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ABSTRACT 
This paper aims to establish a solution methodology for the 

optimal design of digital infinite impulse response (IIR) filters 

by integrating the features of cat swarm optimization (CSO) and 

differential evolution algorithm (DE). DE is a population based 

stochastic optimization technique which optimizes real valued 

functions. It requires negligible control parameter tuning but 

sometimes causes instability problem. CSO is a heuristic 

optimization algorithm based on the observations and imitation 

of the natural behavior of cats. CSO algorithm possesses local 

as well as global search capabilities. Although, CSO possesses 

better capability to search optimal point but it requires a higher 

computation time because the local and global searches are 

carried out independently in each iteration. A hybrid algorithm 

is proposed using the CSO algorithm and the DE optimization 

algorithm for the robust and stable design of digital IIR filter. 

To start with a better solution set, opposition based learning 

strategy is incorporated. The proposed method explores and 

exploits the search space locally as well as globally. The design 

criterion undertakes the minimization of magnitude 

approximation error and ripple magnitudes of both pass-band 

and stop-band satisfying the stability requirements. The 

developed hybrid algorithm is effectively applied for designing 

the digital low-pass, high-pass, band-pass and band-stop filters. 

The computational results demonstrate that the proposed 

algorithm is capable of creating designs that are competitive 

with reference to other design processes and can efficiently be 

applied for higher order filter design. 

Keywords 
Digital IIR filters, cat swarm optimization, differential 

evolution, multiparameter optimization, opposition based 

learning. 

1. INTRODUCTION 
Digital filters allow a certain band of frequency to pass through 

them, while attenuating the other frequencies in order to 

suppress interfering signals and reduce background noise. 

Generally speaking, there are two types of digital filters, i.e. 

finite impulse response (FIR) and infinite impulse response 

(IIR). Compared with an FIR filter design problem, an IIR filter 

design problem is more challenging. The design task of IIR 

digital filters is to approximate a given ideal frequency response 

by a stable IIR digital filter under some design criterion. If both 

magnitude and phase/group delay responses are considered, an 

IIR digital filter design problem is essentially a non-convex 

optimization problem due to the presence of the denominator of 

the transfer function [28]. Digital IIR filters often provide a 

much better performance and less computational cost than their 

equivalent FIR filters and have become the target of growing 

interest. The motivation for using the IIR filters is that they 

usually have much sharper roll-offs in their frequency responses 

than the FIR filters of equal complexity. 

There are mainly two approaches to design digital IIR filter, 

namely: (i) transformation approach and (ii) optimization 

approach. The transformation approach involves the 

transformation of an analog filter to a digital filter for a given 

set of prescribed specifications [31]. But the performance of 

digital IIR filters designed by using the transformation approach 

is not good as they require too much pre-knowledge and return 

a single solution in most of the cases. In the optimization 

approach, various optimization methods have been proposed to 

obtain optimal filter performances, where the magnitude 

approximation error, mean-square-error, and ripple magnitudes 

of both pass band and stop band are usually used as criteria to 

measure the performance of the designed digital IIR filters.  IIR 

filters are generally multimodal with respect to the filter 

coefficients and the conventional gradient-based algorithm 

easily stuck at local minima [8]. In order to overcome the 

shortcomings of conventional methods and to achieve a global 

optimal solution, in recent years many nature inspired 

optimization algorithms have been implemented for the digital 

IIR filter design problem. 

Genetic algorithm (GA) has been successfully applied by Tang 

et.al. [7] and Li et.al [5] for the design of digital IIR filter. A 

hybrid Taguchi genetic algorithm (HTGA) has been proposed 

by Tsai et.al. [16] for the design of optimal digital IIR filters. 

The HTGA approach is a method which is obtained by 

combining the traditional genetic algorithm, which has a 

powerful global exploration capability, with the Taguchi 

method, which can exploit the optimum offspring. Afterwards, 

Tsai et.al. [17] integrated the immune algorithm with the 

Taguchi method and proposed a hybrid algorithm named 

Taguchi-immune algorithm (TIA) for optimal digital IIR filter 

design.  Kaur et.al. [39] have used the real coded genetic 

algorithm (RCGA) for digital IIR filter design. Poor precision is 

followed by a binary coded parameter as sometimes it skips the 

best solution in the coding process [39].   

The seeker-optimization-algorithm based evolutionary method 

has been successfully implemented for the design of digital IIR 

filter by Chaohua et.al. [27]. The seeker-optimization-algorithm 

has good local convergence and is capable of providing global 

minimum solutions but it often require too many objective 

function evaluations. Yu et.al. [19] have proposed a cooperative 

co-evolutionary genetic algorithm for optimal digital IIR filter 

design. This design method meets the requirements of 

magnitude response, linear phase response in the pass band and 
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the transition band and finds the lowest filter order 

simultaneously but may require too many function evaluations.  

