
International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 8, January 2015

32

Top-K Search Query Grouping using SOM

Clustering for Search Engine

Sami Uddin
Computer Science and Engineering

VNS Group of Institute
Bhopal, India

Amit Kumar Nandanwar
Computer Science and Engineering

VNS Group of Institute
Bhopal, India

ABSTRACT
Clustering is important task for any recommendation

system. Clustering method suggested by many

researchers for search engine optimization. Search engine

help user for better searching by user’s query

recommendation. Clustering is helpful for finding actual

relation between different queries which are not same as

they seems. But do clustering of user query is also a

difficult task because of user enters lots of type and

varying queries. Many time these queries may very short

to get their real meaning and also can generate different

meanings. Any single query may have various meaning

on other hand many different query words may have

common meaning for searching contents. Lots of

clustering methods are given in last decades for search

engine optimization but these methods unable to proper

utilization various information hidden in user query log.

This paper gives a novel clustering approach based on to

identify query similarity and apply SOM clustering for

effective clustering results. We propose a novel similarity

matrix for user queries by uses of URL clicked by user

trough searching results. Text similarity and time

similarity are also measure for calculating similarity

between two queries. This method shows good results

within clustering performance to compare with other

existing methods.

1. INTRODUCTION
Clustering of program queries has attracted vital attention

in recent years. Several program applications like query

recommendation need query agglomeration as a pre-

requisite to operate properly. Indeed, agglomeration is

critical to unlock verity price of query logs. However,

agglomeration search queries effectively are kind of

difficult, owing to the high diversity and capricious input

by users. Search queries are sometimes short and

ambiguous in terms of user necessities. Many alternative

queries might confer with one construct, whereas one

query might cowl several ideas. Existing current

agglomeration ways, like K-Means or DBSCAN cannot

assure sensible leads to such a various atmosphere.

Clustered agglomeration offers sensible results however

is computationally quite pricey. This paper presents a

unique agglomeration approach supported a key insight –

program results may themselves be wont to determine

query similarity. This work proposes query matter

similarity and time thresholds for a lot of strong approach

that leverages search query logs. This can be wont to

develop a awfully economical and correct formula for

agglomeration queries. This system can useful for varied

search engines and search applications like query

suggestions, result ranking, query alterations,

sessionization, and cooperative search.

With the event in data technology, the net [1] has clad to

be a huge data repository covering virtually each space,

within which an individual's user may be concerned. In

spite of recent advances in net program technologies,

there are still several things within which user is

bestowed with unwanted and non- relevant pages within

the high most results of the hierarchal list. Program

usually has difficulties in forming a pithy and precise

illustration of the response pages appreciates a user

query. Providing a group of websites supported user

query words isn't an enormous drawback in program. The

problem arises at the user finish as he must sift through

the long result list, to search out his desired content. This

drawback is remarked as data Overkill drawback [2].

The design [3] of the program is shown in Figure1.

Fig. 1. Architecture of Search Engine

There are three parts in programmed referred to as

Crawler, skilled worker and Ranking mechanism. The

crawler is additionally known as mechanism that

navigates the online and downloads the online pages. The

downloaded pages area unit transferred to associate

classification module and erect the index supported the

keywords in individual pages. once a query is being

floated by a user, it means that the query transferred in

terms of keywords on the interface of a quest engine, the

query mainframe section examine the query keywords

with the index and precedes the URL’s of the pages to

the shopper. However gifting the pages to the shopper a

ranking mechanism is completed by the search engines to

present the foremost relevant pages at the highest and

fewer vital pages at all-time low.

As of nowadays, the indexed net contains a minimum of

thirty billion pages [3]. In fact, the general net could

comprise over one trillion distinctive URLs, a lot of and

a lot of that is being indexed by search engines each day.

Out of this quagmire of knowledge, users usually

rummage around for the relevant info that they require by

move search queries to go looking engines. The matter

that the search engines face is that the queries area unit

terribly various and sometimes quite imprecise and/or

ambiguous in terms of user needs. Many various queries

could ask one thought, whereas one query could

correspond to several ideas. To arrange and convey some

order to the current huge unstructured dataset, search

engines cluster these queries to cluster similar things

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 8, January 2015

33

along. To extend usability, most business search engines,

like Google, Yahoo!, Bing, and raise additionally

augment their search facility through extra services like

query recommendation or query suggestion. These

services create it a lot of convenient for users to issue

queries and acquire correct results from the programmed,

and so area unit quite valuable. From the programmed

perspective, effective clump of search queries could be a

necessary pre-requisite for these services to perform well.

As a result of all of those reasons, clump of program

queries has attracted vital attention in recent years.

