
International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 1, December 2014

25

Web Application Vulnerabilities: A Survey

Vandana Dwivedi
PG Scholar, CSE.

RITS, Bhopal (India)

Himanshu Yadav
Asst. Prof., CSE dept.
RITS, Bhopal (India)

Anurag Jain
HOD (CS)

RITS, Bhopal (India)

ABSTRACT
In the last few years, the discovery of World Wide Web

(WWW) has grown very much. Today, WWW applications are

routinely utilized in security critical environments, like e-

commerce, medical, financial, and military systems etc. WWW

systems are an organization of infrastructure elements, like web

databases and servers, and application-specific code, such as

HTML scripts and CGI programs etc. While the core elements

are usually developed by knowledgeable programmers with

valid security skills this ensuing vulnerable web-based

applications and accessible to the complete web, creating easily-

abusing access points for the conciliation of entire networks.

During this paper, we survey the current approaches to internet

vulnerability analysis and that we propose a classification along

two characterizing: detection and prevention model and study

these methods. Furthermore we describe the foremost regular

attacks in contrast to web-based applications and explore the

effectiveness of sure analysis techniques in characteristic

specific categories of flaws.

Keywords
Web applications security, SQL injection, Cross-side scripting,

Cross-site request forgery, vulnerabilities

1. INTRODUCTION
In the recent years, the globe Wide internet (WWW) has

witnessed a staggering growth of the many on-line internet

applications that are developed for meeting numerous purposes.

Now-a-days, nearly everybody connected with „computer

technology‟ is somehow connected on-line. To serve this

immense variety of users, nice volumes of knowledge are stored

in internet application databases in several components. Timely,

the consumer should move with the backend databases via the

user interfaces for various tasks such as: modification

information, making queries, extracting information, etc. For

these operations, vogue interface plays an important role, the

quality of that features a pleasant impact on the protection of the

keep information inside the knowledge. An unsecure web

application might enable crafted injection and malicious update

on the backend information. This trend will cause numerous

damages and thefts of trustworthy users‟ sensitive knowledge by

unauthorized users. Within the worst case, the assaulter might

gain full management over the net application and entirely

destroy or damage the system.

SQL Injection may be a kind of injection or attack in an

exceedingly internet application, during which the aggressor

provides structured question Language (SQL) code to a user

input box of an online type to gain unauthorized and unlimited

access. The attacker‟s input is transmitted into associate degree

SQL question in such the way that it forms an SQL code [1], [2].

In fact, SQL Injection is classified as the top-10 2010 net

application vulnerabilities experienced by net applications

consistent with OWASP (Open net Application Security Project)

[3].

SQL Injection Vulnerabilities (SQLIV‟s) unlocks entrance for

hackers to explore and attack. Hence, they show a severe hazard

for net application components. Main concept of SQLIVs is sort

of straightforward and well known insufficient validation of user

input [1].

To overcome from such kind of vulnerabilities, several

techniques are suggested like manual approach, machine-

controlled approach; secure secret writing practices, static

analysis, exploitation ready statements, and then forth. Though,

planned approaches have achieved their goals to some extent,

SQL Injection Vulnerabilities in net applications stay as a

significant concern among application developers.

Web applications

The business logic of an internet application is enforced at an

internet server and a backend server, and publicised by a

uniform resource locator (URL). The internet server is

understood by its name. The most infrastructure part on the

consumer aspect is that the browser, that has no name apart from

the client‟s IP address. Browser and server communicate via a

transport protocol. A transport protocol defines data formats,

additionally conjointly algorithms for packaging and unpacking

application payloads. Fig. 1 shows the fundamental architecture

of information flow in a web application. The transport protocol

is HTTP; the info format is hypertext mark-up language

(HTML) and Cascading style Sheets (CSS). The user calls AN

application by clicking on its URL. The client‟s browser then

sends a communications protocol request to the net server. A

script at the net server extracts input from the consumer

knowledge and constructs a request to a backend application

server, e.g. AN SQL query to a database. The web server

receives the result from the backend server and returns a

hypertext mark-up language (HTML) result page to the

consumer. The client‟s browser displays the result page. To

show a page, the browser creates an interior representation for it.