Ant colony optimization algorithm has been proposed by 

Karaboga et.al. [12] for the design of digital IIR filter. This 

method possesses global optimization ability and is a modified 

version of tourism ant colony optimization algorithm which has 

been particularly introduced for continuous optimization. In 

continuation; they presented a method based on immune 

algorithm for the digital IIR filter design and compared its 

performance with the ant colony optimization algorithm, tabu 

search and genetic algorithm [13]. The immune algorithm 

method has the ability of finding global optimal solution in a 

nonlinear search space but suffer from the problems of search 

stagnation and premature convergence [13]. 

Particle swarm optimization is population based optimization 

technique developed by Eberhart and Kennedy [3] inspired by 

natural behavior of bird flocking and fish schooling. It is a 

computationally fast algorithm and has robust search ability. 

Del et. al. [21] presented a detailed review of the Particle 

swarm optimization. The conventional Particle swarm 

optimization algorithm encountered a problem in which it loses 

global search ability. To overcome this problem Silva et. al. [9] 

proposed the predator-prey optimization (PPO) algorithm and 

tested it to some benchmark problems. They concluded that 

PPO method performed effectively better than the PSO on 

many of these problems. Still, PPO has not been applied to 

constrained optimization problems which are getting quite 

attention in these days for digital IIR filter design. 

Nowadays, for solving complex optimization problems, 

population based algorithms like evolutionary algorithms 

(EAs), Particle swarm optimization (PSO), PPO and DE are 

being used. DE is a very simple, powerful, stochastic, 

population-based, easy to use optimization algorithm, which has 

been developed to optimize the real valued parameter and 

functions. Storm and Price [4] introduced the differential 

evolution algorithm (DE) and successfully applied it for the 

optimization of some well-known nonlinear, non-differentiable, 

and non-convex functions. Das and Suganthan [29] provided an 

extensive overview of the various engineering applications that 

have benefited from the powerful nature of DE algorithm. 

Differential evolution algorithm has a number of significant 

advantages. It has the ability to find the true global minimum 

regardless of the initial parameter values. It possesses parallel 

processing, requires only few control parameters and results in 

fast convergence. DE is capable of providing multiple solutions 

in a single run and has ability to find the optimal solution for a 

nonlinear constrained optimization problem with penalty 

functions. In contrast to these advantages DE has a number of 

disadvantages too. In DE, there exist many trial vector 

generation strategies out of which a few may be suitable for 

solving a particular problem. Moreover, three crucial control 

parameters involved in differential evolution algorithm, i.e., 

population size, scaling factor, and crossover rate, which may 

significantly influence the optimization performance [22].  

Most of the above discussed algorithms show the problems of 

control parameters tuning, premature convergence, stagnation 

locally and revisiting of the same solution [34, 35]. Therefore, 

efforts are continued to work on the enhancement of the 

existing optimization techniques or for the development of new 

optimization technique in order to overcome the various 

problems that exists while designing the optimal digital filters. 

Chu and Tsai [18] introduced another evolutionary algorithm 

called cat swarm optimization (CSO), for solving optimization 

problems. CSO imitates the natural behaviors of cats, which is 

mathematically modeled to solve the optimization problems. 

Although, CSO possesses better parameter estimation and has a 

much higher convergence speed than GA and PSO, it requires a 

higher computation time because the local and global searches 

are carried out independently in each iteration [30].  Tsai et. al. 

[33] presented a parallel cat swarm optimization (PCSO) 

method based on the framework of parallelizing the structure of 

the CSO method. Although, PCSO has the ability to find 

optimum solutions, its computational speed is not efficient. So, 

the requirement is to reduce the computational time and to keep 

high accuracy results with a small population.  

Hybrid algorithms have the capability to overcome the 

problems encountered in these population based optimization 

algorithms [38]. Hybrid algorithms can be considered as a 

framework which combines population-based local and global 

search algorithms together with some refinement procedure. 

Different methods when combined together in a synergistic 

manner with the incorporation of domain knowledge [10] can 

greatly enhance the problem-solving capability of the derived 

hybrid algorithm. Furthermore, hybrid algorithms emphasize on 

the complementary advantage of population-based search that is 

more explorative and their refinement that is more exploitative. 

The explorative population methods provide a reliable estimate 

of the global optimum while the exploitative population 

methods concentrate the search effort around the best solutions 

found by searching the neighborhoods.  And, combining both 

the methods produces better and efficient solutions [15]. The 

purpose of hybridizing or integrating is to fully extract the 

merits of the two methods which are being combined. In this 

context an attempt has been made to design the optimal digital 

IIR filter by implementing the CSO and the DE algorithms thus 

forming a hybrid optimization technique which consequently 

leads to a filter design model which is better than the design 

models presented in other researches. Refinement is 

incorporated in the population-based developed hybrid in the 

form of opposition-based learning strategy to initialize the 

foremost population, which in contrast to random initialization, 

helped to accelerate the search convergence rate. 