However, existing current clump strategies, like K-

Means or DBSCAN cannot assure smart ends up in such

a various atmosphere. There area unit many challenges

expose by the distinctive nature of the atmosphere. The

first issue is to work out the way to live similarity

between queries. To change a lot of precise info retrieval,

a representative and correct descriptor is indispensable

for computing the similarity between queries.

The thought of query similarity was originally utilized in

info retrieval studies [4]: measurement the similarity

between the content-based keywords of 2 queries.

However, the matter with victimization this within the

query log atmosphere is that users’ search interests aren't

continuously identical although the issued queries

contain identical keywords. for example, the keyword

“Apple” could represent a well-liked quite fruit whereas

it's additionally the keyword of a well-liked company

“Apple Iraqi National Congress.”. Hence, the utilization

of content-based keywords descriptor is very restricted

for this purpose.

1.1 Query Logs
The log keeps user’s queries and their clicks further as

their browsing activities. The standard logs [5] of

program embody the subsequent entries:

1) User IDs

2) Query Q issued by the user

3) Address u clicked by the user

4) Rank r of the address u clicked for the query Q

5) Time t at that the query has been submitted

The information contained in query logs may be

utilized in many ways [6, 7], example to produce context

throughout search, to classify queries. Query log is

shown in Table one.

Table 1: Query Logs

User

Id

Query

Clicked

URL r Time

Admin Data

Mining

www.dming.com 6 12:10

Admin Data

ware

housing

www.dming.com 5 8:30

Admin Data

Mining

www.google.com 5 11:10

In this paper, we tend to survey the prevailing

strategies for computing query recommendations. We

tend to prohibit the scope of this survey to strategies that,

given a user’s query, use it or rework it into another

query, with a supposed intercalary price for the user’s

exploration. We tend to propose a proper definition of

this downside, specifically to visualize the advice of

queries for exploration functions as a recommending

perform A survey of query recommendation techniques

for exploration taking as input: The query log, a specific

query session known as the present session, a user

profile, a instance, associated an expectation perform.

Given these parameters this recommending perform

outputs a group of suggested queries, every with a given

rating indicating the interest of the query for the present

session.

Subsequently, to live similarity between 2 queries, the

query illustration of a vector of URLs in a very

clickthrough bipartite graph [8][9] has been adopted.

even so, despite however giant the query log information

set is, it's doable that the entire search intent of some

queries might not be adequately portrayed by the

obtainable click-through info. for example, in a very

specific large-scale query log, there is also no clicked

address for the query “Honda vs Toyota”. Therefore,

although it's clearly relevant to the query “Honda”, on

the idea of this click-through information, there's no

similarity. Therefore, existing query log information isn't

correct enough for analyzing users’ search intent,

particularly for those queries with none clicked address.

One more reason that causes quality is that the query log

information comprises users’ click-through info in a very

specific amount, whereas search interests may even

modification over time. If we tend to utilize associate

aggregative query logs collected in a very long amount to

check and cluster queries, the accuracy is also wedged.

2. RELATED WORK
Therefore, describing queries solely by content-based

keywords or strictly through click-through knowledge

isn't forever correct for program query clump. During

this paper, our main contribution is to propose a

completely unique query descriptor for scrutiny queries.

this is often supported a key insight – program results

may themselves be wont to establish query similarity;

and so incorporate each content and click on through

info [11][12][13][14]. Supported this, we tend to

additionally outline a replacement similarity metric

which will be utilized in any distance primarily based

clump algorithmic rule. owing to the variety of queries

and therefore the curse of spatiality, current clump

algorithms have high machine price. we tend to

additionally propose AN economical clump algorithmic

rule to scale back machine price. we tend to compare the

query clump results of our approach with many existing

state of the art strategies and show that our algorithmic

rule provides smart cohesion, separation on clustered

queries and considerably reduced runtime.

Query clump has its roots in keywords-based info

retrieval analysis [4]. Since most of the keywords area

unit ambiguous, analyzing the content of query keywords

or phrases by ancient info retrieval techniques has several

limitations. Following that, click-through query logs are

mined to yield similar queries [20]. Beeferman and

Berger [8] 1st introduced the agglomerate clump

methodology to get similar queries mistreatment query

logs however with limitations (noise and little variety of

common clicks). The query clump approach adopted in

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 8, January 2015

34

[21] uses a K-Means clump approach. K-Means

algorithmic rule cannot adapt well in query clump case

owing to the issue on specifying k. Wen et al. [22]

analyzed each query contents and clickthrough bipartite

graph and applied a density-based algorithmic rule

DBSCAN [23] to cluster similar queries. The same as

agglomerate query clump, DBSCAN algorithmic rule

adopted in [22] needs high computation price.

Meanwhile, Wen et al. linearly mix measures on content-

based similarity and cross-references primarily based

similarity however it’s tough to line parameters for linear

combination of 2 similarity metrics. However, our

hierarchical search results knowledge (enforced by

[11][12][13][14]) naturally contemplate each factors.