 HTTP request

 H

TML & CSS Data

Fig. 1: Architecture of Web Application

Client side http

Browser

Server side

Web

Server

Backend
Server/
Database

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 1, December 2014

26

This representation is that the supposed Domain Object Model

(DOM) [4]. Once the browser receives a hypertext mark-up

language (HTML) page it parses the hypertext mark-up

language into the document. Body of the DOM. Objects like

document, URL, document location, and document referrer get

their values consistent with the browser‟s read of the present

page.

After this primary information, the remains of the paper are

structured as follows: Section 2, describe types of the

vulnerabilities and attacks in web application. Section 3 presents

classification foremost common SQL Injection attacks. Section

4 notes down literature survey related to SQLIA, Section 5 notes

down the accessible countermeasures to tackle varied SQL

Injection attacks and a comparative analysis of varied attacks

and schemes, section 6 states detailed research scope and at last,

Section 7 concludes the paper noting the contribution of this

work aboard mentioning future analysis objectives.

2. VULNERABILITIES IN WEB

APPLICATION

In general, there are three kinds of security vulnerabilities

among web applications at completely different levels: (1) input

validation vulnerability at the single request level, (2) session

management vulnerability at the session level, and (3)

application logic vulnerability at the extent of the whole

application. In what follows, description of the above three

kinds of vulnerabilities are presented and the common attacks

that exploit these vulnerabilities.

2.1 Input Validation Vulnerabilities
A common security observes is input data validation, since user

input data can't be trusty. Data validation is that the method of

guaranteeing that a program operates on clean, correct and

helpful input data. Once inputs don't seem to be sufficiently or

properly valid, attackers are ready to craft distorted inputs,

which might alter program executions and gain unauthorized

access to resources. Input validation vulnerability may be a

durable drawback in software system security. Incorrect or

depleted input validation may invite a range of attacks, like

buffer overflow attacks and code injection attacks. Web

applications might contain a large vary of input validation

vulnerabilities. Since the whole web request, as well as request

headers and payload data, is beneath the entire management of

users, a web application must make sure that user inputs are

processed and utilized in a very secure manner throughout the

execution.

SQLI (SQL Injection):- SQL Injection is a code

injection technique where attacker injects malicious

code in to strings that are later passed to SQL server

for execution. A web application is at risk of SQL

injection attacks once malicious content will flow into

SQL queries while not being absolutely sanitized, that

permits the offender to trigger malicious SQL

operations by injecting SQL keywords or operators.

For example, the offender will append a separate SQL

query to the present query, causing the application to

drop the complete table or manipulate the comeback

result. Malicious SQL statements may be introduced

into a vulnerable application victimization many

various input mechanisms [1] as well as user inputs,

cookies and server variables

Cross-site Scripting (XSS): vulnerabilities arise from

associate application‟s failure to properly validate user input

before it's came to a user. Mistreatment this vulnerability,

associate offender will force a consumer, like a user application,

to execute attacker-supplied code, like JavaScript, within the

context of a trusty computing machine [5]. As a result, the

attacker‟s code is granted access to security-critical data that

was issued by (or is associated with) the trusty website.

2.2 Session Management Vulnerabilities
Session management is essential for a web application to keep

track of user inputs and maintain application states. Within the

OWASP top-ten security risks [3], three are related to session

management vulnerabilities: (1) Broken Authentication and

Session Management, (2) Cross-Site Request Forgery and (3)

Insufficient Transport Layer Protection.

In web application development, session management is

accomplished through the collaboration between the client and

the server. A common approach is that the server sends the

client a unique identifier (i.e., a session ID) upon successful user

authentication, through which the server recognizes the client on

subsequent requests and indexes his session variables stored at

the server side. Since session ID is the only proof of the client‟s

identity, its confidentiality, integrity and authenticity need to be

ensured to avoid session hijacking.

First, the session ID should be random for each client‟s visit and

expire after a short period of inactivity. Weak session identifier

generation allows attackers to hijack the victim‟s web sessions

by predicting his session ID. Second, transmission of the session

ID should always be protected by a secure transport layer

protocol (i.e., over SSL). Otherwise, attackers are able to sniff

the session ID and hijack the session. Third, the client needs to

make sure that his session ID is provided by the server and is

unique. Adopting a session ID from an external source opens up

a vulnerability to session fixation, where attackers can set the

session ID to a value that is known to them.