The intent of this paper is to present an integrated optimization 

algorithm using the features of CSO and DE and implementing 

these features for the design of robust and stable digital IIR 

filters. The opposition based learning strategy is incorporated in 

the proposed hybrid algorithm for the purpose of starting with 

the better solution set. The filter coefficients are perturbed till 

the satisfaction of the stability constraints.  A multivariable 

optimization is applied as a design criterion which undertakes 

the design of optimal stable digital IIR filter while satisfying the 

different performance requirements like minimizing the 

magnitude approximation error and ripple magnitudes of both 

pass-band and stop-band. The proposed integrated algorithm is 

implemented for the designing of low-pass, high-pass, band-

pass and band-stop filters and the results are compared with 

some existing filter design techniques for performance 

estimation. The developed algorithm not only enhances the 

performance of existing CSO and DE algorithms but also 

provide competitive results. The constraints are taken care of 

using the exterior penalty method. 

This paper is organized in 6 sections. Section 2 describes the 

digital IIR filter design problem statement. The underlying 

mechanism and details regarding the cat swarm optimization 

algorithm and differential evolutionary algorithm for designing 

the digital IIR filters is described in section 3. Section 4 

contains the developed hybrid algorithm steps in detail. The 

performance of the proposed method has been evaluated and the 

results obtained are compared with the design results in [7], 
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[16], [17], [32], [34], [36] and [38] in section 5. Finally, section 

6 contains the concluding remarks and scope for future work. 

2. DIGITAL IIR FILTER DESIGN    

PROBLEM 
The traditional design of digital IIR filter can be described by 

the following difference equation [11]: 

                
                

      (1)  

where, xk  and xN+j  are the coefficients of the filter, u(n) and y(n) 

are its input and output respectively. N and M are the number of 

xk  and xN+j  filter coefficients respectively, with M ≥ N. An 

equivalent transfer function is described as follows: 

     
   
 
      

       
 
       (2)  

The task in hand for a designer is to find the values of the filter 

coefficients xk and xN+j   which produce the desired response. A 

common way of realizing IIR filter is to cascade various first-

order and second-order sections together [6]. The transfer 

function of the cascaded digital IIR filter is denoted by H(w, x), 

where x indicates the filter coefficients (e.g., poles and zeros). 

The magnitude of H(w, x) is denoted by |H(w, x)|. The 

fundamental structure of H(w, x ) regardless of the filter type, 

can be stated as [2]: 

           
      

   

        
   

  
      

     
         

    

                    
  

              

(3)           

where, l= 2N+4(k-1)+2 and vector X= [x1   x2 …… xD]T denotes 

the filter coefficients of dimension D×1 with D = 2N + 4M + 1.  

In the IIR filter design, the coefficients are optimized such that 

the approximation error function for magnitude is minimized. 

The magnitude response is specified at K equally spaced 

discrete frequency points in pass-band and stop-band. The 

absolute error is denoted by e(x) and is stated below: 

                        
 
                                           

(4) Desired magnitude response, Hd (wi ) of IIR filter is given 

as: 

        
                    
                    

 
                         

(5) The ripple magnitudes of pass-band and stop-band are 

denoted by                 respectively and are given as: 

           
                 

                 

                                                                         

(6)         

           
             wi   stopband                                

(7) 

The design of causal recursive stable filter requires the 

inclusion of stability constraints. Therefore, the stability 

constraints in Eq. (9.1-9.5) which are obtained by using the jury 

method [1] on the coefficients of the digital IIR filter are 

included in the optimization process [32]. The multivariable 

constrained optimization problem is stated as: 

Minimize f(x) =e(x)                                                     

(8) 

Subject to following stability constraints: 

1+x2i+1≥ 0 (i=1, 2, …, N)           (9.1) 

1- x2i+1≥ 0 (i=1, 2, …, N)           (9.2) 

1-xl+3≥0 (l=2N+4(k-1)+2, k=1, 2, …, M)           (9.3) 

1+xl+2+xl+3≥0 (l=2N+4(k-1)+2, k=1, 2, …, M)              (9.4) 

1-xl+2+ xl+3≥0 (l=2N+4(k-1)+2, k=1, 2, …, N)               (9.5) 

Scalar objective constrained multivariable optimization problem 

is converted into scalar objective unconstrained multivariable 

optimization problem using exterior penalty function.  

