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ABSTRACT 
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notion of a basic Hamilton cycles in Mn is introduced and 
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1. INTRODUCTION 
Nathanson [11] introduced the concepts of Number Theory, 

particularly, the theory of congruences into Graph Theory, 

which paved the way for the emergence of Arithmetic 

Graphs. Maheswari and Madhavi[8,9,10] introduced the 

Mangoldt graph Mn which is an arithmetic graph associated 

with the Mangoldt function (n), n ≥ 1, an integer. It is shown 

that Mn is connected and neither bipartite nor a tree for n ≥ 6 . 

Further they have studied the vertex domination and edge 

domination and gave a formula for the number of triangles    

In this study the Hamiltonian nature of Mn is established for 

various forms of n by exhibiting the Hamilton cycles in the 

general setup and using these Hamilton cycles the notion of 

basic Hamilton cycle is introduced in Mn  and their number is 

enumerated. 

2. HAMILTONIAN PROPERTY OF THE 

MANGOLDT GRAPH MN  

Definition 2.1: Let n ≥ 1  be an integer. The Mangoldt 

function (n),  is defined as follows:  

                      
                             

                                       
  

For example, (4) = (22) = log 2 . (6) = 0   

and  (8) = (22) = log 2.  

Definition 2.2[1]: Let n ≥ 1 be an integer. The Mangoldt 

graph Mn  is the graph whose vertex set is { 1, 2, …, n } and 

the edge set is { ( x , y ) :  ( x . y ) = 0 , 1 ≤  x, y ≤  n and       

x ≠  y. 

That is, the vertices   and   of are adjacent if and only if x . y 

is not a power of prime. Clearly Mn is a simple undirected 

graph without loops. 

 

Example 2.3: The graphs M6 and M7 are given below: 

 

                  M6                 M7 

 Fig 2.2.1           Fig 2.2.2 

Lemma 2.4: Let n ≥ 1 be an integer. For all vertices               

u, 1 < u < n, ( u, u + 1 ) is an edge of Mn . . 

Proof: For all vertices Mn  in, one of u and u + 1   is even and 

the other odd. So u ( u + 1 )  is not a power of a single prime 

so that there is an edge between u and u + 1.              ■ 

It is evident that the vertex 1 is an isolated vertex in the graphs 

M1 , M2 , M3, M4 and   M5  and thus these graphs are not 

Hamiltonian. In M6 , M7 , M8  and M9, the vertex 1 is adjacent 

only to the vertex 6 and hence its degree is one. So the vertex 

1  does not belong to any cycle in these graphs, as the degree 

of a vertex in a cycle must be two. Thus these graphs do not 

contain Hamilton cycles and hence they are not Hamiltonian. 

So Mn is not Hamiltonian for n < 10.  In the following it is 

established that for n ≥ 10 the graph Mn  is Hamiltonian. The 

following number theoretic result is needed.  

Lemma 2.5 : For an integer m > 1, (m-1) (m+1) is not a 

power of a single prime. 

Proof:  If m is odd then m – 1 and m + 1 are both even so 

that m – 1 = 2r and m + 1 = 2r + 2 = 2( r + 1 ) for some 

positive integer r.  So ( m – 1) ( m + 1 ) = 22 r (r + 1) and this 

is not a power of single prime since one of r and r + 1 is odd 

the other even.  

If m is even m – 1 and m + 1 are both odd.  Suppose ( m – 1 ) 

( m + 1 ) = ql for some odd prime q and integer l  > 1 .  Then 

m – 1 = qs and m + 1 = qt for some integers s, t, s < t,  s ≥ 1 

and s + t = l.  Also we have qt – qs = 2 with s < t.  Since q > 2,  

qt – qs = 2 with s < t.  Since q > 2,   qt – qs = qs ( qt-s – 1 ) > 2, 

for all values of q, t, s which is a contradiction to qt – qs = 2.  

So ( m – 1 ) ( m + 1 ) is not a power of a single prime.  

Theorem 2.6:  For n ≥ 10 and n = 2r, r is a positive 

integer, Mn is Hamiltonian.  

Proof :  Let n ≥ 10 and n = 2r , r a positive integer.  There is 

no edge between 1 and 2 as well as 1 and n in Mn since            

1 x 2 = 2 and 1 x n = 2r are powers of the prime 2.  
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For positive integers l and m, l ≠ m which are less than n and 

not power of a single prime, consider the following vertex 

sequence in Mn. 