Moreover, we've got compared the accuracy of our

approach with the geometer distance primarily based

query log clump [10]. Moreover, Kendall’s letter [16]

and a few relevant measures [24] are often effective in

mensuration the accuracy of clustered queries. Since our

most vital contribution is in observant the very fact that

search results are often wont to perform query clump,

they could be effective metrics additionally. However,

since search queries clump may be a acknowledge

exhausting downside, there's no economical algorithmic

rule that has been projected for clump queries with

reference to existing top-k lists scrutiny measures.

Finally, tend to use profile constant to live the cohesion

and separation of query clump results. Larger profile

constant indicates giant inter-cluster distances and little

intra-cluster distances. Davies-Bouldin index [25][26]

seeks identical objective on clump validation. the

excellence between silhouette constant is that –

decreased index generates the simplest clump results.

3. INFORMATION USED FOR

QUERY PROCESS
Although search and browse log knowledge offer nice

opportunities for enhancing internet search, there are

many challenges before such knowledge are often

utilized in varied applications. First, the scale of log

knowledge is sometimes terribly giant. In observe the

scale of search and browse log knowledge at an

exploration engine is usually at the magnitude of tens of

terabytes day after day. Second, log knowledge area unit

quite shouting. For instance, queries could also be issued

by machines for experiments; user input in computer

address boxes could also be redirected to look engines by

internet browsers; and clicks on search result pages could

also be arbitrarily created by users.

To overcome noise and volume, one will combination

raw log knowledge in preprocessing. By summarizing

common patterns in data, the scale of information is often

greatly reduced. Moreover, when aggregation, we tend to

could prune patterns with low frequencies to scale back

noise.

One query is a way to summarize raw log knowledge for

varied log mining tasks. In fact, search and browse log

knowledge have terribly complicated knowledge

structures with varied sorts of knowledge objects and

relationships. the info objects could embody users,

sessions, queries, search result pages, clicks on search

results, and follow-up clicks. These differing types of

information objects kind a hierarchy. At the highest level,

every user incorporates a series of sessions, wherever

every session contains a sequence of queries. In a query,

a user could open many WebPages. Finally, a user could

additional follow the hyperlinks within the WebPages of

search results and browse additional WebPages.

Additionally to the hierarchal relationship between

differing types of information objects, the info objects at

identical level typically kind a successive relationship.

Here, we tend to introduce four sorts of knowledge

account that area unit wide utilized in log mining,

namely, query histograms, click-through bipartite, click

patterns, and session patterns. Among the literature

reviewed during this survey, ninetieth of the papers on

log mining utilized a minimum of one in all the four sorts

of knowledge account.

3.1 Query Bar Graph
A query bar graph represents the quantity of times every

query is submitted to an exploration engine. As shown in

Figure three, query bar graph contains query strings and

their frequencies. As an easy statistics, query bar graph

are often utilized in a good form of applications, like

query motor vehicle completion and query suggestion.

Fig 2. An example of click-through bipartite graph.

In a click-through bipartite graph, nodes represent

queries and URLs, and edges represent click relations

between queries and URLs

3.2 Click-through Bipartite
A click-through bipartite graph, like Figure a pair of,

summarizes click relations between queries and URLs in

searches. The bipartite graph consists of a collection of

query nodes and a collection of computer address nodes.

A query and a computer address area unit connected by a

position if the computer address is clicked by a user once

it's came back as a solution to the query. A weight cij

could also be related to AN edge eij, indicating the full

variety of times URL uj is clicked with reference to

query qi. Click-through bipartite is maybe the foremost

wide used organization in log mining. As we are going to

see within the following sections, it are often used for

query transformation, query classification, document

annotation, and plenty of alternative tasks.

3.3 Click Patterns
Click patterns summarize positions of clicked URLs in

search results of queries. To be specific, every search

result (also called search impression) Iq with respect to

query q are often portrayed by Iq=(q;L), wherever L may

be a list of triples (u,p,c), wherever u is that the universal

resource locator of a page, p is that the position of the

page, and c indicates whether or not the page is clicked.

The identical search results are more collective to 1 click

pattern Pq =(q;L;cc), wherever cc is that the variety of

search results, samples of click patterns. In follow, an

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 8, January 2015

35

inventory L solely includes the highest N URLs.

Compared with a click-through bipartite, click patterns

contain richer info. A click-through bipartite solely

represents collective clicks of URLs, whereas click

patterns more represent the positions of the clicked URLs

furthermore as unclicked URLs. As are going to be seen

within the later sections, click patterns will facilitate

several tasks in search, like classifying steering and

informational queries, learning pairwise document

preference, building ordered click models, and predicting

user satisfaction.

