
International Journal of Computer Applications (0975 8887)
Volume 99 - No. 4, August 2014

Prediction of Software defects in SDLC using BN

Jawahar Sambhaji Gawade
Information Technology Dept.,

SVPMś College Of Engg.,
Malegaon(Bk), Baramati, Pune

Dinesh Bhagwan Hanchate
Computer Engineering Dept.,

Vidya Pratishthans College Of Engg.
Baramati,Pune, India.

ABSTRACT
This project reviews the use of Bays Networks (BNs) in software
defects Prediction. The idea allows us to incorporate causal pro-
cess factors. It does the combination of qualitative and quanti-
tative software measures. It stops to play some well-known tra-
ditional software metrics methods limitations. Decision support
tools for this have been built using causal models represented
by Bays Networks (BNs), incorporate empirical data and judg-
ment of experts. Previously, this required a custom BN for each
development lifecycle phase. We described a more general idea
that allows causal models to be applied to any lifecycle phases.
The approach is evolved through collaborative projects and cap-
tures significant commercial input. For software projects within
the range of the models, accuracy of defect predictions are very
good. The main functions provided to the end-user is observa-
tions and can be entered using a questionnaire interface, where
questions are concerned to Bays Network variables. The model
predicts the defects likely to be left in software after testing.
The model uses the results of statistical analysis on the Previ-
ous software projects. It can be combined with other defect pre-
diction models to predict the number of residual defects of dif-
ferent categories. The Bayesian network structure is, here, a set
of project domain conditional independence relation. BN learn-
ing structure which represents a domain. This domain can light
on its underlying causal structure. This results in significantly im-
proved accuracy for defects and reliability prediction type models.

General Terms:
Software Testing, Machine learning

Keywords:
Software defects, BN (Bayesian network), Defect Prediction

1. INTRODUCTION

LATEX A software defect is due to the result of an error or bugs. It
is an disorder cause which may lead to abnormal software behavior
not according to its specification. Causal models are very impor-
tant because they allow all the evidence to be taken into account,
even when Confliction of different evidence [11] [8]. It is assumed
that few defects are found during testing, does this mean that test-
ing is poor or that development was outstanding and the software
has few defects to find. The Regression-based models of software

defects are little helpful to a Project Manager and Project Members
who must decide between these alternatives [11]. Previous projects
database is used to build the BN, with judgment of Experts on the
strength of each causal mechanism. In this paper, We worked by
describing a much more flexible and general method of using BNs
for defect prediction [11] [7].
· In section II, we described Methodology to be used along with
BN and SDLC.
· In section III, Experiment,result is illustrated with input and out-
put snapshots of our approach.
· Section IV concludes the paper.
We, also, described how the Questionnaire set is used to create an
effective decision support system from the BN. An important lim-
itation of the earlier work was the need to build a different BN for
each software development lifecycle to reflect both the differing
number of testing stages in the lifecycle and the differing metrics
data available. To overcome this limitation of earlier work, we de-
scribed a BN that models the creation and detection of software
defects without commitment to a particular development lifecy-
cle. We, then, showed how a software development organization
can adapt this BN to their development lifecycle and metrics data
with much less effort than is needed to build a tailored BN from
scratch [11] .

2. METHODOLOGY [9] [1]
2.1 A. Baysian network [3] :
Bays network is a graph together with an associated set of proba-
bility tables of Class. The BN nodes represent uncertain variables.
The relevance relationships between the variables are represented
by arcs.
The Figure 1 shows the Bayesian Network forms a causal model
of the process of inserting, finding and fixing software defects. The
variable Probability of effective KLOC implemented represents the
complexity adjusted size of the functionality implemented [13];
The amount of Functionality increases the number of potential de-
fects also rises. The probability of avoiding defect in development
determines defects in development phase. This number represents
the number of defects before testing which are in the reviewed and
revisited code that has been implemented.
The inserted defects may be found and fixed. The other residual de-
fects are those remaining after testing phase. Variables representing
a number of defects take a value in a numeric range, discredited into
numeric interval. There is a probability table for each node, speci-
fying how the probability of each state of the variable depends on
the states of its BN class. Some of these are deterministic: for ex-