Securing the session ID alone is not sufficient for secure session

management. Session hijacking can also be achieved through

malicious web requests that are associated with a valid session

ID. Cross-site request forgery (CSRF) is a popular attack of this

type, where attackers trick the victim into sending crafted web

requests on their behalf. The vulnerable web application cannot

differentiate if the incoming web requests are malicious, since

they are associated with valid session information. For example,

attackers may forge a web request that instructs a vulnerable

banking website to transfer the victim‟s money to his account.

Login CSRF [6], on the other hand, tricks the victim into

logging in to a target website using the attacker‟s credential

through a forged request. This attack allows the attacker to

harvest the information about the victim‟s activities under the

attacker‟s account.

2.3 Application Logic Vulnerabilities
The decentralized structure of web applications poses significant

challenges to the implementation of business logic. First, since

web application modules can be accessed directly through their

URLs, interface hiding mechanism has been commonly used as

a measure for access control in web applications. However, this

mechanism alone, which follows then principle of “security by

obscurity”, is not sufficient to enforce the control flow of a web

application. Application logic vulnerabilities are highly

dependent on the intended functionality of a web application.

For example, a vulnerable e-commerce website may have a

specific logic vulnerability that allows attackers to apply the

same coupon multiple times to reduce prices. Despite the

heterogeneous application functionalities, there are several types

of logic flaws that correspond to common business logic

patterns in many applications.

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 1, December 2014

27

One common type is access control vulnerability, which allows

attackers to access unauthorized sensitive information or

operations. Another type is workflow violation, which allows

attackers to violate the intended steps within business

workflows. For example, a vulnerable e-commerce website may

allow attackers to bypass the tax calculation step during the

checkout procedure.

The class of attacks that target application logic vulnerabilities

are generally referred to as logic attacks or state violation attacks

Depending on how attacks are launched, they can be given

several other terms. Forceful browsing [7] is one attack vector,

where attackers directly point to hidden but predictable web

links to access sensitive information. Parameter tampering [8] is

launched by manipulating certain values in web requests to

exploit application logic.

3. TYPES OF SQL INJECTION

ATTACKS

Among numerous forms of SQLI attacks, some are often utilized

by the attackers. It's imperative to understand the normally used

major attacks among all out there attacks. Hence, during this

section, an in-depth explanation is presented to investigate a

number of the foremost common SQL Injection attacks.

3.1 Tautology
SQL injection codes are injected into one or more conditional

statements so that they are always evaluated to be true.This type

of attack injects SQL tokens to the conditional query statement

to be evaluated always true.

SELECT*FROM member WHERE member_username =’ ‘ OR

1=1 – AND member_password =’‘

In the above query, 1=1 always true and if the application not

validates the user input properly then all the records from the

database will be fetched to the application. Under this technique,

the following types and scenarios of attacks may be occurs:

 String SQL Injection

 Comments Attack

 Numeric SQL Injection

3.2 Illegal/Logically Incorrect Queries
The purpose of this attack is to understand the database

properties. When this type of query is executed on the database

it displays an error messages. By proper understanding and

analyzing of this error the attacker will identify the backend

DBMS details. Using error messages rejected by the database to

find useful data facilitating injection of the backend database

 SELECT name FROM account WHERE

member_password=’1\’

3.2 Union Query
Injected query is joined with a safe query using the keyword

UNION in order to get information related to other tables from

the application.This attack uses the union operator which

performs unions between two or more queries.

SELECT * FROM members WHERE

member_username=’user123’ UNION SELECT*FROM

member WHERE member_username=’admin’—AND

member_password=’ ’

3.3 Piggy-Backed Queries
In this type of attacks, attacker appends an extra query to the

original query.

3.4 Stored Procedures
Many databases have built-in stored procedures. The attacker

executes these built-in functions using malicious SQL Injection

codes. A stored procedure is a group of Transact-SQL

statements compiled into a single execution plan. Depend on

specific stored procedure on the database there are different

kinds of attack. A stored procedure example is given in the

following.

CREATE PROCEDURE

authenticateUser (IN username VARCHAR (16), IN password

VARCHAR (32))

BEGIN

SELECT * FROM members WHERE member_username =

username AND member_password = password;

END

Above stored procedure is also vulnerable to both the

tautologies and piggybacked queries.

3.5 Inference
In this type of attack, the attacker observes the behaviour of web

application based on a series of true/false questions and timing

delays. By careful observing the behaviour of application the

attacker identifies the vulnerable parameters in the application.

