Enumeration of Basic Hamilton Cycles in the Mangoldt Graph

Levaku Madhavi Assistant Professor Department of Applied Mathematics Yogi Vemana University-Kadapa-516003 Andhra Pradesh, India

ABSTRACT

The Mangoldt graph M_n is an arithmetic function, namely, Mangoldt function $\wedge(n)$, $n \geq 1$ an integer. In this paper the notion of a basic Hamilton cycles in M_n is introduced and their number is enumerated.

Keywords

Mangoldt Graph, Hamilton Cycle, Basic Hamilton Cycles.

AMS(MOS) Subject Classification: 68R05

Index Terms

Graph Theory, Discrete Mathematics

1. INTRODUCTION

Nathanson [11] introduced the concepts of Number Theory, particularly, the theory of congruences into Graph Theory, which paved the way for the emergence of **Arithmetic Graphs.** Maheswari and Madhavi[8,9,10] introduced the Mangoldt graph M_n which is an arithmetic graph associated with the Mangoldt function $\land(n)$, $n \ge 1$, an integer. It is shown that M_n is connected and neither bipartite nor a tree for $n \ge 6$. Further they have studied the vertex domination and edge domination and gave a formula for the number of triangles In this study the Hamiltonian nature of M_n is established for various forms of n by exhibiting the Hamilton cycles in the general setup and using these Hamilton cycles the notion of basic Hamilton cycle is introduced in M_n and their number is enumerated.

2. HAMILTONIAN PROPERTY OF THE MANGOLDT GRAPH MN

Definition 2.1: Let $n \ge 1$ be an integer. The Mangoldt function $\land(n)$, is defined as follows:

$$\Lambda(n) = \begin{cases} \log p, if \ n \ is \ a \ power \ of \ prime \\ 0, \qquad otherwise \end{cases}$$

For example, $\wedge(4) = \wedge(2^2) = \log 2 \cdot \wedge(6) = 0$

and $\wedge(8) = \wedge(2^2) = \log 2$.

Definition 2.2[1]: Let $n \ge 1$ be an integer. The **Mangoldt graph** M_n is the graph whose vertex set is $\{1, 2, ..., n\}$ and the edge set is $\{(x, y) : \land (x \cdot y) = 0, 1 \le x, y \le n \text{ and } x \ne y.$

That is, the vertices x and y of are adjacent if and only if $x \cdot y$ is not a power of prime. Clearly M_n is a simple undirected graph without loops.

Tekuri Chalapati Department of Mathematics Sree Vidyanikethan Engineering College, Tirupati – 517 502 Andhra Pradesh, India

Example 2.3: The graphs M_6 and M_7 are given below:

Lemma 2.4: Let $n \geq 1$ be an integer. For all vertices $u, \, l < u < n, (\, u, \, u + 1\,)$ is an edge of M_n .

Proof: For all vertices M_n in, one of u and u + 1 is even and the other odd. So u (u + 1) is not a power of a single prime so that there is an edge between u and u + 1.

It is evident that the vertex 1 is an isolated vertex in the graphs M_1 , M_2 , M_3 , M_4 and M_5 and thus these graphs are not Hamiltonian. In M_6 , M_7 , M_8 and M_9 , the vertex 1 is adjacent only to the vertex 6 and hence its degree is one. So the vertex 1 does not belong to any cycle in these graphs, as the degree of a vertex in a cycle must be two. Thus these graphs do not contain Hamilton cycles and hence they are not Hamiltonian. So M_n is not Hamiltonian for n < 10. In the following it is established that for $n \ge 10$ the graph M_n is Hamiltonian. The following number theoretic result is needed.

Lemma 2.5 : For an integer m > 1, (m-1)(m+1) is not a power of a single prime.

Proof: If m is odd then m - 1 and m + 1 are both even so that m - 1 = 2r and m + 1 = 2r + 2 = 2(r + 1) for some positive integer r. So $(m - 1)(m + 1) = 2^2 r (r + 1)$ and this is not a power of single prime since one of r and r + 1 is odd the other even.