1

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 4, August 2014

Fig. 1. BN for Defect Prediction

Fig. 2. System Architecture BN Model

ample the Probability of Residual defects is simply the numerical
Combination of Probability of all BN classes. In other cases, we
can use standard statistical functions, too.
For BN Classes, the dynamic variable is shown with a bold
boundary. The DBN is constructed with two nodes for each time
indexed variable: the value in the previous time frame is the
input node (i.e.pre Residual defect,prior probability) and it has no
parents in the net [11]. The second node representing the value
in this time frame is called the output node (here Post Residual
defect ,posterior probability). The documentation is modeled,
also, quality as a time varying quality attribute. It is usually
being assumed that, documentation includes specification, which
even in iterative developments is often prepared in one phase
and implemented in a later phase. In this model, specification
errors or bugs are considered as defects so a phase in which
documentation is the main activity which lead to an important
incremental change in documentation quality that is passed on
to the next phase. Project manager and company has to make
some important decisions in between the software development
products course. One of the most important decision is the in

time software product release. Very poor and biased decision may
give problems to make compromise with quality which is in turn
gives bad reputation to industry. Such decisions are often made
on real ground and with basic information available rather than
making on the plinth of more objective oriented and accountable
in criteria. There are some uncertain parameters that make as
stumbling block for development of software project. These are
tools, personnel, development methods and testing strategies.
These may give interference to do the delivery of a quality product
in baseline budget and on time [10]. Each of these uncertain factors
make always effects on SDLC right from requirement analysis
to launching of product in the market [10]. In order to achieve
qualitative software, some special attention and stress is need to
apply for following three activities in particular:
• Defect prevention;
• Defect detection;
• Defect correction.
The main challenging job of decision during SDLC are
• to apply finite resources to all of these activities.
• to confirm the dependency depending upon on the classification
and applied resource division.
• to Predict the likely quality that will be achieved when the
product is delivered.

Software project manager, quality manager has to make the correct
decision mostly as nearly all software projects rely upon the judg-
ment of the project or quality manager. The proposed work is pre-
sented in a single model to combine diversified evidences (called
causal) in SDLC in more user free and efficient way. Graphical
probability models are used (also known as Bayesian Belief Net-
works) as the appropriate formalism for representing this evidence
[10] [13]. It is also possible to use the corresponding decisions and
judgments of experienced Quality and Project Managers to have
probabilistic model. This model can be utilized to put up some
conclusions about Software Quality throughout the SLDC. The BN
represents the complete joint probability distribution assigning a
probability to each combination of states of all the variables but
in a factored form, greatly reducing the space needed. When the
states of some variables are known, the joint probability distribu-
tion can be recalculated conditioned on this evidence and the up-
dated marginal probability distribution over the states of each vari-
able can be observed. The quality of the development and testing
processes is represented in the BN of Figure 1 by four variables
discredited over the 0 to 1 interval [10] [13] [6]. These are [4]
• probability of avoiding specification defects,
• probability of avoiding defects in development,
• probability of finding defects,
• Probability of fixing defects.
The BN in Figure 1 is a simplified version of the BN at the heart
of the decision support system for software defects. None of these
probability variables are entered directly by the user instead these
variables have further parents modeling the causes of process qual-
ity.