( 2, 3, 4,…., l – 1 , l + 1 , …., m – 1, m +1 , …..,    n – 3, n – 2,  

n, n – 1 ,   l,  1, m , 2 )  

By the Lemma 2.4, there exist an edge between u and u + 1 

for all vertices u, 1 < u < n, in Mn .  By the Lemma 2.6,( l – 1 ) 

( l + 1) and ( m – 1 ) ( m + 1 ) are not powers of a single 

prime.  So there is an edge between l – 1 and  l + 1 as well as 

m – 1 and m + 1 .  Also n ( n – 2 ) = 2r ( 2r – 2) = 2r+1(2r-1 –1 ).  

This is a product of an even number 2r+1 and an odd number 

2r+1 and an odd number 2r-1 – 1 so that it is not a power of a 

single prime.  So there is an edge between n – 2 and n.  

Since each of l and m is not a power of a single prime.           

(n – 1) x l , l x 1 , l x m and m x 2 are also not powers of a 

single prime.  Therefore ( n – 1, l ), ( l, 1), ( l, m ) and ( m, 2 ) 

are edges in Mn .  Thus the vertex sequence ( 2, 3, 4,., l – 1 ,    

l + 1 ,…., m – 1, m +1 , …., n – 3, n – 2 , n, n – 1 ,  l,  1, m,2 ) 

is a Hamilton cycle in Mn  and hence Mn is Hamiltonian. 

Example 2.7: For n = 24 = 16 the vertex sequences  

(i) (2,3,4,5,7,8,9,11,12,13,14,16,15,6,1,10 , 2) 

(ii) (2,3,4,5,7,8,9,10,11,13,14,16,15,6,1,12, 2) 

are Hamilton cycles in M16.  The graphs of these Hamilton 

cycles are given below.  

 

       Hamilton cycle (i)       Hamilton cycle (ii)  

            Fig. 2.2.3                            Fig. 2.2.4 

Theorem 2.8:  For n ≥ 10 and n = pr , p is a prime, p ≠ 2 

and r a positive integer, the graph Mn is Hamiltonian. 

Proof: For n ≥ 10 and n = pr , p is a prime,  p ≠ 2 and r a 

positive integer.  There is no edge between 1 and 2 since 1 x 2 

is  a power of 2 and there is no edge between 1 and n since     

1 x n = pr, p a prime.  

Let l and m , l ≠ m be a positive integers which are not powers 

of a single prime. Evidently l ≠ 1, n and m ≠ 1, n.  Consider 

the following vertex sequence in Mn . 

( 2, 3, 4,…., l – 1 , l + 1 , …., m – 1, m +1 , …..,    n – 2, n – 1 

, n,    l,  1, m ,2 ) . 

By the Lemma 2.4 and 2.5, there edges in Mn between the 

pairs ( l – 1, l + 1 ), ( m – 1, m + 1 ) and ( u, u + 1 ), u  Mn,  

1 < u < n.  Also there is an edge between n and 2 since           

2 x n = 2pr, p ≠ 2. 

Further n x l , l x 1, l x m and m x 2 are not powers of  a 

single prime so that ( n , l ), ( l, 1 ), ( l, m ) and ( m , 2 ) are 

edges in Mn .  So the vertex sequence  ( 2, 3, 4,, l – 1 , l + 1 , 

….,     m – 1, m +1 , …..,    n – 2, n – 1 , n,   l,  1, m ,2 )  is a 

Hamilton cycle in Mn and Mn is Hamiltonian. 

Example 2.9:  For n = 52 = 25 the vertex sequences 

(i) (2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,

23,24,25,6,1,20 , 2) 

(ii) (2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,

22,23,25,6,1,24, 2)  

are Hamilton cycles in M25. 

Theorem 2.10 : For n ≥ 10 and n not a power of a single 

prime the graph Mn is Hamiltonian. 

Proof :  Let  n ≥ 10 and n not a power of a single prime. 

Let l and m, l ≠ m be positive integers less than or equal to n, 

which are not powers of a single prime.  The following three 

cases will arise.  

Case (1)  : Let l ≠ m and m ≠ n .  As in the Theorem 2.8 

one can see that the vertex sequence  

( 2, 3, 4,…., l – 1 , l + 1 , ….,     m – 1, m +1 , …..,    n – 2,       

n – 1 , n,    l,  1, m ,2 )  is a Hamilton cycle in Mn. 

Case (2) :  Let l = n and m ≠ n.  The following two sub 

cases will arise.  