These attacks are composed of two types: blind Injection and

timing attacks, in the former one the attacker issues true/false

type of questions to the database and latter one attacker gather

information from a database by observing in the timing-delays

in the database responses.

3.6 Alternate Encodings
It targets to avoid being known by secure defensive coding and

automatic prevention mechanisms. It‟s sometimes combined

with different attack techniques. During this technique, attackers

modify the injection query by victimization alternate encoding,

like hexadecimal, ASCII, and Unicode. As a result they will

throw off developer's filter that scans input queries for special

known "bad character".

4. LITERATURE SURVEY
Many techniques have been used or suggested to detecting and

preventing SQL Injection Vulnerabilities in Web applications.

Here, explanation of the prominent solutions and their working

methods is presented in brief to let the readers know about the

core ideas behind each work.

A tool named WebSSARI [9], revealed in 2004, and is one in

every of the primary works that applies static taint propagation

analysis to finding security vulnerabilities in PHP applications.

WebSSARI targets three specific varieties of vulnerabilities:

cross-site scripting, SQL injection, and general script injection.

The tool uses flow-sensitive, intra-procedural analysis supported

a lattice model and sort state. Above all, the PHP language is

extended with 2 type-qualifiers, specifically tainted and

unblemished, and therefore the tool keeps track of the type-state

of variables. The tool uses 3 user-provided files, known as

prelude files: a file with preconditions to any or all sensitive

functions (i.e., the sinks), a file with post conditions for

acknowledged cleansing functions, and a file specifying all

attainable sources of entrusted input. So as to undamaged the

contaminated information, the information needs to be processed

by a cleansing routine or to be forged to a secure kind. Once the

tool determines that tainted information reaches sensitive

functions, it mechanically inserts runtime guards, that area unit

cleansing routines.

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 1, December 2014

28

Another approach together supported static taint propagation

analysis, to the detection of input validation vulnerabilities in

PHP applications is described in [10, 11]. A flow sensitive,

inter-procedural and context-sensitive info flow analysis is used

to identify intra-module XSS and SQL injection vulnerabilities.

The approach is enforced during a very tool, referred to as Pixy

that's that the foremost complete static PHP analyzer in terms of

the PHP choices shapely. To the only information, it is the sole

publicly-available tool for the analysis of PHP-based

applications.

The work by [12], describes a three-level approach to look out

SQL injection vulnerabilities in PHP applications. First,

symbolic execution is used to model the impact of statements

among the basic blocks of intra-procedural management Flow

Graphs (IFGs). Then, the following block define is used for intra

procedural analysis, where a typical reach ability analysis is

used to induce perform define. In conjunction with different

information, each block define contains a bunch of locations that

were undamaged among the given block. The block summaries

area unit composed to return up with perform define, that

contains the pre- and post-conditions of perform. The

preconditions for perform contain a derived set of memory

locations that ought to be compelled to be alter before the

perform invocation, whereas the post conditions contain the set

of parameters and international variables that area unit alter

among perform. To model the results of cleansing routines, the

approach uses a programmer-provided set of possible cleansing

routines, considers certain forms of casting as a cleansing

technique, and, in addition, it keeps info of sanitizing regular

expressions, whose effects area unit specific by the individual.

Once perform summaries area unit computed, they are utilized

in inter-procedural analysis to seem for possible SQL injections.

The work by [13] is another example of an approach that uses a

model of “normality” to find injection attacks, like XSS, XPath

injection, and shell injection attacks. However, this

implementation, known as SqlCheck is meant to find SQL

injection attacks solely. The approach works by trailing

substrings from user input through the program execution. The

trailing is enforced by augmenting the string with special

characters, which mark the beginning and therefore the finish of

every substring. Then, dynamically-generated queries area unit

intercepted and checked by a changed SQL programmed.

Mistreatment the meta-information provided by the substring

markers, the program is ready to work out if the question syntax

is changed by the substring derived from user input, and, therein

case, it blocks the question.

Another example is the work by [14] that takes a look at a new

and unexplored class of vulnerabilities in the domain of web

applications. In particular, the paper looks at race condition

vulnerabilities that can arise in web applications interacting with

a back-end database. A race condition may occur in a multi-

threaded environment between two database queries if data

accessed by one query can be modified by another one. In a

multi-threaded application, the shared data in the database might

not be consistent between the two queries if code that was

designed to be executed sequentially is executed concurrently.