3.4 Session Patterns
Session patterns summarize transitions among queries,

clicks, and browses at intervals search sessions. In fact,

session patterns are often outlined in several ways in

which looking on specific applications. As an example,

sequences of queries as sessions and extract frequent

query sequences as session patterns. In different cases,

session patterns might involve not solely queries

however additionally clicked URLs. as an example,

outlined session patterns supported sequences of queries

and their clicked URLs. Since session patterns represent

users’ search behaviors in an exceedingly additional

precise means, it's been used extensively. As are going to

be seen later, session patterns are wide utilized in tasks

like query transformation, document ranking, and user

satisfaction prediction.

4. QUERY SIMILARITIES FOR

SEARCH LOGS
We currently develop the machinery to outline the query

connection supported internet search logs. Our live of

connection is geared toward capturing two necessary

properties of relevant queries, namely:

1) Queries that regularly seem along as

reformulations and

2) Queries that have evoked the users to click on

similar sets of pages.

4.1 Search Behaviour
We derive three kinds of graphs from the search logs of

an advert computer programmed. The query

reformulation graph, QRG, represents the connection

between a combine of queries that area unit doubtless

reformulations of every different. The query click graph,

QCG, represents the connection between 2 queries that

regularly cause clicks on similar URLs. The query fusion

graph, QFG, merges the data within the previous 2

graphs. All 3 graphs area unit outlined over a similar set

of vertices VQ, consisting of queries that seem in a

minimum of one among the graphs, however their edges

area unit outlined otherwise.

4.1.1 Query Reformulation Similarity
One way to spot relevant queries is to think about query

reformulations that area unit usually found inside the

query logs of an exploration engine. If two queries that

area unit issued consecutively by several users occur

oftentimes enough, they're doubtless to be reformulations

of every different. to live the connection between two

queries issued by a user, the time-based metric, simtime,

makes use of the interval between the timestamps of the

queries inside the user’s search history. In distinction,

our approach is outlined by the applied math frequency

with that two queries seem next to every different within

the entire query log, over all of the users of the system.

To this end, based on the query logs, we construct the

query reformulation Similarity, QRS=(VQ,EQR), whose

set of edges, EQR, are constructed as follows: for each

query pair (qi,qj), where qi is issued before qj within a

user’s day of activity, we count the number of such

occurrences across all users’ daily activities in the query

logs, denoted countr(qi,qj). Assuming infrequent query

pairs are not good reformulations of each other, we filter

out infrequent pairs and include only the query pairs

whose counts exceed a threshold value,r. For each (qi, qj)

with countr(qi, qj)>=Tr, we add a directed edge from qi

to qj to EQR. The edge weight, wr(qi,qj), is defined as

the normalized count of the query transitions

wr qi , qj =
countr qi , qj

 count(qiqk)(q i ,qk)ϵεQR

4.1.2 Query Top-K search Similarity
The key procedure for clustering queries is measuring the

similarity or distance between all queries. Since the top-

klist along with the weight sequence Ωgives a topk

ranked list, we could use theKendall’s tau [38] as the

underlying distance metric. However, Kendall’s tau is

not that effective if the top-klists have little overlap,

which is quite often for search engine query URL lists.

Additionally, scalability is an essential concern for search

engine query clustering. Computing Kendall’s tau is not

very efficient in large number of top-k lists’

comparisons, which is necessary in clustering queries. To

improve this, we propose a new similarity measure for

comparing top-k lists. With top-k lists, the similarity

between two different queries qx and qy can be measured

through their two sorted URL sets Lqx (k) and Lqy (k).

First, we identify the common URLs in Lqx (k) and Lqy

(k). Since the maximum number of common URLs is

limited tok, we denote these common URLs as{∀di

∈Lqx (k)∩Lqy (k) wherei ∈[1,m] and m≤k}. However,

simply comparing the two lists through their common

URLs such as by using the Jaccard coefficient [38], or

Euclidean distance is not sufficiently accurate. The

similarity between two queries is determined not only in

terms of the number of common URLs, but also

according to the ranks of each common URL in two top-

k lists. For instance, “Apple” and “Apples” have many

common URLs in the search results. If we do not

consider the influence resulting from the positions of

each URL, the similarity between these two queries

might be very large. However, the first few URLs of

“Apple” are related to “Apple Inc.” and fruit related

URLs are ranked not so high, whereas the search results

of “Apples” have an inverse order of these two meanings.

Actually, they are two totally different searches. Hence,

the ranks of the same URL in both queries’ topk lists

impact the precision of the similarity as well. As

illustrated in Section II-A, a common URL in Lqx(k) and

Lqy(k)should have different relevance weight according

to their ranks. Hence, our similarity measure should

consider two factors: the relevance weight in two top-k

lists and the “rank transition” (the rank difference in two

queries’ top k lists). We thus define the Transition

Similarity between two queries qx and qy as follows:

(1)

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 8, January 2015

36

Here, m is the number of common URLs in Lqx (k)and

Lqy (k), rx (i) and ry (i) represent the rank of common

URL di in Lqx(k) and Lqy (k), respectively, and

|rx(i)−ry(i)| denotes the rank difference of di.