Subcase (1) : Let n – 1 be not a power of 2.  It is easy to 

see that the vertex sequence  

( 2, 3, 4,…., m – 1 , m + 1 , ….,   n – 2, n – 1 ,     n,  1, m ,2 )  

is a Hamilton cycle in Mn. 

Subcase (2) : Let n – 1 be a power of 2.  Consider the 

following vertex sequence in Mn ( 2, 3, 4,…., m – 1 , m + 1 ,., 

n – 3, n – 1, n – 2 ,   n,  1, m ,2 ). 

Clearly the pairs ( 2, 3) , ( 3, 4 ) , …….( m – 1 , m + 1 ) …..,    

( n – 1 , n – 2 ), ( n – 2 , n ) ( n , 1 ) , ( l , m ) and ( m , 2 ) are 

adjacent in Mn . The vertices n – 2 and n – 1 are also adjacent 

if ( n – 3 ) ( n – 1 ) is not a power of a single prime.    Suppose 

that ( n – 3 ) ( n – 1 ) is not a power of a single prime.  

Suppose that ( n – 3) ( n – 1 ) = pr for some prime p and r a 

positive integer.   Then n – 3 = ps for some positive integers s , 

t and  s < t.   This gives pt – ps = ( n – 1 ) – ( n – 3 ) = 2 which 

is true only for the least values of p, s and t namely, p = 2 ,      

s = 1 and t = 2 .  But for p = 2 , s = 1 and t = 2 we have n – 3 = 

ps = 2, or, n = 5 which is a contradiction to n ≥ 10. So             

(n –3)( n – 1 )  is not a power of a single prime and thus n – 2 

and n – 1 are adjacent in Mn.  These show the vertex 

sequence.  

( 2, 3, 4,., m – 1 , m + 1 , .,  n – 3, n – 1, n – 2,  n, 1, m ,2 ) is a 

Hamilton cycle in Mn. 

Case (3) : Let l ≠ n and m = n .  

Subcase (1) :  Let n – 1 be not a power of 2.  As in 

Subcase (1) of Case (2), it is easy to see that the vertex 

sequence  

( 2, 3, 4,…., l – 1 , l + 1 , .,   n – 3, n – 3 , n – 1      l,  1, n , 2 ) 

is a Hamilton cycle in Mn. 

Subcase (2) :  Let n – 1 be a power of 2.  Again as in 

Subcase (2) of Case (2), one can see that the vertex sequence  

( 2, 3, 4,., l – 1 , l + 1 , ….,   n – 3, n – 1 , n – 2 ,   l,  1, n , 2 ) 

is a Hamilton cycle in Mn . So Mn is Hamiltonian in this case 

also.  

Example 2.11 : For n = 15 the vertex sequences  
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(i) (2,3,4,5,7,8,9,11,12,13,14,15,6,1,10 , 2) 

(ii) (2,3,4,5,6,7,8,9,11,12,13,14,15,1,10, 2)  

are Hamilton cycle in M15. 

3. ENUMERATION OF BASIC 

HAMILTON CYCLES IN Mn 

In this Section the concept of basic Hamilton cycle in the 

Mangoldt graph Mn is introduced and the number of basic 

Hamilton cycles in Mn is determined for various forms of n.  

Definition 3.1: Let n ≥ 10 be an integer.  A Hamilton 
cycle of the form  

(.., l – 1 , l + 1,….., m – 1, m + 1, …., l, 1, m ,….) where l and 

m are positive integers less than are equal to n, which are not 

powers of a sing prime, is called a basic Hamilton cycle in 

the Mangoldt graph Mn . 

The Hamilton cycles given in the Theorem 2.6, 2.8 and 2.10 

are examples of the basic Hamilton cycles in Mn for various 

forms of n.  

Lemma 3.3 :  Let n be a positive integer. The number N 

of positive integers less than or equal to n which are not 

powers of a single prime is equal to n – (1 + 2 + . + k + 1 ), 

where p1 < p2 < …< pk ≤ n are primes and 1, 2, …,k are 

the largest positive integers such that   
 i ≤ n, l ≤ i ≤ k.  