The authors propose a dynamic approach to identify this class of

vulnerabilities, in which all database queries generated by a

running program are logged and analyzed (offline) for data

dependencies.

A good example of an approach based on a model of expected

behavior is the work of [15], whose tool is called AMNESIA

[15]. AMNESIA is particularly concerned with detecting and

preventing SQL injection attacks for Java-based applications.

During the static analysis part, the tool builds a conservative

model of expected SQL queries. Then, at run-time, dynamically-

generated queries are checked against the derived model to

identify instances that violate the intended structure of a query.

AMNESIA uses Java String Analysis (JSA) [16], a static

analysis technique, to build an automata-based model of the set

of legitimate strings that a program can produce at given points

in the code. AMNESIA also leverages the approach proposed by

Gould, Su, and Devanbu [17] to statically check type correctness

of dynamically-generated SQL queries.

More precisely, author defines a SQL injection as the attack in

which the logic or semantics of a legitimate SQL statement is

changed due to malicious injection of new SQL keywords or

operators. Thus, to detect such attacks, the semantics of

dynamically-generated queries must be checked against a

derived model that rep-resents the intended semantics of the

query.

SQL DOM [18] utilizes database queries encapsulation for

authentic access to databases. They use a type-checked API

which cause query building process is systematic. Therefore by

API they implement coding finest practices for instance input

filtering and strict user input type checking. The drawback of the

approaches is that developer should be trained new

programming standard or query-development practice.

Another approach in this category is SQL-IDS [19] which focus

on writing specifications for the web application that describe

the intended structure of SQL statements that are produced by

the application, and in automatically monitoring the execution of

these SQL statements for violations with respect to these

specifications.

SQLPrevent [20] is consists of AN HTTP request interceptor.

The first data flow is changed once SQLPrevent is deployed into

an online server. The HTTP requests are saved into this thread-

local storage. Then, SQL interceptor intercepts the SQL

statements that are created by internet application and pass them

to the SQLIA detector module. Consequently, HTTP request

from threads native storage is fetched and examined to work out

whether or not it contains an SQLIA. These malicious SQL

statements would be prohibited to be sent to information, if it's

suspicious to SQLIA.

Swaddler [21] is innovative scheme to the anomaly-based

detection of attacks challenging web applications. Swaddler

inspects the inside state of a web application and examines the

interaction between the application‟s crucial execution points

and the application‟s internal state. By doing this, Swaddler is

capable to recognize attacks that try to fetch an application in an

inconsistent, abnormal state, such as violations of the intended

workflow of a web application.

In [22] author proposed the initial explanation of command

injection attacks in the perception of web applications, and

dispenses absolute algorithm for preventing them founded on

context-free grammars and compiler parsing techniques.

Author‟s assessment is that, for an attack to be successful, the

input that gets circulated into the database query or the output

document must modify the intended syntactic organization of

the query or document. This description and algorithm are

common and concern to many forms of command injection

attacks. This scheme is authenticate with SQLCHECK, an

implementation for the setting of SQL command injection

attacks. They assessed SQLCHECK on routine web applications

with methodically compiled daily attack data as input.

SQLCHECK produced no false positives or false negatives,

incurred low runtime overhead, and applied straightforwardly to

web applications written in different languages.

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 1, December 2014

29

An attacker who knows nothing about the key to the

randomization algorithm will inject code that is not valid for that

randomized processor, reasoning a runtime exception. In work

[23] utilizes the similar method to the difficulty of SQL injection

attacks: they produce randomized instances of the SQL query

language, by randomizing the template query within the CGI

script and the database parser. To permit for easy retrofitting of

their method to existing systems, they initiate a de-randomizing

proxy, which alters randomized queries to appropriate SQL

queries for the database.

5. CRITICAL ANALYSIS
Table 1 explains a digest of so far recognized countermeasures

against SQL Injection. Now, let us see what these schemes are

actually about. It would be tough to provide a transparent

finding of fact that scheme or approach is that the best as each

has some verified advantages for specific kinds of settings (i.e.,

systems).. Table 2 shows a chart of the schemes and their

defense capabilities against varied SQLIAs. This table shows the

comparative analysis of the SQL Injections bar techniques and

also the attack sorts. Although several approaches are known as

detection or prevention techniques, solely few of them were

enforced in utility. Hence, this comparison isn't supported

empirical expertise however rather it's an analytical analysis.