If m is even m - 1 and m + 1 are both odd. Suppose (m - 1) $(m + 1) = q^{l}$ for some odd prime q and integer l > 1. Then $m - 1 = q^{s}$ and $m + 1 = q^{t}$ for some integers s, t, s < t, $s \ge 1$ and s + t = l. Also we have $q^{t} - q^{s} = 2$ with s < t. Since q > 2, $q^{t} - q^{s} = 2$ with s < t. Since q > 2, for all values of q, t, s which is a contradiction to $q^{t} - q^{s} = 2$. So (m - 1)(m + 1) is not a power of a single prime.

Theorem 2.6: For $n \ge 10$ and $n = 2^r$, r is a positive integer, M_n is Hamiltonian.

Proof: Let $n \ge 10$ and $n = 2^r$, r a positive integer. There is no edge between 1 and 2 as well as 1 and n in M_n since $1 \ge 2$ and $1 \ge n = 2^r$ are powers of the prime 2.

For positive integers l and m, $l \neq m$ which are less than n and not power of a single prime, consider the following vertex sequence in M_n .

(2, 3, 4, ..., l-1, l+1, ..., m-1, m+1, ..., n-3, n-2, n, n-1, [l, 1, m], 2)

By the Lemma 2.4, there exist an edge between u and u + 1 for all vertices u, 1 < u < n, in M_n . By the Lemma 2.6, (l-1) (l+1) and (m - 1) (m + 1) are not powers of a single prime. So there is an edge between l-1 and l+1 as well as m - 1 and m + 1. Also n (n - 2) = 2^r ($2^r - 2$) = $2^{r+1}(2^{r-1} - 1)$. This is a product of an even number 2^{r+1} and an odd number 2^{r+1} and an odd number $2^{r+1} - 1$ so that it is not a power of a single prime. So there is an edge between n - 2 and n.

Since each of *l* and m is not a power of a single prime. (n - 1) x *l*, *l* x 1, *l* x m and m x 2 are also not powers of a single prime. Therefore (n - 1, *l*), (*l*, 1), (*l*, m) and (m, 2) are edges in M_n . Thus the vertex sequence (2, 3, 4,., *l* - 1, *l* + 1,..., m - 1, m + 1, ..., n - 3, n - 2, n, n - 1, $\overline{l, 1, m}, 2$) is a Hamilton cycle in M_n and hence M_n is Hamiltonian.

Example 2.7: For $n = 2^4 = 16$ the vertex sequences

- (i) (2,3,4,5,7,8,9,11,12,13,14,16,15,6,1,10,2)
- (ii) (2,3,4,5,7,8,9,10,11,13,14,16,15,6,1,12, 2)

are Hamilton cycles in M_{16} . The graphs of these Hamilton cycles are given below.

Fig. 2.2.3 Fig. 2.2.4

Theorem 2.8: For $n \ge 10$ and $n = p^r$, p is a prime, $p \ne 2$ and r a positive integer, the graph M_n is Hamiltonian.

Proof: For $n \ge 10$ and $n = p^r$, p is a prime, $p \ne 2$ and r a positive integer. There is no edge between 1 and 2 since 1 x 2 is a power of 2 and there is no edge between 1 and n since $1 \ge n = p^r$, p a prime.

Let *l* and m, $l \neq m$ be a positive integers which are not powers of a single prime. Evidently $l \neq 1$, n and $m \neq 1$, n. Consider the following vertex sequence in M_n .

 $(2, 3, 4, \dots, l-1, l+1, \dots, m-1, m+1, \dots, n-2, n-1, n, [l, 1, m], 2)$.

By the Lemma 2.4 and 2.5, there edges in M_n between the pairs (l-1, l+1), (m-1, m+1) and (u, u+1), $u \in M_n$, 1 < u < n. Also there is an edge between n and 2 since $2 \ge n = 2p^r$, $p \ne 2$.

Further n x l, l x 1, l x m and m x 2 are not powers of a single prime so that (n, l), (l, 1), (l, m) and (m, 2) are edges in M_n . So the vertex sequence (2, 3, 4, l-1, l+1, ..., m-1, m+1, ..., n-2, n-1, n, [l, 1, m], 2) is a Hamilton cycle in M_n and M_n is Hamiltonian.