Since|rx(i)−ry(i)| might be0, and has an anti-monotonic

relationship with the similarity, we use the inverse value

of|rx(i)−ry(i)|+1to measure the similarity w.r.t. rank

difference.

4.1.3 Text Similarity
On a different note, we may assume that two query

groups are similar if their queries are textually similar.

Textual similarity between two sets of words can be

measured by metrics such as the fraction of overlapping

words or characters. We can thus define the following

two text based relevance metrics that can be used in place

of sim.

Simtext(sc,si) is defined as the fraction of common

words between qc and qi as follows:

4.2 Final Query Similarity
The Final Query Similarity, the query click graph

calculated by reformation similarity, top-k search

similarity and text similarity. As follows:

wf qi , qj = a × wr qi , qj +b × wc qi , qj

+ c × wtxt qi , qj

The relative contribution of the two weights is controlled

by a, and we denote a query final similarity constructed

with a particular value of a, b and c such as a+b+c =1 for

FQS.

4.3 Proposed Algorithm
Fig 3 explains proposed work flowchart and overall

proposed algorithm in sequential manner may be given as

follow.

Algorithm for Search Engine Query Clustering Using

SOM

Input:

The queries Dataset containing the current query id, time,

rank and click urls.

A set of existing query groups S={s1,…., sm}

A similarity threshold th, 0<th<1

Output: The query group s that best matches Sc, or a new

one if necessary

Step 1: Set the initial parameters

Let the users, S={s1, s2, s3, ….., sn}

Current query and clicks, {qc,clkc}.

Weight of query Time Similarity =wr

Weight of Query Top-K=wc

Weight of Text similarity graph=wtxt

a =0.33, b =0.33, c= 0.33

Step 2: load Query log data set.

Step 3: Feature Extraction of time , query click , URLs

etc .

Simtime(sc,si)=1/time (qc)-time(qi)

Step 4: Creation of Query Reformulation similarity.

Weight is calculated as

{

wr qi , qj =
countr qi , qj

 count(qiqk)(q i ,qk)ϵεQR

Step 5: Creation of Query Top-K by click url.

Weight is calculated as

wc qi , qj =
 min(countc qi , uk , countc qj , uk)uk

 countc qj , uk uk

Step 6: Creation of Text similarity

Weight is calculated as

wtxt qi , qj =
words(qi) ∩words(qj)

words(qi) ∪words(qj)

Step 7: Calculate the weights for final similarity

wf qi , qj = a × wr qi , qj +b × wc qi , qj

+ c × wtxt qi , qj

}

Step 8: this similarity matrix passed to SOM tool for k-

means clustering, clustering method results output

similar query groups as one cluster.

Step 9: Get the final groups accuracy and comparison.

Start

Feature Extraction (Time,

Click URLs, etc.)

Creation Time Similarity

(Wr)

Creation Top-K url Similarity

(Wc)

Creation Text similarity

(Wtxt)

Final Similarity Calculate

(Wf=a*Wr+b*Wc+y*Wtxt)

SOM

clustered

put in same group

Load Query Log

Dataset

Output Group of

similar queries

Similarity Matrix passed for

clustering

Yes

No

Stop

Fig 3. Proposed work flow diagram

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 8, January 2015

37

5. EXPERIMENT RESULTS
In this section, we study the behavior and performance of

our algorithms on partitioning a user’s query history into

one or more groups of related queries. For example, for

the sequence of queries “caribbean cruise”; “bank of

america”; “expedia”; “financial statement”, we would

expect two output partitions: first, {“caribbean cruise,”

“expedia”} pertaining to travel-related queries, and,

second, {“bank of america,” “financial statement”}

pertaining to money-related queries.

5.1 Dataset
To this finish, we tend to obtained the query

reformulation and query click graphs by merging variety

of monthly search logs from a billboard computer

program. every monthly photo of the query log adds

around twenty four % new nodes and edges within the

graph compared to the specifically preceding monthly

photo, whereas around ninety two % of the mass of the

graph is obtained by merging 9 monthly snapshots. to cut

back the result of noise and outliers, we tend to cropped

the query reformulation graph by keeping solely query

pairs that appeared a minimum of double (Tq ¼2), and

therefore the query click graph by keeping solely query-

click edges that had a minimum of ten clicks (Tc ¼10).