Proof: Let n be a positive integer and let p1 < p2 < …< pk  be 

primes and 1, 2, …,k be the largest positive integers such 

that   
  ≤ n, l ≤ i ≤ k, the powers of the prime pi which are less 

than or equal to n are   
    

       
   , and their number is 

equal to i .  Deleting these 1, 2, …,k  number of positive 

integers, which are  powers of a single prime from 1, 2, 

3,…..,n we get 1 and the positive integers less than or equal to 

n which are not powers of a single prime.  So number of 

positive integers less than or equal to n which are not powers 

of a single prime equal to  n – (1, 2, …,k + 1 ) = N.  

Theorem 3.4 : For n ≥ 10 and n = 2r , r a positive integer, 

the number of basic Hamilton cycles in the Mangoldt graph  

Mn is equal to  ( n – 3 ) x  N    . 

Proof: Let n ≥ 10 and n = 2r , r a positive integer. By the 

Theorem 2.6, the cycle 

( 2, 3, 4,…., l – 1 , l + 1 , ….,   m – 1, m + 1 ,        n – 3, n – 2, 

n, n – 1 ,  l,  1, m , 2 ) ……     (3.1)  

is a basic Hamilton cycle in Mn , where l and m, are positive 

integers less than n which are not powers of  a single prime. 

Clearly l ≠ n and m  ≠ n.  By the Lemma 5.4.3 the number of 

positive integers ≤ n which are not powers of a single prime is 

equal to N = n – (1 + 2 + …. + k + 1 ) where i , 1 ≤ i ≤ k, 

are positive integers such that   
   ≤ n for primes p1 < p2 < …, 

pk ≤ n. 

For every choice of l and m in triad ( l, 1, m ) from this 

collection of N positive integers which are not powers of a 

single prime there is a basic Hamilton cycle of the form (3.1).  

There are N   choices for l and m from the above N positive 

integers.  So the number of basic Hamilton cycles of the form   

( 3.1) in the Mangoldt graph Mn  is equal to   N    . 

Taking any one these N   basic Hamilton cycles and replacing 

the triad ( l, 1, m ) in any one of the n – 3 places between     

2,3 ; 3,4 ; …; l – 1 , l +1 , ….; m – 1 , m + 1 ; ….; n – 2 , n ; n, 

n – 1  and n, 2 in this basic Hamilton cycle one gets the 

following n – 3 basic Hamilton cycles, since ( n – 1)2 =           

( 2r – 1)2 and this is a product of an odd number 2r – 1 and an 

even number 2 so that it is not a power of a single prime and 

there is an edge between n – 1 and 2.  

( 2, l, 1, m , 3, 4, …., l – 1 , l + 1 , …, m – 1,  m + 1 ,…, n – 3, 

n – 2 , n, n – 1 , 2 ),  

( 2, 3, l,1, m , 4, …., l – 1 , l + 1 , …, m – 1,  m + 1 , …, n – 3, 

n – 2 , n, n – 1 , 2 ),  

………        …………. 

( 2, 3, 4,….,l -1, l,1, m ,  l + 1 , …, m – 1, m + 1 ,.. , n – 3,      

n – 2 , n, n – 1 , 2 ),  

………..    …………... 

( 2, 3,4,…l – 1 , l + 1, …, m – 1,  l,1, m , m + 1 , …, n – 3,     

n – 2 , n, n – 1 , 2 ),  

………        …………. 

( 2, 3, 4, …., l – 1 , l + 1 , …, m – 1,  m + 1 , …, n – 3, n – 2 , 

n, n – 1, l, 1, m, 2 ). 

So that the number of basic Hamilton cycles is in Mn equal to 

( n – 3 ) x N            ■ 

Example 3.5 : Consider the Mangoldt graph M16 .  Here    

n = 16 = 24 and n – 1 = 15 which is not a prime power.  Also 

1 = 4, 2 = 2, 3 = 4 = 5 = 6 = 1.  So the number of 

positive integers less than 16 which are not powers of a single 

prime and 1 is equal to N = 16 – ( 4 + 2 + 1 + 1 + 1 + 1 + 1 ) = 

16 – 11 = 5 and the number of basic Hamilton cycles in the 

Mangoldt graph M16 is equal to  

( n – 3 ) x N   = ( 16 – 3 ) x 5    = 13 x 5 x 4 = 260. 

Theorem 3.6 : Let n ≥ 10 be an integer  such that n = pr , 

p a prime p ≠ 2 and r a pisitive integer.  The number of basic 

Hamilton cycles in the Mangoldt graph Mn is equal to              

( n – 3 ) x N    . 