Example 2.9: For $n = 5^2 = 25$ the vertex sequences

- (i) $(2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22, 23,24,25,\overline{6,1,20}, 2)$
- (ii) (2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, 22,23,25,6,1,24, 2)

are Hamilton cycles in M₂₅.

Theorem 2.10 : For $n \ge 10$ and n not a power of a single prime the graph M_n is Hamiltonian.

Proof: Let $n \ge 10$ and n not a power of a single prime. Let l and m, $l \ne m$ be positive integers less than or equal to n, which are not powers of a single prime. The following three cases will arise.

Case (1) : Let $l \neq m$ and $m \neq n$. As in the Theorem 2.8 one can see that the vertex sequence

 $(2, 3, 4, \dots, l-1, l+1, \dots, m-1, m+1, \dots, n-2, n-1, n, [l, 1, m], 2)$ is a Hamilton cycle in M_n .

Case (2) : Let l = n and $m \neq n$. The following two sub cases will arise.

Subcase (1): Let n - 1 be not a power of 2. It is easy to see that the vertex sequence

(2, 3, 4, ..., m-1, m+1, ..., n-2, n-1, n, 1, m, 2) is a Hamilton cycle in M_n .

Subcase (2): Let n - 1 be a power of 2. Consider the following vertex sequence in M_n (2, 3, 4,..., m - 1, m + 1,., n - 3, n - 1, n - 2, n, 1, m, 2).

Clearly the pairs $(\,2,\,3)$, $(\,3,\,4\,)$,,(m-1, m+1), (n-1, n-2), (n-2, n) (n, 1), (l, m) and (m, 2) are adjacent in M_n . The vertices n-2 and n-1 are also adjacent if (n-3) (n-1) is not a power of a single prime. Suppose that (n-3) (n-1) is not a power of a single prime. Suppose that (n-3) (n-1) is not a power of a single prime. Suppose that (n-3) (n-1) = p^r for some prime p and r a positive integer. Then $n-3=p^s$ for some positive integers s, t and s < t. This gives $p^t-p^s=(n-1)-(n-3)=2$ which is true only for the least values of p, s and t namely, p=2, s=1 and t=2. But for p=2, s=1 and t=2 we have $n-3=p^s=2$, or, n=5 which is a contradiction to $n\geq 10$. So (n-3)(n-1) is not a power of a single prime and thus n-2 and n-1 are adjacent in M_n . These show the vertex sequence.

(2, 3, 4, .., m-1, m+1, .., n-3, n-1, n-2, n, 1, m, 2) is a Hamilton cycle in M_n .

Case (3) : Let $l \neq n$ and m = n.

Subcase (1): Let n - 1 be not a power of 2. As in Subcase (1) of Case (2), it is easy to see that the vertex sequence

(2, 3, 4, ..., l-1, l+1, .., n-3, n-3, n-1, l, 1, n, 2)is a Hamilton cycle in M_n .

Subcase (2) : Let n - 1 be a power of 2. Again as in Subcase (2) of Case (2), one can see that the vertex sequence

(2, 3, 4, l-1, l+1, ..., n-3, n-1, n-2, l, 1, n, 2) is a Hamilton cycle in M_n . So M_n is Hamiltonian in this case also.

Example 2.11 : For n = 15 the vertex sequences

i) ((2345)	7891	1 12 13 1	4 1 5	6110	2
1, 1	(2,3,7,3)	, , , 0, , , , 1	1,12,13,1	т,1.,	0,1,10	, ~

(ii) (2,3,4,5,6,7,8,9,11,12,13,14,15,1,10,2)

are Hamilton cycle in M₁₅.

3. ENUMERATION OF BASIC HAMILTON CYCLES IN Mn

In this Section the concept of basic Hamilton cycle in the Mangoldt graph M_n is introduced and the number of basic Hamilton cycles in M_n is determined for various forms of n.