In order to make check cases for our algorithms, we tend

to used the search activity (comprising a minimum of 2

queries) of a collection of two hundred users (henceforth

known as theRand200data set) from our search log. to get

this set, users were picked every which way from our

logs, associated 2 human labelers examined their queries

and appointed them to either an existing group or a brand

new group if the labelers deemed that no connected

group was gift. A user’s queries were enclosed in

theRand200 knowledge set if each labelers were in

agreement so as to cut back bias and subjectiveness

whereas grouping. The labelers were allowed access to

the online so as to see if 2 ostensibly distant queries were

truly connected (e.g., “dainik bhaskar ” and “star news”).

the common variety of groups within the knowledge set

was three.84 with thirty % of the users having queries

classified in additional than three groups.

5.2 Performance Metric
To measure the standard of the output groupings, for

every user, we tend to begin by computing query pairs

within the labeled and output groupings. Two queries

kind a try if they belong to an equivalent cluster, with

lone queries pairing with a special “null” question. To

judge the performance of our algorithms against the

groupings made by the labelers, we'll use the Rand Index

[35][39] metric, that could be a ordinarily used live of

similarity between 2 partitions. The Rand Index

similarity between 2 partitions X,Y of n components

every is outlined as RandIndex(X,Y)=(a+b)/n, wherever

a is that the range of pairs that square measure within the

same set in X and also the same set in Y, and b is that the

range of pairs that square measure in several sets in x and

in several sets in Y. Higher RandIndex values indicate

higher ability of grouping connected queries along for a

given formula. Our formula to realize the most effective

performance onRand200 supported the RandIndex

metric. We tend to follow an equivalent approach for the

baselines that we tend to enforced also. We’ll

additionally appraise the approaches on further take a

look at sets (Lo100, Me100, and Hi100). to achieve a live

of usage data for a given user, we glance at the common

outdegree of the user’s queries (average outdegree), also

because the average counts among the outgoing links

(average weight) within the query reformulation graph.

so as to check the results of usage data on the

performance of our algorithms, we tend to created 3

further take a look at sets of a hundred users every. The

sets we tend tore additionally manually labeled as we

delineated. The primary set, Lo100contains the search

activity of a hundred users, with average out-degree < 5.

Similarly, Me100 contains user activity for users having

out-degree >5 but <10 end Hi100 having out-degree >10.

Based on these information sets, we tend to judge once

more the performance of our algorithms and that we

show the ends up in rock bottom 3 lines of Table one. As

we will see from the table, for QFG, subsets with higher

usage info conjointly tend to own higher RandIndex

values [39][40][41]. Hi100 (RandIndex=0.89) performs

higher than Me100(RandIndex=0.947), that successively

outperforms Lo100(RandIndex=1.0). ATSP shows the

same trend (higher usage shows higher performance) and

it outperforms QFG at the Lo100data set. CoR’s

performance is additional or less similar for the various

information sets that is anticipated because it doesn't use

the graphs directly. For Jaccard, it's best once the

property round the queries among a user’s session is

comparatively low. We tend to don't observe any

important distinction within the performance of the

opposite baselines (Time and Levenshte in) in these new

information sets.

TABLE 2. Comparative Performance of Our

Methods

 Levensh

tein

Jaccar

d

CoR ATS

P

QFG Propos

ed

Rand200 0.721 0.750 0.807 0.831 0.860 0.867

Lo100 0.732 0.762 0.794 0.832 0.821 1.000

Me100 0.712 0.748 0.802 0.857 0.868 0.947

Hi100 0.729 0.742 0.809 0.871 0.882 0.890

Fig 4 Comparative Performance (RandIndex) of Our

Methods

Figure 4 and table 2 show comparative analyses between

proposed work and various methods. Figures 4 shows

result comparison of performance metric for Rand2oo

dataset with other existing algorithms and its verifies that

0.8

0.85

0.9

0.95

1

Rand200 Lo100 Me100 Hi100

A
cc

u
ra

cy
 (

%
)

Datasets

Performance Comparison

ATSP QFG Proposed

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 8, January 2015

38

proposed method outperformed better than others.

Proposed method implemented reformation graph, click

graph as well as association query information, hence

Gives better results. The proposed method also compare

with other dataset low100, mid100 and hi100 dataset as

explain above for all dataset proposed method gives high

performance index for grouping queries.

6. CONCLUSION
The final similarity between any two queries is calculated

by taking advantages of text similarity, time similarity

and clicked urls similarity. Hence lots of hidden relation

between two queries can be determining by proposed

method which is very help to clustering queries

efficiently. This paper show how this hidden information

may use for clustering users’ search log effectively and

used for their recommendation system. This method may

be useful for search engine optimization and may be

applying for web based clustering approaches. This work

may extend in future research such as document

clustering, image clustering, and web page

recommendation. This work is only limited to query

recommendation which may be extends till document

and other file type recommendation by combining other

similarity methods like cosine similarity or any other

supervised learning.