2.2 B. SDLC and phases [12] :
A development lifecycle is model, and is made up from phases,
but a phase is not a fixed development process as in the traditional
waterfall lifecycle, a phase can consist of any number and combi-
nation of such development processes. Each phase then includes
all the development processes: specification, design, coding and
testing. Even in a traditional waterfall lifecycle it is likely that
a phase includes more than one process with, for example, the

2

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 4, August 2014

testing phases involving some new design and coding work [2].
To cover all parts of this continuum, we considered all phases
to include one or more of the following development activities
[2] [11]:

• Specification/documentation: This covers any activity whose ob-
jective is to understand or describe some Existing or proposed func-
tionality. It includes: requirements gathering, writing, reviewing, or
changing any Documentation (other than comments in code).
• Development (or more simply coding): This covers any activity
that starts with some predefined requirements (however vague) and
ends with executable code.
•Testing and rework [5]: This covers any activity that involves ex-
ecuting code in such a way that defects are found and noted; it also
includes fixing known defects.
Figure 2 shows the system architecture of project in which project
manager or Team members enter detailed information about every
Project. Each project has five BN classes described below which
has set of various questionnaires with scale. Bayesian Networks
created by using Combination of Phase wise Questionnaire. Resid-
ual defect post contains output of combination of BN classes. Fi-
nally, the graph representation shows the comparison of projects:
phase based, project based and domain based. The phase BN in-
cludes all these activities, allowing the extent of each activity in
any actual phase to be adjusted. In the most general case, a soft-
ware project consists of a combination of these phases.

Fig. 3. Objects in the phase BN

3. EXPERIMENT AND RESULT
The phase BN is constructed from five classes [1][11] [12]:
•One of three activity classes: specification and documentation, de-
sign and development and test and rework.
•The scale of New functionality developed in this phase.
•The defect insertion and discovery.
Fig. 3 shows a single object instantiation of each of these classes.
This object view of the single phase model represents the BN in ab-
stract terms. The inner details of each class are not shown only the
input and output nodes are visible (The inner details are available
with authors). In this view, a class is represented by its interface
to other classes [11] [7]. Triangular arrow heads represent input
nodes within a class, whereas rounded arrow tails represent out-
put nodes. Lines represent input node instantiation, i.e. the output

Fig. 9. Result: Domain based Comparison

Fig. 10. Result: Phase based Comparison

node of one object instantiates (replaces) the input node of the con-
nected object. Input nodes effectively act as parameters for a BN
class. Note that not all input nodes are instantiated by output nodes
from another object. Input nodes have a default probability distribu-
tion associated with them [13]. However, this is rarely used. More
often, unattached input nodes are initialized using explicit obser-
vations. E.g., Residual defects pre is used to account for defects
remaining from previous phases. If this is the first or only phase,
then it should be explicitly initialized to zero.

3.1 BN CLASSES [13] [7] [6]
Following BN Classes are developed for the proposed ap-
proach [14].
•New Functionality is Implemented. Since we are to build and test
some software we may be implementing some new functionality
in this phase. This class provides a measure of the size of this
functionality.

3

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 4, August 2014

Fig. 4. Input: Project information

Fig. 5. Input: Specification Phase Questionnaires

4

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 4, August 2014

Fig. 6. Input: Bayesian Network for Specification

•Specification and Documentation. This class is concerned with
measuring the amount of specification and documentation work in
the phase, the quality of the specification process and determining
the change in the quality of the documentation as a result of the
work done in the phase.
•Design and Development. This class models the quality of the
design and development process, which influences the probability
of inserting each of the potential defects into the software.
• Testing and Rework. This class models the quality of the testing
process and the rework process, influencing the probabilities of
finding and fixing defects.
• Defect Insertion and Discovery.

3.2 Input snapshots [2]
Figures 3 to 6 represents input to the model designed.

3.3 Output snapshots
These are shown in Figures 7 to 10. Result Screenshots (a)
Bayesian Network for Residual Defects Post (b) Project based
Comparison (c) Domain based Comparison (d) Phase based Com-
parison.

4. CONCLUSION
We have shown how a wide variety of software lifecycles can be
modeled using a DBN in which each time frame is a lifecycle phase
combining all software development activities in different amounts.
This idea allows a BN for software defect prediction to be tailored
to different software development environments. From the indus-
trial point of view, there is a need to generate predictive models fast.
Thus, any kind of automation of this process is desired. Bayesian
nets can be built in various ways: by an expert, purely from the
data, or by combining expert knowledge with empirical data. This
Project approach allows a BN for software defect prediction to be
tailored to different software development environments. This will
be very useful to predict and avoid the defects in different lifecycle

5

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 4, August 2014

Fig. 7. Result: Bayesian Network for Residual Defects Post

phases of software development. In the absence of an extensive and
expensive reliability testing phase, this model can be used to pro-
vide an estimate of residual defects that is sufficiently precise for
many software project decisions.