Augmented objective function is defined as [24]: 

                                                         

(10) 

where, 
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r is a penalty term having a large value. 

Bracket function for constraints given in Eq. (9.1) and Eq. (9.4) 

is stated below in Eq. (12) and Eq. (13) respectively: 

           
                     

               
        (12) 

        

               
            

                  

                   
         

(13) 

Similarly, bracket functions for other constraints given by Eq. 

(9.2), Eq. (9.3) and Eq. (9.5) are undertaken. Initial feasible 

solutions are generated applying constraint handling method 

[24], in which filter coefficients are randomly perturbed till the 

satisfaction of constraints. During the run the penalty terms are 

perturbed to zero by applying random constraint handling. 

3. SOLUTION METHODOLOGY 
The CSO and the DE optimization methods are combined to 

design optimal digital IIR filter. DE performs global search 

while CSO performs global as well as local search 

simultaneously. The opposition based learning strategy is also 

incorporated in the design model for improving the chance of 

starting with better solutions by checking the opposite solutions. 

CSO is one of the most recently introduced optimization 

algorithm based on swarm intelligence. CSO imitates the 

natural behavior of cats. Cats have a strong curiosity towards 

moving objects and possess outstanding hunting skills. These 

two characteristics of the cats are represented by seeking mode 

and tracing mode, respectively [35]. In CSO these two modes of 

operations are mathematically modeled for solving complex 

optimization problems. The seeking mode corresponds to the 

global search process and the tracing mode corresponds to the 

local search process. 

3.1 Initialization of CAT population 

For applying the CSO algorithm to solve optimization 

problems, the initial step is to decide the number of individuals 

or cats to be used in the algorithm. Each cat in the swarm has 

the position made up of D-dimensions, velocities for each 

dimension in the position, a fitness value of each cat according 

to the fitness function and a seeking/tracing flag. The positions 

of the cats represent the solution set and the fitness value of 

each cat represents the accommodation of the cat to the fitness 

function. The seeking/tracing flag is used to identify whether 

the cat is in seeking mode or tracing mode.  

The population of cats within the solution search space is 

initialized as: 

   
    

        
      

                               
(14)     

The velocity for each dimension is given as: 
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(15) 

where,    
  represents the position of the ith cat in dth 

dimension and    
  represents the velocity of the ith cat for the 

dth dimension, R is uniform random number between 0 and 1. 

The population may violate inequality constraints. This 

violation is corrected by applying the random perturbation 

method [39]. 

3.2 Evaluation of CAT population 
The goal is to minimize the objective function. The elements of 

parent/offspring may violate constraint. A penalty term is 

introduced in the objective function to penalize its objective 

function value [36]. Objective function is changed to the 

following generalized form:  

                                                             

(16) 

where,                   
  and penalty factor is given by 

Eq. (11). The value increases with the progress of the algorithm.  

3.3 Opposition based learning 

The CSO/ DE optimization methods start with some initial 

random solutions that are improved by moving towards optimal 

solution. The computation time, among others, is related to the 

distance of these initial guesses from the optimal solution. It can 

be improved by the chance of starting with a better solution by 

simultaneously checking the opposite solution in the search 

space [11]. The guess or its opposite guess has been chosen as 

an initial solution. A guess is farther from the solution than its 

opposite guess with 50% probability [20]. Therefore, starting 

with better guesses adjudged by its objective function has the 

potential to accelerate convergence. The same approach can be 

applied not only to initial solutions but also continuously to 

each solution in the current population, during the run. 

      
    

        
         

                             

(17) 

where,   
      and   

      are lower and upper limits of 

filter coefficients and are expressed as: 

  
       

  
                                          

                       
  (18)                                                     

  
       

  
                                         

                      
      

(19)       

3.4 Hunting characteristics of CAT 
The seeking/tracing flag is set according to a user predefined 

value of MR called the mixture ratio [34]. Mixture ratio dictates 

the number of cats which would be randomly selected to move 

into the seeking mode while the remaining cats are set to move 

into the tracing mode. To ensure that the cats spend most of 

their time resting and observing their environment, the MR is 

usually given a small value. CSO is capable of keeping the best 

solution until it reaches the end of the iterations.  

3.4.1 Seeking mode process 
The seeking mode corresponds to the global search technique in 

the search space of the optimization problem. This mode 

imitates the observant behavior of cats by creating copies of the 

current solution. Each copy would then try to improve the given 

solution through a process known as exploitation. After all 

copies have finished exploiting the current solution, the last step 

is to select the new solution which would replace the current 

solution. This new solution would represent the new spot on 

which the cat has to move. 