7. REFERENCES
[1] Dr. G. K. Gupta, “Introduction to Data Mining with

Case Studies”, PHI Publication, 2005.

[2] Jaideep Srivastava, Robert Cooley, Mukund

Deshpande, Pang-Ning Tan, “Web Usage Mining:

Discovery and Applications of Usage Patterns from

Web Data”, SIGKDD Explorations, Vol. 1, No. 2,

2000, Page 12-23.

[3] Adel T. Rahmani and B. Hoda Helmi, “EIN-WUM

an AIS-based Algorithm for Web Usage Mining”,

Proceedings of GECCO’08, Atlanta, Georgia, USA,

ACM978-1-60558-130-9/08/07, 2008, Pp. 291-292.

[4] Shailey Minocha, Nicola Millard, Lisa Dawson,

“Integrating Customer Relationship Management

Strategies in (B2C) E-Commerce Environments”,

IFIP Conference on Human-Computer Interaction-

INTERACT, 2003.

[5] C. Ramya, G. Kavitha, K. S. Shreedhara,

“Preprocessing: A Prerequisite for Discovering

Patterns in Web Usage Mining Process”, Computing

Research Repository - CORR, vol. abs/1105.0,

2011.

[6] V. Chitraa, Antony Selvdoss Davamani, “A Survey

on Preprocessing Methods for Web Usage Data”,

Computing Research Repository-CORR, Vol.

abs/1004.1, 2010. Nizar R. Mabroukeh, Christie I.

Ezeife, “A taxonomy of sequential pattern mining

algorithms”, ACM Computing Surveys - CSUR,

Vol. 43, No. 1, 2010, Pp. 1-41.

[7] Francesco Moscato, Nicola Mazzocca, Valeria

Vittorini, Giusy Di Lorenzo, Paola Mosca, Massimo

Magaldi, “Workflow Pattern Analysis in Web

Services”, High Performance Computing and

Communications - HPCC, 2005, Pp. 395-400.

[8] Heasoo Hwang, Hady W. Lauw, Lise Getoor, and

Alexandros Ntoulas, “Organizing User Search

Histories”, IEEE Transactions On Knowledge And

Data Engineering, Vol. 24, NO. 5, IEEE, 2012, Page

912-925.

[9] R. Jones and K.L. Klinkner, “Beyond the Session

Timeout: Automatic Hierarchical Segmentation of

Search Topics in Query Logs,” Proc. 17th ACM

Conf. Information and Knowledge Management

(CIKM), 2008.

[10] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A.

Gionis, and S. Vigna, “The Query-Flow Graph:

Model and Applications,” Proc. 17th ACM Conf.

Information and Knowledge Management (CIKM),

2008.

[11] P. Anick, “Using Terminological Feedback for Web

Search Refinement: A Log-Based Study,” Proc.

26th Ann. Int’l ACM SIGIR Conf. Research and

Development in Information Retrieval, 2003.

[12] B.J. Jansen, A. Spink, C. Blakely, and S. Koshman,

“Defining a Session on Web Search Engines:

Research Articles,” J. the Am. Soc. for Information

Science and Technology, vol. 58, no. 6, pp. 862-

871, 2007.

[13] L.D. Catledge and J.E. Pitkow, “Characterizing

Browsing Strategies in the World-Wide Web,”

Computer Networks and ISDN Systems, vol. 27, no.

6, 1995, pp. 1065-1073.

[14] D. He, A. Goker, and D.J. Harper, “Combining

Evidence for Automatic Web Session

Identification,” Information Processing and

Management, vol. 38, no. 5, 2002, pp. 727-742.

[15] R. Jones and F. Diaz, “Temporal Profiles of

Queries,” ACM Trans. Information Systems, vol.

25, no. 3, 2007, p. 14.

[16] A.L. Montgomery and C. Faloutsos, “Identifying

Web Browsing Trends and Patterns,” Computer,

vol. 34, no. 7, July 2001, pp. 94-95.

[17] C. Silverstein, H. Marais, M. Henzinger, and M.

Moricz, “Analysis of a Very Large Web Search

Engine Query Log,” SIGIR Forum, vol. 33, no. 1,

1999, pp. 6-12.

[18] H.C. Ozmutlu and F. C¸ avdur, “Application of

Automatic Topic Identification on Excite Web

Search Engine Data Logs,” Information Processing

and Management, vol. 41, no. 5, 2005, pp. 1243-

1262.

[19] T. Lau and E. Horvitz, “Patterns of Search:

Analyzing and Modeling Web Query Refinement,”

Proc. Seventh Int’l Conf. User Modeling (UM),

1999.

[20] F. Radlinski and T. Joachims, “Query Chains:

Learning to Rank from Implicit Feedback,” Proc.