5. REFERENCES

[1] Agena. A critique of software defect prediction research.
2004.

[2] Norman Henderson Fenton and S.L. Pfleeger. Software Met-
rics: A Rigorous and Practical Approach. PWS Publishing
Company, 1997.

[3] Jensen F.V. An Introduction to Bayesian Networks. UCL
Press, 1996.

[4] Dimitris Margaritis. Learning bayesian network model struc-
ture from data. May 2003.

[5] Richard Prewitt Michael Shannon, Geoffrey Miller. Software
Testing Techniques: Finding the Defects that Matter. Charles
River Media, 2005.

[6] Nielsen L. Neil M.Fenton, N. E. Building large-scale
Bayesian Networks: The Knowledge Engineering Review.
2000.

[7] Netica. Java Version of Netica API Norsys Software Corp.
Manual Version 4.18 and Higher.

[8] David Marquez Norman Fenton, Martin Neil. Using
bayesian networks to predict software defects and reliability.
”http://www.agenarisk.com/resources/white papers”,.

[9] Martin Neil Norman Fenton. A critique of software defect
prediction research. IEEE Trans. Software Eng.

[10] Paul Krause Norman Fenton, Martin Neil. A probabilistic
model for software defect prediction,. For submission to IEEE
Transactions in Software Engineering.

[11] Rajat Mishra Norman HendersonFenton, Martin Neil. Pre-
dicting software defects in varying development lifecycles
using Bayesian nets. Information and Software Technology,
London, 2007.

[12] Roger Pressman. Software Engineeing. 2007.

6

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 4, August 2014

Fig. 8. Result: Project based Comparison

[13] N. Fenton R and M. Neil. A critique of software defect pre-
diction research. IEEE Transactions in Software Engineering,
1999.

[14] Lukasz Radlinski. Building Bayesian Nets for software defect
prediction comarision of manual,semi- and fully-Atomated
schemes.

Jawahar Sambhaji Gawade B.E. Computer(2002-03); Net-
work Admin (2004-06); Asst.Prof. since (2006- till date)
SVPM’s College of Engineering, Malegaon(Bk),Baramati,Pune.,
M.E. Computer (Sptr.2013) from VPCOE, Baramati, Pune.
Confernce Convenor-2013, CCNA-CISCO certification-2003,
Perceiving M.B.A. from SVPM’s Institute of Management, Male-
gaon(Bk),Baramati,Pune, Network Engineer-2003-04 at ATSON
Services, Rasta Peth, Pune.

Dinesh Bhagwan Hanchate Birth Place :- Solapur, B.E. Computer
from Walchand College of Engineering, Sangli (1995), Lecturer
in Gangamai College Of Engineering,Dhule (1995-96), Lecturer
in S.S.V.P.S.s B.S.D. College Of Engineering,Dhule In Computer
& IT deptt (1996-2005), M.Tech. Computer from Dr. Babasaheb
Ambedkar Technological University, Lonere(2002-05), Currently
Asst. Prof. Computer Engineering, former H.O.D. (Computer
& IT) in Vidya pratishthans College Of Engineering, Baramati
, currently doing research (SGGSs Institute of Technology and
Engg, Nanded affiliated to SRTMU,Nanded) under the guidance
of Dr. Bichkar R.S. ,G.H. Raisonis College Of Engineering and
Management,Wagholi,,Pune.

7

	Introduction
	 METHODOLOGY Norman3 Agena
	A. Baysian network Jensen :
	B. SDLC and phases Roger :

	 EXPERIMENT AND RESULT
	BN CLASSES Fenton Netica Neil
	Input snapshots Norman2
	Output snapshots

	CONCLUSION
	References