Definition 3.1: Let $n \ge 10$ be an integer. A Hamilton cycle of the form

 $(.., l-1, l+1, ..., m-1, m+1, ..., \overline{l, 1, m}, ...)$ where *l* and m are positive integers less than are equal to n, which are not powers of a sing prime, is called a **basic Hamilton cycle** in the Mangoldt graph M_n .

The Hamilton cycles given in the Theorem 2.6, 2.8 and 2.10 are examples of the basic Hamilton cycles in M_n for various forms of n.

Lemma 3.3 : Let n be a positive integer. The number N of positive integers less than or equal to n which are not powers of a single prime is equal to $n - (\alpha_1 + \alpha_2 + . + \alpha_k + 1)$, where $p_1 < p_2 < ... < p_k \le n$ are primes and $\alpha_1, \alpha_2, ..., \alpha_k$ are the largest positive integers such that $p_i^{\alpha}i \le n$, $l \le i \le k$.

Proof: Let n be a positive integer and let $p_1 < p_2 < ... < p_k$ be primes and $\alpha_1, \alpha_2, ..., \alpha_k$ be the largest positive integers such that $p_i^{\alpha} i \le n, l \le i \le k$, the powers of the prime p_i which are less than or equal to n are $p_i^1, p_i^2, ..., p_i^{\alpha} i$, and their number is equal to α_i . Deleting these $\alpha_1, \alpha_2, ..., \alpha_k$ number of positive integers, which are powers of a single prime from 1, 2, 3,...,n we get 1 and the positive integers less than or equal to n which are not powers of a single prime. So number of positive integers less than or equal to $n - (\alpha_1, \alpha_2, ..., \alpha_k + 1) = N$.

Theorem 3.4 : For $n \ge 10$ and $n = 2^r$, r a positive integer, the number of basic Hamilton cycles in the Mangoldt graph M_n is equal to $(n-3) \ge N P_2$.

Proof: Let $n \ge 10$ and $n = 2^r$, r a positive integer. By the Theorem 2.6, the cycle

 $(2, 3, 4, \dots, l-1, l+1, \dots, m-1, m+1, n-3, n-2, n, n-1, [l, 1, m], 2) \dots$

is a basic Hamilton cycle in M_n , where *l* and m, are positive integers less than n which are not powers of a single prime.

Clearly $l \neq n$ and $m \neq n$. By the Lemma 5.4.3 the number of positive integers $\leq n$ which are not powers of a single prime is equal to $N = n - (\alpha_1 + \alpha_2 + + \alpha_k + 1)$ where α_i , $1 \leq i \leq k$, are positive integers such that $p_i^{\alpha} i \leq n$ for primes $p_1 < p_2 < ..., p_k \leq n$.

For every choice of l and m in triad (l, 1, m) from this collection of N positive integers which are not powers of a single prime there is a basic Hamilton cycle of the form (3.1). There are ${}^{N}P_{2}$ choices for l and m from the above N positive integers. So the number of basic Hamilton cycles of the form (3.1) in the Mangoldt graph M_{n} is equal to ${}^{N}P_{2}$.

Taking any one these ${}^{N}P_{2}$ basic Hamilton cycles and replacing the triad (l, 1, m) in any one of the n – 3 places between 2,3; 3,4; ...; l-1, l+1, ...; m – 1, m + 1;; n – 2, n; n,

n - 1 and n, 2 in this basic Hamilton cycle one gets the following n - 3 basic Hamilton cycles, since $(n - 1)2 = (2^r - 1)2$ and this is a product of an odd number $2^r - 1$ and an even number 2 so that it is not a power of a single prime and there is an edge between n - 1 and 2.

 $(2, \frac{l}{l, 1, m}, 3, 4, ..., l-1, l+1, ..., m-1, m+1, ..., n-3, n-2, n, n-1, 2),$

 $(2, 3, [\underline{l,1,m}], 4, ..., l-1, l+1, ..., m-1, m+1, ..., n-3, n-2, n, n-1, 2),$

 $(2, 3, 4, ..., l - 1, \overline{l, 1, m}, l + 1, ..., m - 1, m + 1, ..., n - 3, n - 2, n, n - 1, 2),$

.....