ACM Conf. Knowledge Discovery and Data Mining

(KDD), 2005.

[21] J. Yi and F. Maghoul, “Query Clustering Using

Click-through Graph,” Proc. the 18th Int’l Conf.

World Wide Web (WWW ’09), 2009.

[22] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy,

“Clustering Query Refinements by User Intent,”

International Journal of Computer Applications (0975 – 8887)

Volume 109 – No. 8, January 2015

39

Proc. the 19th Int’l Conf. World Wide Web (WWW

’10), 2010.

[23] T. Radecki, “Output Ranking Methodology for

Document- Clustering-Based Boolean Retrieval

Systems,” Proc. Eighth Ann. Int’l ACM SIGIR

Conf. Research and Development in Information

Retrieval, 1985, pp. 70-76.

[24] V.R. Lesser, “A Modified Two-Level Search

Algorithm Using Request Clustering,” Report No.

ISR-11 to the Nat’l Science Foundation, Section 7,

Dept. of Computer Science, Cornell Univ., 1966.

[25] R. Baeza-Yates, “Graphs from Search Engine

Queries,” Proc. 33rd Conf. Current Trends in

Theory and Practice of Computer Science

(SOFSEM), vol. 4362, pp. 1-8, 2007.

[26] K. Collins-Thompson and J. Callan, “Query

Expansion Using Random Walk Models,” Proc.

14th ACM Int’l Conf. Information and Knowledge

Management (CIKM), 2005.

[27] N. Craswell and M. Szummer, “Random Walks on

the Click Graph,” Proc. 30th Ann. Int’l ACM SIGIR

Conf. Research and Development in Information

Retrieval (SIGIR ’07), 2007.

[28] Spink, M. Park, B.J. Jansen, and J. Pedersen,

“Multitasking during Web Search sessions,”

Information Processing and Management, vol. 42,

no. 1, pp. 264-275, 2006

[29] D. Beeferman and A. Berger, “Agglomerative

Clustering of a Search Engine Query Log,” Proc.

Sixth ACM SIGKDD Int’l Conf. Knowledge

Discovery and Data Mining (KDD), 2000.

[30] R. Baeza-Yates and A. Tiberi, “Extracting Semantic

Relations from Query Logs,” Proc. 13th ACM

SIGKDD Int’l Conf. Knowledge Discovery and

Data Mining (KDD), 2007.

[31] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A.

Gionis, and S. Vigna, “The Query-Flow Graph:

Model and Applications,” Proc. 17th ACM Conf.

Information and Knowledge Management

(CIKM),2008

[32] Lecture Notes in Data Mining,M. Berry, and M.

Browne, eds. World Scientific Publishing Company,

2006.

[33] V.I. Levenshtein, “Binary Codes Capable of

Correcting Deletions, Insertions and

Reversals,”Soviet Physics Doklady,vol. 10, pp. 707-

710, 1966

[34] Fuxman, P. Tsaparas, K. Achan, and R. Agrawal,

“Using the Wisdom of the Crowds for Keyword

Generation” Proc. the 17th Int’l Conf. World Wide

Web (WWW ’08),2008.

[35] W.M. Rand, “Objective Criteria for the Evaluation

of Clustering Methods” J. the Am. Statistical

Assoc.,vol. 66, no. 336, pp. 846-850, 1971.

[36] Spink, M. Park, B.J. Jansen, and J. Pedersen,

“Multitasking during Web Search

Sessions,”Information Processing and Manage-

ment,vol. 42, no. 1, pp. 264-275, 2006.

[37] R. Baeza-Yates and A. Tiberi, “Extracting Semantic

Relations from Query Logs,”Proc. 13th ACM

SIGKDD Int’l Conf. Knowledge Discovery and

Data Mining (KDD),2007.

[38] Yuan Hong, Jaideep Vaidya and Haibing Lu,

“Search Engine Query Clustering using Top-k

Search Results”, IEEE/WIC/ACM International

Conferences on Web Intelligence and Intelligent

Agent Technology, IEEE, 2011.

[39] Tahira Tabassum, Amit Dubey, “User Search Query

Grouping using Association Fusion Graph”,

International Journal of Advanced Research in

Computer Science and Software Engineering, Page

259-267, Volume 4, Issue 4, April 2014.

[40] Heasoo Hwang, Hady W. Lauw, Lise Getoor,

Alexandros Ntoulas, "Organizing User Search

Histories", IEEE Transactions on Knowledge &

Data Engineering, vol.24, no. 5, pp. 912-925, May

2012.

[41] J. Re.ddy Susmitha & K. Srinivasa Rao,

“Systematize Online Query Search With

Application Interface”, IJAEA, Vol-3 Issue-1, PP

13-17, 2010.

IJCATM : www.ijcaonline.org