Seeking mode incorporates four important parameters namely 

Memory Seeking Pool (MSP), Seeking Range of Dimension 

(SRD), Counts of Dimension to Change (CDC) and Self 

position consideration (SPC). For a real cat, MSP is defined as 

the size of seeking memory for each cat indicating the points 

sought by each cat. SRD the dictates the mutative ration for the 

selected dimensions. If a dimension is selected to mutate, the 

maximum difference between the new value and the old value 

cannot be out of the range defined by SRD. CDC indicates how 

many dimensions will be varied and SPS is a Boolean variable 

which decides whether the point on which the cat is already 

standing is a point, one of the candidates to move to. The 

seeking mode involves the generation of t copies of the present 

position of cat i, where t = MSP. If the value of SPC is true, let t 

= (MSP − 1), then retain the present position as one of the 

candidates. For each copy, according to CDC, randomly plus or 

minus SRD percents the present values and replace the old ones 

according to the following mathematical equations: 

Xid
c=Xid+Cnv R Srd Xid (d=1, 2, …, D; i=1, 2, …, NV)               

(20) 

Xid
c=Xid - Cnv R Srd Xid (d=1, 2, …, D; i=1, 2, …, NV)               

(21) 

Evaluate the fitness of all copies and pick the best candidate 

from t copies and place it at the position of ith cat. 

3.4.2 Tracing mode process 
The tracing mode corresponds to the local search technique for 

the optimization problem. In this mode, the rapid chase of the 

cat is mathematically modeled as a large change in its position. 

Define the position and the velocity of ith cat in the D-

dimensional space as:  

Xi = [xi1, xi2,…, xiD] T and,                                                        

(22) 

Vi = [vi1, vi2, …, viD]T                                                                

(23)  

D is index for the dimension of filter coefficients. 

The global best position of the cat swarm is represented as: Xg 

=                
 

. The action of tracing mode can be 

described as follows: 

Update the velocity of the ith cat as:  

   
                                                   

(24) 

and, 

Update the position of the ith cat as:  

Xid = Xid + Vid n (d           ; i           )                     

(25)    

where, w is the inertia weight, C is the acceleration constant and 

R is a random number uniformly distributed in the range [0, 1]. 

3.5 Differential Evolution Algorithm 
The DE algorithm was proposed by Storm and Price in 1995 [4] 

to solve unconstrained single-objective optimization problems. 

DE is a population-based stochastic global optimization 

technique which is applied for minimizing the performance 

index. DE combines simple arithmetical operators with the 

classical operators of the mutation, crossover and selection to 

evolve from a randomly generated starting population to a final 

solution [25]. Unlike other EAs, DE modifies individuals by 
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using differences of randomly sampled pairs of individual 

vectors from the population [14]. There are different variants of 

DE algorithm. Mutation in particular is responsible for different 

types of DE techniques and is used as a global optimizer for 

function optimization [26]. It is used in application areas like 

digital filter design, antennas and other mathematical and 

engineering applications. Differential evolution uses a rather 

greedy and less stochastic approach to problem solving in 

comparison to other evolutionary algorithms [23]. The three 

main steps in DE are, mutation, crossover or recombination and 

selection of parents for next generation from the current parent 

and offspring of cats in the swarm. Although there exist 

different DE strategies, but here DE/rand/1 strategy has been 

use.  

3.5.1 DE parameter set up 
The key parameters that control the DE algorithm are 

population size (L), boundary constraints of optimization 

variables (S), mutation factor (fm), crossover rate (XR), and the 

stopping criterion of maximum number of iterations (Tmax).  

3.5.2 Mutation operation  
The mutation operation adds a vector differential to a 

population vector of individuals. Using the difference between 

two randomly selected individuals, the mutation operation may 

cause the mutant individual to escape from the search domain. 

If an optimized variable for the mutant individual is outside the 

search domain, then this variable is replaced by its lower bound 

or its upper bound so as to restrict each individual to the search 

domain. Although different strategies have been suggested [38], 

this paper uses DE/rand/1 strategy represented as follows:  

   =        (       ) (d=1, 2, …, D, i=1, 2, …, T)             

(26) 

where,     is the mutation vector, r1, r2 and r3 are random 

and mutually different integers drawn from the set of 

population indices and also different from the current 

target vector Xi.  fm is a scale factor in [0, 1] used for 

scaling the differential vector.  

3.5.3 Recombination operation  
Recombination or crossover is applied after mutation process to 

obtain the trial vector   .      is obtained by replacing certain 

parameters of the target vector by the corresponding parameters 

of randomly generated donor vector. 

     
                           
                                                         

                                    

(27)                                                  

where, CR is the crossover or recombination rate in the range [0, 

1]. The performance of a DE algorithm depends on three 

variables: the cat swarm size, the mutation factor fm and the 

crossover rate CR. CR is a control parameter of DE that decides 

in comparison with a random number rand() whether 

components are copied from     or    , respectively, into trial 

vector     [34]. 