•••••

 $(2, 3, 4, ..., l-1, l+1, ..., m-1, \underline{l,1, m}, m+1, ..., n-3, n-2, n, n-1, 2),$

.....

(2, 3, 4,, l-1, l+1, ..., m-1, m+1, ..., n-3, n-2, n, n-1, $\overline{l, 1, m}$, 2).

So that the number of basic Hamilton cycles is in M_n equal to $(n-3) \ge x^N P_2$

Example 3.5 : Consider the Mangoldt graph M_{16} . Here $n = 16 = 2^4$ and n - 1 = 15 which is not a prime power. Also $\alpha_1 = 4$, $\alpha_2 = 2$, $\alpha_3 = \alpha_4 = \alpha_5 = \alpha_6 = 1$. So the number of positive integers less than 16 which are not powers of a single prime and 1 is equal to N = 16 - (4 + 2 + 1 + 1 + 1 + 1 + 1) = 16 - 11 = 5 and the number of basic Hamilton cycles in the Mangoldt graph M_{16} is equal to

 $(n-3) x^{N}P_{2} = (16-3) x^{5}P_{2} = 13 x 5 x 4 = 260.$

Theorem 3.6: Let $n \ge 10$ be an integer such that $n = p^r$, p a prime $p \ne 2$ and r a pisitive integer. The number of basic Hamilton cycles in the Mangoldt graph M_n is equal to $(n-3) x^N P_2$.

Proof: Let $n \ge 10$ be an integer such that $n = p^r p$ a prime, $p \ne 2$ and r positive integer. By the Theorem 2.8, the cycle

$$(2, 3, 4, \dots, l-1, l+1, \dots, m-1, m+1, n-2, n-1, n, l, 1, m, 2) \dots (3.2)$$

is a basic Hamilton cycle in M_n , where *l* and m are positive integers less than or equal to n which are not primes of a single prime. Clearly $l \neq n$ and $m \neq n$.

As in Theorem 3.4 one can see that the number of basic Hamilton cycles of the form 3.2, in the Mangoldt graph M_n is equal to ${}^{N}P_2$ Choosing any one these ${}^{N}P_2$ basic Hamilton cycles and replacing the triad (l, 1, m) in any one of the n – 3 places between

2,3 ; 3,4 ; ...; l-1, l+1, ...; m-1, m+1;; n-2, n-1; n-1, n, and n, 2 in this basic Hamilton cycle one gets the following n-3 basic Hamilton cycles, since $n \ge 2 = p^r \ge 2$, $p \ne 2$ and this not a power of a single prime so that there is an edge between n and 2.

 $(2, \underline{l, 1, m}, 3, 4, ..., l-1, l+1, ..., m-1, m+1, ..., m-1, m+1, ..., n-2, n-1, n, 2),$

 $(2, 3, \overline{l,1, m}, 4, ..., l-1, l+1, ..., m-1, m+1, ..., n-2, n-1, n, 2),$

(2, 3, 4, ..., l - 1, l, 1, m), l + 1, ..., m - 1, m + 1, ..., n - 2, n - 1, n, 2),

.....

(2, 3, 4, ..., l-1, l+1, ..., m-1, l, 1, m, m+1, ..., n-2, n -1, n, 2),

(2, 3, 4, ..., l-1, l+1, ..., m-1, m+1, ..., n-2, n-1, n, l, 1, m, 2).

.....

So the number of cycles is in M_n equal to $(n-3) \times {}^{N} P_2$.