Table 1: Countermeasures of SQL Injection

Countermeasure Description Detection Prevention

SQL-IDS [19] A specification based approach to detect malicious intrusions yes Yes

AMNESIA [15]

This scheme identifies illegal queries before their execution.

Dynamically-generated queries are compared with the statically-

built model using a runtime monitoring

yes Yes

SQLrand [23] A strong random integer is inserted in the SQL keywords. yes Yes

SQL DOM [18
A set of classes that are strongly-typed to a database schema are

used to generate SQL statements instead of string manipulation
yes Yes

SQLGuard [24]
The parse trees of the SQL statement before and after user input

are compared at a run time. The Web script has to be modified
yes No

CANDID [25]
Programmer-intended query structures are guessed based upon

evaluation runs over non-attacking candidate inputs
yes No

SQLIPA [26]
Using user name and password hash values, to improve the

security of the authentication process
yes No

SQLCHECK [22]

A key is inserted at both beginning and end of user‟s input.

Invalid Syntactic forms are the attacks. The key strength is a

major issue

yes No

Table 2: Various methods of different SQL Injection Attacks

Methods
Tautolog

y

Logically

Incorrect

Queries

Union

Query

Stored

Procedure

Piggy-

Backed

Queries

Inference
Alternate

Encodings

SQL-IDS [19] yes Yes Yes yes yes yes Yes

AMNESIA [15] yes Yes Yes no yes yes Yes

SQLrand [23] yes No Yes no yes yes No

SQL DOM yes Yes Yes no yes yes Yes

SQLGuard [17] yes Yes Yes no yes yes Yes

CANDID [25] yes No No no no no No

SQLIPA [26] yes No No no no no No

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 1, December 2014

30

SQLCHECK [22] yes Yes Yes no yes yes Yes

WebSSARI yes Yes Yes yes yes yes Yes

6. RESEARCH SCOPE
Although a considerable quantity of efforts are dedicated to

addressing input validation vulnerabilities and attacks, many

open problems are still not sufficiently addressed, and XSS

remains the foremost common internet attack these days. Web

application development usually give auto sanitization options a

recent study [22] shows, they still cannot meet the entire

necessities exhibit by trendy internet applications. Designing

and reasoning context-sensitive sanitization routines still need

substantial work. The identification of input validation

vulnerabilities from legacy internet applications remains

difficult.

Although taint-based techniques are incontestable to be very

effective, they can't be directly applied to a large variety of

recently developed internet applications. Web applications

sometimes involve many technologies, languages, or elements

that make it even tougher to trace user info flow and establish

delicate second-order attacks. To address these problems, one

single technique tends to be deficient. We‟ve seen an increasing

variety of works that combine two or additional techniques to

attain higher performance, like hybrid taint analysis [21], string

taint analysis [13]. The question of how to combine existing

techniques during an inventive way to address the restrictions of

single techniques is a stimulating analysis direction.

Even for the development of recent secure internet applications,

it still needs consistent efforts from developers to follow secure

coding practices to create strong session management

mechanisms. Securing internet applications from logic flaws and

attacks still remains an underexplored space. Solely a restricted

variety of techniques are projected. Most of them solely address

a particular form of application logic vulnerabilities, like

authentication and access management vulnerabilities or

inconsistencies between shopper and server validations

[8][25][27]. The fundamental issue in Endeavour general logic

flaws is the absence of application logic specification. The

absence of a general and automatic mechanism for

characterizing the application logic is one among the inherent

reasons for the lack of most application scanners and firewalls to

handle logic flaws and attacks [27].

Several recent works attempt to develop a general and

systematic methodology for automatically inferring the

specifications for internet applications that in turn facilitates

automatic and sound verification of application logic. One

among the key observations of those works [21] [28] is that the

application‟s meant behavior is typically disclosed below its

traditional execution, once users follow the navigation ways. In

[30], similar assumption is formed for well-behaved clients,

wherever they're expected by the server to invoke the URLs

during a specific sequence with specific arguments. In order to

infer the application logic, one category of strategies leverages

the program source code [21] [29]. As a result, the inferred

specification extremely depends on however the application is

structured and enforced (e.g., the definition of a program

operates or block). The accuracy of the inferred specification is

additionally littered with its capability of handling language

details. Another category of strategies infers the application

specification by observant and characterizing the application‟s

external behavior [28]. The noisy info discovered from the

external behaviors might result in an inaccurate specification

through these strategies.