Proof: Let n ≥ 10 be an integer such that n = pr p a prime , 

p ≠ 2 and r positive integer. By the Theorem 2.8, the cycle 

( 2, 3, 4,…., l – 1 , l + 1 , ….,   m – 1, m + 1 ,        n – 2, n – 1, 

n,   l,  1, m , 2 ) ……..     (3.2)  

is a basic Hamilton cycle in Mn , where l and m are positive 

integers less than or equal to n which are not primes of a 

single prime. Clearly l ≠ n and m  ≠ n.   

As in Theorem 3.4 one can see that the  number of basic 

Hamilton cycles of the form 3.2, in the Mangoldt graph Mn is 

equal to N    Choosing any one these N   basic Hamilton 

cycles and replacing the triad ( l, 1, m ) in any one of the n – 3 

places between  

2,3 ; 3,4 ; …; l – 1 , l +1 , ….; m – 1 , m + 1 ; ….; n – 2 ,        

n – 1; n – 1, n, and n, 2 in this basic Hamilton cycle one gets 

the following  n –3 basic Hamilton cycles, since n x 2 = pr x 2, 

p ≠ 2 and this not a power of a single prime so that there  is an 

edge between n and 2.  

( 2, l, 1, m , 3, 4, …., l – 1 , l + 1 , …, m – 1,       m + 1 , …,    

n – 2 , n – 1, n,  2 ),  

( 2, 3, l,1, m , 4, …., l – 1 , l + 1 , …, m – 1,       m + 1 , …,     

n – 2, n – 1 , n,  2 ),  
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………        …………. 

( 2, 3, 4,….,l -1, l,1, m ,  l + 1 , …, m – 1, m + 1 , …,  n – 2 ,   

n – 1 , n, 2 ),  

………..    …………... 

( 2, 3,4,…l – 1 , l + 1, …, m – 1,  l,1, m , m + 1 , …, n – 2,    n 

– 1, n,  2 ),  

………        …………. 

( 2, 3, 4, …., l – 1 , l + 1 , …, m – 1,  m + 1 , …,  n – 2 , n – 1, 

n, l, 1, m, 2 ). 

So the number of cycles is in Mn equal to  ( n – 3) x  N   .  

Example 3.7 : Consider the Mangoldt graph M25 .  Here n 

= 25 = 52 . Also 1 = 4, 2 = 2,       3 = 2,  4 = 5 = 6 = 7 = 

8 = 9  = 1. The number N of positive integers less than 25 

which are not a  powers of a single prime and 1 is given by  

 N = 25 –(4 + 2 + 2 1 + 1 + 1 + 1 + 1 + 1 + 1 ) = 25 – 15 = 10 

thus the number of basic Hamilton cycles in the Mangoldt 

graph M25  is equal to  

( n – 3 ) x N   = ( 25 – 3 ) x 10    = 22 x 10 x 9 = 1980. 

Theorem 3.8 : Let n ≥ 10 be an integer  which is not a 

power of a single prime.  The number of basic Hamilton 

cycles in the Mangoldt graph Mn is equal to ( n – 3 ) x N-1    + 

2( n – 2 ) ( N – 1 ). 

Proof: Let n ≥ 10 be an integer which is not a power of a 

single prime. 

Let l ≤ n and m ≤ n, l ≠ m be positive integers which are not 

powers of a single prime. 

Case (1) :  Let l ≤ n and m ≤ n .  

In the Theorem 2.10, we have seen that ( 2, 3, 4,…., l – 1 , l + 

1 , ….,   m – 1, m + 1 ,  n – 2, n – 1, n,   l,  1, m ,2 ) …  (3.3)  

is a basic Hamilton cycle in Mn ,  

By the Lemma 3.3, the number of positive integers ≤ n which 

are not powers of a single prime and 1 is equal to                   

N = n – (1 + 2 + …. + k + 1 ) where i , 1 ≤ i ≤ k, are 

positive integers < n ( since l ≠ n and m ≠ n ) which are not 

powers of a single prime is equal to N – 1 . The number of 

basic Hamilton cycle of the form (3.3) are got by choosing all 

possible l and m in triad ( l, 1, m ) from these N – 1 positive 

integers < n which are not powers of a sing prime.  Thus the 

number of basic Hamilton cycles of the form ( 3.3) in the 

Mangoldt graph Mn  is equal to (N-1)
    . Choosing any one of 

these  (N-1)   basic Hamilton cycles and replacing the triad       

( l, 1, m ) in any one of the n – 3 places between  2,3 ; 3,4 ; 

…; l – 1 , l +1 , ….; m – 1 , m + 1 ; ….; n – 2 , n – 1; n – 1 , n  

and n, 2  we get n – 3 basic Hamilton cycles.  Thus the 

number of basic Hamilton cycles in Mn is equal to  ( n – 3 ) x 
(N-1)   .  