Example 3.7: Consider the Mangoldt graph M₂₅. Here n = $25 = 5^2$. Also $\alpha_1 = 4$, $\alpha_2 = 2$, $\alpha_3 = 2$, $\alpha_4 = \alpha_5 = \alpha_6 = \alpha_7 = \alpha_8 = \alpha_9 = 1$. The number N of positive integers less than 25 which are not a powers of a single prime and 1 is given by

N=25 –(4 + 2 + 2 1 + 1 + 1 + 1 + 1 + 1 + 1) = 25 – 15 = 10 thus the number of basic Hamilton cycles in the Mangoldt graph M_{25} is equal to

 $(n-3) x^{N}P_{2} = (25-3) x^{10}P_{2} = 22 x 10 x 9 = 1980.$

Theorem 3.8 : Let $n \ge 10$ be an integer which is not a power of a single prime. The number of basic Hamilton cycles in the Mangoldt graph M_n is equal to $(n-3) \ge N^{N-1}P_2 + 2(n-2)(N-1)$.

Proof: Let $n \ge 10$ be an integer which is not a power of a single prime.

Let $l \le n$ and $m \le n$, $l \ne m$ be positive integers which are not powers of a single prime.

Case (1): Let $l \leq n$ and $m \leq n$.

In the Theorem 2.10, we have seen that $(2, 3, 4, ..., l-1, l+1, ..., m-1, m+1, n-2, n-1, n, [l, 1, m], 2) \dots (3.3)$

is a basic Hamilton cycle in M_n,

By the Lemma 3.3, the number of positive integers \leq n which are not powers of a single prime and 1 is equal to $N = n - (\alpha_1 + \alpha_2 + \dots + \alpha_k + 1)$ where α_i , $1 \le i \le k$, are positive integers < n (since $l \neq n$ and $m \neq n$) which are not powers of a single prime is equal to N - 1. The number of basic Hamilton cycle of the form (3.3) are got by choosing all possible l and m in triad (l, 1, m) from these N – 1 positive integers < n which are not powers of a sing prime. Thus the number of basic Hamilton cycles of the form (3.3) in the Mangoldt graph M_n is equal to ${}^{(N-1)}P_2$. Choosing any one of these $(N-1)P_2$ basic Hamilton cycles and replacing the triad (l, 1, m) in any one of the n – 3 places between 2,3; 3,4; $\dots; l-1, l+1, \dots; m-1, m+1; \dots; n-2, n-1; n-1, n$ and n, 2 we get n - 3 basic Hamilton cycles. Thus the number of basic Hamilton cycles in M_n is equal to (n-3) x $^{(N-1)}P_2$.

Case (2): Let l = n and $m \neq n$.

Subcase (1): Let n - 1 be not a power of 2.

By the Subcase (1) of Case (2) of the Theorem 2.10, the cycle

 $(2, 3, 4, ..., m-1, m+1, ..., n-2, n-1, n, l, m, 2) \dots (3.4)$

is a basic Hamilton cycle in M_n , where $m \neq n$ is a positive integer which is not a power of single prime.

Since the number of positive integers m < n which are not powers of a single prime is equal to N - 1, the total number of basic Hamilton cycle of the form (3.4) in Mangoldt graph M_n is equal to N - 1. It is easy to see that (since n - 1 is not a power of 2) by replacing the triad (n, l, m) in any one of the n - 2 places between 2,3; 3,4; ...; m - 1, m + 1;; n - 2, n - 1; and n - 1, 2 of any one the N - 1 basic Hamilton cycles of the form (3.4) one gets the following n - 2 basic Hamilton cycles so that the number of basic Hamilton cycles in M_n is equal to (n - 2) (N - 1).

Subcase (2): Let n - 1 be a power of 2.

By the Subcase (2) of Case (2) of the Theorem 2.10, the cycle

(2,3,4,.., m-1, m+1, .., n-3, n-1, n-2, [n, l, m], 2)...(3.5)is a basic Hamilton cycle in M_n , where $m \neq n$ is a not a power of a single prime and n-1 is a power of 2. As in Subcase (1) the number of basic Hamilton cycles of the form (3.5) in M_n is equal to N-1. By replacing the triad (n, l, m) in any one of the n-2 places between 2,3; 3,4; ...; m-1, m+1; ...; n-3, n-1; n-1, n-2 and n-2, 2 of in any of the N-1basic Hamilton cycles of the form (3.5) one gets the following n-2 basic Hamilton cycles, since n-1 is power of 2, $(n-2)2 = (2^8 - 1)2$ for some integer s > 1 and this is not a power of a single prime since $2^s - 1$ is odd and 2 is even so that (n-2, 2) is an edge in M_n . The number of basic Hamilton cycles in M_n is equal to (n-2)(N-1).