7. CONCLUSION
In recent years, internet applications became hugely common,

and these days they're habitually utilized in numerous security-

critical environments. Because the use of internet applications

for essential services has accumulated, the amount and class of

attacks against these applications have full-grown moreover. So

far, the analysis communities primarily targeted on effort

vulnerabilities that result from insecure info flow in internet

applications, like cross-site scripting and SQL injection.

Whereas relative success was reached in characteristic

appropriate techniques and approaches for managing this kind of

vulnerabilities, very little has been explored regarding

vulnerabilities that result from blemished application logic.

Though several approaches and frameworks are known and

enforced in several interactive internet applications, security still

remains a serious issue. SQL Injection prevails in concert of the

top-10 vulnerabilities and threat to on-line businesses targeting

the backend databases. During this paper, we've got reviewed

the foremost common existing SQL Injections related problems.

We tend to believe that the work would be helpful each for the

overall readers of the subject as well as for the practitioners. As

a future work, we might wish to develop a step which will

efficiently tackle the innovative SQL Injection attacks and fix

the maximum amount vulnerability as potential. Hackers are

actually very innovative and because the time is passing by, new

attacks are being launched that will want new ways that of

considering the solutions we presently have.

8. REFERENCES
[1] Halfond, W. G., Jeremy Viegas, and Alessandro Orso. "A

classification of SQL-injection attacks and

countermeasures" In Proceedings of the IEEE International

Symposium on Secure Software Engineering, Arlington,

VA, USA, pp. 13-15. 2006.

[2] Tajpour, Atefeh, Maslin Masrom, Mohammad Zaman

Heydari, and Suhaimi Ibrahim. "SQL injection detection

and prevention tools assessment" In Computer Science and

Information Technology (ICCSIT), 2010 3rd IEEE

International Conference on, vol. 9, pp. 518-522. IEEE,

2010

[3] Top 10 2010-A1-Injection, available at:

http://www.owasp.org/index.php/Top_10_2010-A1-

Injection, last accessed 11 June, 2013.

[4] Le He´garet P, Whitmer R, Wood L. Document object

model (DOM). W3C Recommendation,

<http://www.w3.org/DOM/>; January 2005.

[5] A. Klein. “Cross Site Scripting Explained” Technical

report, Sanctum Inc., June 2002.

[6] Gmail CSRF Security Flaw. 2007.

http://ajaxian.com/archives/gmail-csrf-security-flaw.

[7] Fangqi Sun, Liang Xu, and Zhendong Su. 2011. Static

detection of access control vulnerabilities in web

applications. In USENIX‟11: Proceedings of the 20th

USENIX Security Symposium.

[8] Prithvi Bisht, A. Prasad Sistla, and V. N. Venkatakrishnan.

2010b. Automatically Preparing Safe SQL Queries. In

http://www.owasp.org/index.php/
http://ajaxian.com/archives/gmail-csrf-security-flaw

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No. 1, December 2014

31

FC‟10: Proceedings of the 14th International Conference

on Financial Cryptography and Data Security.

[9] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-

Y. Kuo. Securing Web Application Code by Static Analysis

and Runtime Protection. In Proceedings of the 12th

International World Wide Web Conference (WWW‟04),

pages 40–52, May 2004.

[10] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static

Analysis Tool for Detecting Web Application

Vulnerabilities. In Proceedings of the IEEE Symposium on

Security and Privacy, May 2006.

[11] N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias

Analysis for Static Detection of Web Application

Vulnerabilities. In Proceedings of the ACM SIGPLAN

Workshop on Programming Languages and Analysis for

Security (PLAS‟06), June 2006.

[12] Y. Xie and A. Aiken. Static Detection of Security

Vulnerabilities in Scripting Languages. In Proceedings of

the 15th USENIX Security Symposium (USENIX‟06),

August 2006.

[13] Z. Su and G. Wassermann. The Essence of Command

Injection Attacks in Web Applications. In Proceedings of

the 33rd Annual Symposium on Principles of Programming

Languages (POPL‟06), pages 372–382, 2006.