Case (2) :  Let l = n and m ≠ n.  

Subcase (1) :  Let n – 1 be not a power of 2. 

By the Subcase (1) of Case (2) of the Theorem 2.10, the cycle  

( 2, 3, 4,..,  m – 1, m + 1 , ..,  n – 2, n – 1,  n,  l, m ,2 ) … (3.4) 

is a basic Hamilton cycle in Mn, where m ≠ n is a positive 

integer which is not a power of single prime.  

Since the number of positive integers   m < n  which are not 

powers of a single prime  is equal to N – 1, the total number 

of basic  Hamilton cycle of the form (3.4) in Mangoldt graph 

Mn  is equal to  N – 1.  It is easy to see that  ( since n – 1 is not 

a power of 2 ) by replacing the triad ( n, l, m ) in any one of 

the n – 2 places between 2,3 ; 3,4 ; …;  m – 1 , m + 1 ; ….;     

n – 2 , n – 1; and n – 1, 2   of any one the  N – 1 basic 

Hamilton cycles of the form ( 3.4 ) one gets the following  n – 

2 basic Hamilton cycles so that the number of basic Hamilton 

cycles in Mn is equal to  ( n – 2 )      ( N – 1 ).  

Subcase (2) :  Let n – 1 be a power of 2. 

By the Subcase (2) of Case (2) of the Theorem 2.10, the cycle  

(2,3,4,., m – 1, m + 1 , ., n – 3, n – 1, n – 2,  n, l, m ,2)…(3.5)                                            

is a basic Hamilton cycle in Mn, where m ≠ n is a not a power 

of a single prime and n – 1 is a power of 2.  As in Subcase (1) 

the number of basic Hamilton cycles of the form ( 3.5) in  Mn  

is equal to  N – 1.  By replacing the triad ( n, l, m ) in any one 

of the n – 2 places between  2,3 ; 3,4 ; …;  m – 1 , m + 1 ; ….; 

n – 3 , n – 1;   n – 1 , n – 2 and n – 2, 2   of in any of the  N – 1 

basic Hamilton cycles of the form ( 3.5 ) one gets the 

following  n – 2 basic Hamilton cycles, since n – 1 is power of 

2, ( n – 2 )2 = ( 2s – 1 )2 for some integer s > 1 and this is not 

a power of a single prime since 2s – 1 is odd and 2 is even so 

that (n – 2, 2) is an edge in Mn. The number of basic Hamilton 

cycles in Mn is equal to ( n – 2 )( N – 1 ).  

Case (3) :  Let l ≠ n and m ≠ n.  

As in the Case (2) one can see that the number of basic 

Hamilton cycles in Mn is equal to ( n – 2) ( N – 1 ). 

From these three cases it follows that when n is not a power of 

a single prime the number of basic Hamilton cycles in the 

Mangoldt graph Mn is equal to  

( n – 3 ) x ( N - 1)    +  ( n – 2 ) ( N – 1 ) + ( n – 2 ) (N – 1 ) 

=  ( n – 3 ) x  ( N - 1)    + 2( n – 2 ) ( N – 1 ). 

Example 3.9 : Consider the Mangoldt graph M15. Here n = 15   

Also 1 = 3, 2 = 2, 3 , 4 = 5 = 6 = 1. The number of 

positive integers less than or equal to 50  which are not   

powers of a single prime and 1 is given by   

N = 15 – ( 3 + 2 +  1 + 1 + 1 + 1 + 1 ) = 15 – 10 = 5  and  the 

number of basic Hamilton cycles in the Mangoldt graph M15  

is equal to ( n – 3 ) x ( N - 1)   + 2 ( n – 2 ) ( N – 1 ) = (15– 3) x 
(5-1)    + 2( 15 – 2 )( 5 -1) = 12 x 4 x 3 + 2 x 13 x 4 = 144 + 

104 = 248. 

Conclusion : The basic Hamilton Cycles Enumerated in 

section 3 are not disjoint and their number is too large.  It  will 

be interesting to find out the number of disjoint basic 

Hamilton Cycles in the Mangoldt Graph Mn for given integer 

n ≥ 1, in which case their number  will be less and easy to 

handle.  
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