

Step 7: Calculate the weights for final similarity 

wf qi , qj = a × wr qi , qj +b × wc qi , qj 

+ c × wtxt  qi , qj  

} 

Step 8: this similarity matrix passed to SOM tool for k-

means clustering, clustering method results output 

similar query groups as one cluster. 

Step 9: Get the final groups accuracy and comparison. 

Start

Feature Extraction (Time, 

Click URLs, etc.)

Creation Time Similarity 

(Wr)

Creation Top-K url Similarity 

(Wc)

Creation Text similarity  

(Wtxt)

Final Similarity Calculate 

(Wf=a*Wr+b*Wc+y*Wtxt)

SOM 

clustered

put in same group

Load Query Log 

Dataset

Output Group of 

similar queries

Similarity Matrix passed for 

clustering

Yes

No

Stop
 

Fig 3. Proposed work flow diagram 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 109 – No. 8, January 2015 

37 

5. EXPERIMENT RESULTS  
In this section, we study the behavior and performance of 

our algorithms on partitioning a user’s query history into 

one or more groups of related queries. For example, for 

the sequence of queries “caribbean cruise”; “bank of 

america”; “expedia”; “financial statement”, we would 

expect two output partitions: first, {“caribbean cruise,” 

“expedia”} pertaining to travel-related queries, and, 

second, {“bank of america,” “financial statement”} 

pertaining to money-related queries.  

5.1 Dataset 
To this finish, we tend to obtained the query 

reformulation and query click graphs by merging variety 

of monthly search logs from a billboard computer 

program. every monthly photo of the query log adds 

around twenty four % new nodes and edges within the 

graph compared to the specifically preceding monthly 

photo, whereas around ninety two % of the mass of the 

graph is obtained by merging 9 monthly snapshots. to cut 

back the result of noise and outliers, we tend to cropped 

the query reformulation graph by keeping solely query 

pairs that appeared a minimum of double (Tq ¼2), and 

therefore the query click graph by keeping solely query-

click edges that had a minimum of ten clicks (Tc ¼10). 

In order to make check cases for our algorithms, we tend 

to used the search activity (comprising a minimum of 2 

queries) of a collection of two hundred users (henceforth 

known as theRand200data set) from our search log. to get 

this set, users were picked every which way from our 

logs, associated 2 human labelers examined their queries 

and appointed them to either an existing group or a brand 

new group if the labelers deemed that no connected 

group was gift. A user’s queries were enclosed in 

theRand200 knowledge set if each labelers were in 

agreement so as to cut back bias and subjectiveness 

whereas grouping. The labelers were allowed access to 

the online so as to see if 2 ostensibly distant queries were 

truly connected (e.g., “dainik bhaskar ” and “star news”). 

the common variety of groups within the knowledge set 

was three.84 with thirty % of the users having queries 

classified in additional than three groups. 

5.2 Performance Metric  
To measure the standard of the output groupings, for 

every user, we tend to begin by computing query pairs 

within the labeled and output groupings. Two queries 

kind a try if they belong to an equivalent cluster, with 

lone queries pairing with a special “null” question. To 

judge the performance of our algorithms against the 

groupings made by the labelers, we'll use the Rand Index 

[35][39] metric, that could be a ordinarily used live of 

similarity between 2 partitions. The Rand Index 

similarity between 2 partitions X,Y of n components 

every is outlined as RandIndex(X,Y)=(a+b)/n, wherever 

a is that the range of pairs that square measure within the 

same set in X and also the same set in Y, and b is that the 

range of pairs that square measure in several sets in x and 

in several sets in Y. Higher RandIndex values indicate 

higher ability of grouping connected queries along for a 

given formula. Our formula to realize the most effective 

performance onRand200 supported the RandIndex 

metric. We tend to follow an equivalent approach for the 

baselines that we tend to enforced also. We’ll 

additionally appraise the approaches on further take a 

look at sets (Lo100, Me100, and Hi100). to achieve a live 

of usage data for a given user, we glance at the common 

outdegree of the user’s queries (average outdegree), also 

because the average counts among the outgoing links 

(average weight) within the query reformulation graph. 

so as to check the results of usage data on the 

performance of our algorithms, we tend to created 3 

further take a look at sets of a hundred users every. The 

sets we tend tore additionally manually labeled as we 

delineated. The primary set, Lo100contains the search 

activity of a hundred users, with average out-degree < 5. 

Similarly, Me100 contains user activity for users having 

out-degree >5 but <10 end Hi100 having out-degree >10. 

Based on these information sets, we tend to judge once 

more the performance of our algorithms and that we 

show the ends up in rock bottom 3 lines of Table one. As 

we will see from the table, for QFG, subsets with higher 

usage info conjointly tend to own higher RandIndex 

values [39][40][41]. Hi100 (RandIndex=0.89) performs 

higher than Me100(RandIndex=0.947), that successively 

outperforms Lo100(RandIndex=1.0). ATSP shows the 

same trend (higher usage shows higher performance) and 

it outperforms QFG at the Lo100data set. CoR’s 

performance is additional or less similar for the various 

information sets that is anticipated because it doesn't use 

the graphs directly. For Jaccard, it's best once the 

property round the queries among a user’s session is 

comparatively low. We tend to don't observe any 

important distinction within the performance of the 

opposite baselines (Time and Levenshte in) in these new 

information sets.  

TABLE 2. Comparative Performance of Our 

Methods 

 Levensh

tein 

Jaccar

d 

CoR ATS

P 

QFG Propos

ed 

Rand200 0.721 0.750 0.807 0.831 0.860 0.867 

Lo100 0.732 0.762 0.794 0.832 0.821 1.000 

Me100 0.712 0.748 0.802 0.857 0.868 0.947 

Hi100 0.729 0.742 0.809 0.871 0.882 0.890 

 

Fig 4 Comparative Performance (RandIndex) of Our 

Methods 

Figure 4 and table 2 show comparative analyses between 

proposed work and various methods. Figures 4 shows 

result comparison of performance metric for Rand2oo 

dataset with other existing algorithms and its verifies that 
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proposed method outperformed better than others. 

Proposed method implemented reformation graph, click 

graph as well as association query information, hence 

Gives better results. The proposed method also compare 

with other dataset low100, mid100 and hi100 dataset as 

explain above for all dataset proposed method gives high 

performance index for grouping queries. 

6. CONCLUSION 
The final similarity between any two queries is calculated 

by taking advantages of text similarity, time similarity 

and clicked urls similarity. Hence lots of hidden relation 

between two queries can be determining by proposed 

method which is very help to clustering queries 

efficiently. This paper show how this hidden information 

may use for clustering users’ search log effectively and 

used for their recommendation system. This method may 

be useful for search engine optimization and may be 

applying for web based clustering approaches. This work 

may extend in future research such as document 

clustering, image clustering, and web page 

recommendation. This work is only limited to query 

recommendation which may be extends till document 

and other file type recommendation by combining other 

similarity methods like cosine similarity or any other 

supervised learning.  
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