Case (3): Let $l \neq n$ and $m \neq n$.

As in the Case (2) one can see that the number of basic Hamilton cycles in M_n is equal to (n-2)(N-1).

From these three cases it follows that when n is not a power of a single prime the number of basic Hamilton cycles in the Mangoldt graph M_n is equal to

$$(n-3) x^{(N-1)} P_2 + (n-2) (N-1) + (n-2) (N-1)$$

= $(n-3) x^{(N-1)} P_2 + 2(n-2) (N-1)$.
Example 3.9 : Consider the Mangoldt graph M., Here n =

Example 3.9 : Consider the Mangoldt graph M_{15} . Here n = 15 Also $\alpha_1 = 3$, $\alpha_2 = 2$, α_3 , $\alpha_4 = \alpha_5 = \alpha_6 = 1$. The number of positive integers less than or equal to 50 which are not powers of a single prime and 1 is given by

N = 15 - (3 + 2 + 1 + 1 + 1 + 1 + 1) = 15 - 10 = 5 and the number of basic Hamilton cycles in the Mangoldt graph M_{15} is equal to (n - 3) x $^{(N-1)}P_2$ + 2 (n - 2) (N - 1) = (15 - 3) x $^{(5-1)}P_2$ + 2(15 - 2)(5 - 1) = 12 x 4 x 3 + 2 x 13 x 4 = 144 + 104 = 248.

Conclusion : The basic Hamilton Cycles Enumerated in section 3 are not disjoint and their number is too large. It will be interesting to find out the number of **disjoint** basic Hamilton Cycles in the Mangoldt Graph M_n for given integer $n \ge 1$, in which case their number will be less and easy to handle.

4. ACKNOWLEDGEMENT

The authors express their thanks to Prof. L. Nagamuni Reddy for his suggestions during the preparation of this paper and the referee for his suggestions.

5. **REFERENCES**

[1] Apostol, T. M., - Introduction to Analytic Number Theory, Springer international student Edition (1989).

International Journal of Computer Applications (0975 – 8887) Volume 99– No.4, August 2014

- [2] Berrizbeitia P. and Giudici R.E., Counting pure k cycles in sequences of Cayley Graphs, Discrete Math., 149, 11-18 (1996).
- [3] Berrizbeitia P. and Giudici R.E.,; On Cycles in the sequence of unitary Cayley graphs. Reporte Techico No.01-95, Universibad Simon Bolivar, Dpto, de Mathematics, Caracas, Venezuela (1995).
- [4] Bondy J.A. and Murty U.S.R.; Graph Theory with Applications, Macmillan, London (1976).
- [5] Dejter I. and Giudici R.E.; On unitary Cayley graphs, JCMCC, 18 121-124 (1995).
- [6] Dickson E. History of Theory of Numbers, Vol.1, Chelsea Publishing Company (1952).
- [7] Madhavi L. and Maheswari B.; Enumeration of Hamilton cycles and triangles in quadratic residue Cayley graphs, Chamchuri J.Math., 1(1), 95-103 (2009).

- [8] Madhavi, L., and Maheswari, B., Edge cover Domination in Mangoldt Graph, MEJS, 3(1): 37-51, (2011).
- [9] Maheswari, B., and Madhavi, L., Vertex Domination in Mangoldt Graph, Journal of APSMS, Vol(1), NO.2, pp 184-190, (2008).
- [10] Maheswari, B., and Madhavi, L., Counting of Triangles in Mangoldt Graph, J.Pure and Appl., Phys. Vol.20, NO.3, pp. 165-169, July-Sep (2008).
- [11] Nathanson, B. Melvyn., Connected Components of Arithmetic Graphs, Monat. fur.Math, 29(1980).
- [12] Vasumathi, N., Number Theoretic Graphs, Doctoral Thesis submitted to S.V.University, Tirupati, India, (1994).