3.2.4 Selection operation 
Selection is the procedure in which better offspring are 

produced. To decide whether the vector     should be a 

member of the population which comprises the next generation, 

it is compared with the corresponding vector   
 . Thus, if 

A(  
 ) denotes the objective function under minimization, then  

 

  
     

  
           

         
                                   

  
                                                                                       

      

(28)            

In this case, the objective Ai(  
   ) of each trial vector   

    is 

compared with      
   of its parent target vector  

 . If the 

augmented objective function, Ai (  
 ) of the target vector   

  is 

lower than that of the trial vector, the target is allowed to 

advance to the next generation. Otherwise, a trial vector 

replaces the target vector in the next generation. 

3.6 Stopping criterion 
Generation number is updated, ( t = t + 1). Procedure is 

repeated until a stopping criterion is met, usually a maximum 

number of iterations (generations), Tmax is used as a stopping 

criterion. The stopping criterion depends on the type of 

problem. 

4. DEVELOPED ALGORITHM 
For the optimal design of digital IIR filter, the proposed hybrid 

algorithm developed is outlined below.   

1. Read the data viz. number of cats i.e. the population size 

(NC), maximum iteration (ITMAX), mixture ratio (MR), 

Seeking Memory Pool (SMP), Seeking Range of 

Dimension (SRD), Counts of Dimension to Change 

(CDC), Self position consideration (SPC), C1, xmax, and 

xmin and the DE algorithm parameters like population size 

(L), boundary constraints of optimization variables (S), 

mutation factor (fm), crossover rate (CR), and the stopping 

criterion of maximum number of iterations (Tmax). 

2. Generate an array of (D×T) size of uniform random 

numbers, set t=0 

FOR d=1 to D 

FOR i=1 to T 

3. Randomly initialize the position of cats in 

D-dimensional space for the population, i.e. 

   
 , using Eq. (14). 

4. Randomly initialize the velocity for cats, i.e. 

   
 , using Eq. (15). 

5. Compute the augmented objective 

function      
  , using Eq. (16). 

6. Generate the initial population of 

individuals using opposition, Eq. (17). 

7. Compute the augmented objective function 

           
    using Eq. (16). 

8. Compare       
   and           

  , using 

Eq. (16). 

END FOR 

END FOR 

9. Arrange Ai in ascending order and select first T cats/swarm 

members out of 2T cats/members in the swarm.  

10. Select best member out of T cat swarm as   
  and 

corresponding position as    
 . 

WHILE (T     ) DO 

11. Increment the iteration count, t=t+1. 

       IF (seeking/tracing flag=1) THEN 

12. Apply seeking mode steps given in 

Eq. (20) and Eq. (21). 

       ELSE 

13. Apply tracing mode steps given in 

Eq. (24) and Eq. (25). 

       ENDIF 

14. Select best member Abest and corresponding 

position as (Xid)best. 

15. IF (        
 ) THEN 

  
 =     ; 
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       ENDIF 

16. Apply mutation, recombination and selection 

using Eq. (17), Eq. (18) and Eq. (19) 

respectively. 

17. Compute the augmented objective function 

            
   

  
using Eq. (16), and select 

best member as (Abest)DE and corresponding 

position as ((Xid)best)DE. 

18. Select best member Abest and corresponding 

position as (Xid)best. 

19. IF (        
 ) THEN 

              
 =     ; 

        
       

      ENDIF 

ENDDO 

5. DESIGN OF DIGITAL IIR FILTERS 

AND COMPARISON 
The design of cascaded digital IIR filter has been implemented 

and the filter coefficients have been evaluated using integrated 

cat swarm optimization and differential evolution algorithm. 

The designing of low-pass (LP), high-pass (HP), band-pass 

(BP) and band-stop (BS) filters for low as well as higher orders 

have been undertaken.   

5.1 Low order digital IIR filter design 
For designing digital IIR filter, 200 equally spaced points are 

set within the frequency domain [0, π]. For the purpose of 

comparison, the order of the digital IIR filter is fixed to 3 for LP 

and HP, 6 for BP and 4 for BS. The objective of the 

optimization problem is to minimize the absolute error (i.e., L1-

norm) of magnitude response subject to the stability constraints 

given by Eq. (9.1) - Eq. (9.5) under the prescribed design 

conditions given in Table 1.  