[14] R. Paleari, D. Marrone, D. Bruschi, and M. Monga. On race

vulnerabilities in web applications. In Proceedings of the

5th Conference on Detection of Intru-sions and Malware &

Vulnerability Assessmen t, DIMVA, Paris, France, Lecture

Notes in Computer Science. Springer, July 2008

[15] W. Halfond and A. Orso. AMNESIA: Analysis and

Monitoring for NEutraliz-ing SQL-Injection Attacks. In

Proceedings of the International Conference on Automated

Software Engineering (ASE‟05), pages 174–183,

November 2005

[16] A. Christensen, A. Møller, and M. Schwartzbach. Precise

Analysis of String Ex-pressions. In Proceedings of the 10th

International Static Analysis Symposium (SAS‟03), pages

1–18, May 2003

[17] C. Gould, Z. Su, and P. Devanbu. Static Checking of

Dynamically Generated Queries in Database Applications.

In Proceedings of the 26th International Con-ference of

Software Engineering (ICSE‟04), pages 645–654,

September 2004.

[18] R. A. McClure and I. H. Kr¨uger, “Sql dom: compile time

checking of dynamic sql statements,” in Proceedings of the

27th international conference on Software engineering, ser.

ICSE ‟05, 2005, pp. 88–96.

[19] K. Kemalis and T. Tzouramanis, “Sql-ids: a specification

based approach for sql-injection detection,” in Proceedings

of the 2008 ACM symposium on Applied computing, ser.

SAC ‟08. ACM, 2008, pp. 2153–2158.

[20] P.Grazie, “Phd sqlprevent thesis,” Ph.D. dissertation,

University of British Columbia(UBC) Vancouver, Canada,

2008.

[21] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,

“Swaddler: An approach for the anomaly-based detection

of state violations in web applications,” 2007.

[22] Weinberger, Joel, Prateek Saxena, Devdatta Akhawe,

Matthew Finifter, Richard Shin, and Dawn Song. "A

systematic analysis of xss sanitization in web application

frameworks." In Computer Security–ESORICS 2011, pp.

150-171. Springer Berlin Heidelberg, 2011

[23] S. W. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql

injection attacks,” in In Proceedings of the 2nd Applied

Cryptography and Network Security (ACNS) Conference,

2004, pp. 292–302.

[24] Buehrer, G., Weide, B.W., and Sivilotti, P.A.G., Using

Parse Tree Validation to Prevent SQL Injection Attacks.

Proc. of 5th International Workshop on Software

Engineering and Middleware, Lisbon,Portugal 2005, pp.

106–113.

[25] Bisht, P., Madhusudan, P., and Venkatakrishnan, V.N.,

CANDID: Dynamic Candidate Evaluations for Automatic

Prevention of SQL Injection Attacks. ACM Transactions

on Information and System Security, Volume 13 Issue 2,

2010, DOI: 10.1145/1698750.1698754.

[26] Ali, S., Shahzad, S.K., and Javed, H., SQLIPA: An

Authentication Mechanism Against SQL

Injection.European Journal of Scientific Research, Vol. 38,

No. 4, 2009, pp. 604-611.

[27] Doupé, Adam, Marco Cova, and Giovanni Vigna. "Why

Johnny can‟t pentest: An analysis of black-box web

vulnerability scanners." In Detection of Intrusions and

Malware, and Vulnerability Assessment, pp. 111-131.

Springer Berlin Heidelberg, 2010

[28] Li, Xiaowei, and Yuan Xue. "BLOCK: a black-box

approach for detection of state violation attacks towards

web applications." In Proceedings of the 27th Annual

Computer Security Applications Conference, pp. 247-256.

ACM, 2011

[29] Felmetsger, Viktoria, Ludovico Cavedon, Christopher

Kruegel, and Giovanni Vigna. "Toward automated

detection of logic vulnerabilities in web applications."

In USENIX Security Symposium, pp. 143-160. 2010

[30] Guha, Arjun, Shriram Krishnamurthi, and Trevor Jim.

"Using static analysis for Ajax intrusion detection."

In Proceedings of the 18th international conference on

World wide web, pp. 561-570. ACM, 2009.

IJCATM : www.ijcaonline.org