   Table 1. Prescribed design conditions for LP, HP, BP and 

BS filters 

Filter 

Type 
Pass band Stop band 

Max. value of 
          

LP 0≤w≤0.2π 0.3π≤ w≤ π 
 

1 

HP 0.8π≤ w≤ π 0≤ w≤0.7π 
 

1 

BP 0.4π≤ w≤0.6π 
0≤ w≤0.25π 

0.75π≤ w≤ π 

 

1 

BS 
0≤ w≤0.25π 

0.75π≤ w≤ π 
0.4π≤w≤0.6π 

 

1 

5.1.1 Low-pass filter design 
In the low-pass IIR filter designing, the prescribed range of 

pass-band and stop-band are taken as 0≤w≤0.2π and 0.3π≤ w≤ 

π, respectively. The values of both M and N are taken as 1 so 

the order of the filter is 3. The maximum number of iterations 

for the proposed integrated algorithm is set to 100.  A 

population of 100 cats is considered with a mixture ratio (MR) 

of 0.755. The values of MSP, SRD and CDC are taken as 20, 

0.25 and 0.80, respectively. The maximum number of iterations 

for the DE algorithm is taken as 35 and the value of the 

crossover rate (CR) and the mutation factor (fm) are set equal to 

0.85 and 0.25, respectively. The low-pass digital IIR filter 

model obtained by implementing the proposed algorithm for 

order 3 is given below in Eq. (29).   

The results obtained by implementing the proposed algorithm 

for the low-pass digital IIR filter design for order 3 are 

summarized in Table 2. The frequency response, pole-zero 

diagrams and the magnitude versus iterations graphs for the 

low-pass filter are presented in Figure 1, Figure 5 and Figure 9, 

respectively.  

A comparison of the obtained results is carried out with the 

low-pass filter design results given by HGA [7], HTGA [16], 

TIA [17], Hybrid method [32], Heuristic method [36], PPO [34] 

and DE [38]. From Table 2, it is observed that the proposed 

integrated algorithm is capable of producing results that are 

superior as compared to the results given by other algorithms. 

Moreover, from Figure 5 it is clear that all the poles lie inside 

the unit circle, therefore the designed low-pass filter is stable 

and it strictly follows the stability constraints that are imposed 

during its designing. 

5.1.2 High-pass filter design 

In the high-pass filter designing, the prescribed range of pass-

band and stop-band are taken as 0.8π≤ w≤ π and 0≤ w≤0.7π, 

respectively. The order of the filter is set to 3. The maximum 

number of iterations for the proposed integrated algorithm is 

taken as 100.  A population of 100 cats is considered with a 

mixture ratio (MR) of 0.980. The values of MSP, SRD and 

CDC are set to 5, 0.95 and 0.35, respectively. The maximum 

number of iterations for the DE algorithm is taken as 35 and the 

value of the crossover rate (CR) and the mutation factor (fm) are 

set equal to 0.85 and 0.25, respectively. The high-pass digital 

IIR filter model obtained by the proposed algorithm for lower 

order is given below in Eq. (30).  

The results obtained by implementing the proposed algorithm 

for the high-pass digital IIR filter design for order 3 are 

summarized in Table 3. The frequency response, pole-zero 

diagrams and the magnitude versus iterations graphs for the 

high-pass filter are presented in Figure2, Figure 6 and Figure 

10, respectively.  

A comparison of the obtained results is carried out with the 

high- pass filter design results given by HGA [7], HTGA [16], 

TIA [17], Hybrid method [32], Heuristic method [36], PPO [34] 

and DE [38]. From Table 3, it is observed that the proposed 

integrated algorithm is capable of producing results that are 

superior as compared to the results given by other algorithms. 

Moreover, from Figure 6 it is clear that all the poles lie inside 

the unit circle, therefore the designed High pass filter is stable 

and it strictly follows the stability constraints that are imposed 

during its designing. 

5.1.3 Band-pass filter design 
In the band-pass filter designing, the prescribed range of pass-

band and stop-band are taken as 0.4π≤ w≤0.6π and 0≤ w≤0.25π, 

0.75π≤ w≤ π, respectively. The values of both M and N are 

taken as 0 and 3, respectively. The maximum number of 

iterations for the proposed integrated algorithm is taken as 100.  

A population of 50 cats is considered with a mixture ratio (MR) 

of 0.50. The values of MSP, SRD and CDC are taken as 5, 0.95 

and 0.25, respectively. The maximum number of iterations for 

the DE algorithm is taken as 35 and the value of the crossover 

rate (CR) and the mutation factor (fm) are set equal to 0.85 and 

0.25, respectively. The band-pass digital IIR filter model 

obtained by the proposed algorithm for lower order is given 

below in Eq. (31). 

The results obtained by implementing the proposed algorithm 

for the band-pass digital IIR filter design for order 6 are 

summarized in Table 4. The frequency response, pole-zero 

diagrams and the magnitude versus iterations graphs for the 
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band-pass filter are presented in Figure 3, Figure 7 and Figure 

11, respectively.  

A comparison of the obtained results is carried out with the 

band-pass filter design results given by HGA [7], HTGA [16], 

TIA [17], Hybrid method [32], Heuristic method [36], PPO [34] 

and DE [38]. From Table 4 it is observed that the proposed 

integrated algorithm is capable of producing results that are 

superior as compared to the results given by other algorithms. 

Moreover, from Figure 7 it is clear that all the poles lie inside 

the unit circle, therefore the designed band-pass filter is stable 

and it strictly follows the stability constraints that are imposed 

during its designing. 

5.1.4 Band-stop filter design 
In the band-stop filter designing, the prescribed range of pass-

band and stop-band are taken as 0≤ w≤0.25π, 0.75π≤ w≤ π and 

0.4π≤ w≤0.6π, respectively. The order of the filter is set to 4. 

The maximum number of iterations for the proposed integrated 

algorithm is taken as 100.  A population of 50 cats is considered 

with a mixture ratio (MR) of 0.50. The values of MSP, SRD and 

CDC are taken as 5, 0.95 and 0.25, respectively. The maximum 

number of iterations for the DE algorithm is taken as 35 and the 

value of the crossover rate (CR) and the mutation factor (fm) are 

set equal to 0.85 and 0.25, respectively. The band-stop digital 

IIR filter model obtained by the proposed algorithm for lower 

order is given below in Eq. (32). 

The results obtained by implementing the proposed algorithm 

for the band-stop digital IIR filter design for order 4 are 

summarized in Table 5. The frequency response, pole-zero 

diagrams and the magnitude versus iterations graphs for band-

stop filter are presented in Figure 4, Figure 8 and Figure 12, 

respectively.  

A comparison of the obtained results is carried out with the 

band-stop filter design results given by HGA [7], HTGA [16], 

TIA [17], Hybrid method [32], Heuristic method [36], PPO [34] 

and DE [38]. From Table 5 it is observed that the proposed 

integrated algorithm is capable of producing results that are 

superior as compared to the results given by other algorithms. 

Moreover, from Figure 8 it is clear that all the poles lie inside 

the unit circle, therefore the designed band-stop filter is stable 

and it strictly follows the stability constraints that are imposed 

during its designing.  
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Figure 4: Frequency response of high-pass filter 
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    Figure 1: Frequency response of low-pass filter   Figure 2: Frequency response of high-pass filter 
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    Figure 4: Frequency response of band-stop filter Figure 3: Frequency response of band-pass filter 

    Figure 5: Pole-zero graph of low-pass filter     Figure 6: Pole-zero graph of high-pass filter 

    Figure 7: Pole-zero graph of band-pass filter     Figure 8: Pole-zero graph of band-stop filter 
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Figure 9: Magnitude versus Iterations for low-pass filter         Figure 10: Magnitude versus Iterations for high-pass filter 

 

             
 

Figure 11: Magnitude versus Iterations for band-pass filter      Figure 12: Magnitude versus Iterations for band-stop filter     
 

 
 Table 2. Design results for low-pass filter 

   Method 
Magnitude 

Error 
Pass band performance Stop band performance 

CSO+DE 

(proposed) 
3.4678 

0.8455≤|H(e)|≤1.040 

(0.1948) 

|H(e)|≤0.1129 

(0.1129) 

 

CSO 

 

3.7759 
0.9376≤|H(e)|≤1.021 

(0.0835) 

|H(e)|≤0.1567 

(0.1567) 

 

DE [38] 

 

3.5014 
0.8838≤|H(e)|≤1.019 

(0.1353) 

|H(e)|≤0.1505 

(0.1505) 

 

PPO [34] 

 

3.6611 
0.9178≤|H(e)|≤1.000 

(0.0998) 

|H(e)|≤0.1611 

(0.1611) 

HYBRID[32] 3.7903 

 

0.9283≤|H(e)|≤1.026 

(0.0976) 

|H(e)|≤0.1405 

(0.1405) 

HEURISTIC [36] 4.1145 

 

0.9246≤|H(e)|≤1.011 

(0.0871) 

|H(e)|≤0.1238 

(0.1238) 

 

TIA [18] 

 

3.8157 
0.8914≤|H(e)|≤1.000 

(0.1086) 

|H(e)|≤0.1638 

(0.1638) 

 

HTGA [17] 

 

4.2511 
0.9000≤|H(e)|≤1.000 

(0.0996) 

|H(e)|≤0.1247 

(0.1247) 

 

HGA [7] 

 

4.3395 
0.8870≤|H(e)|≤1.009 

(0.1139) 

|H(e)|≤0.1802 

(0.1802) 
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Table 3. Design results for high-pass filter 

Method 
Magnitude 

Error 
Pass band performance Stop band performance 

CSO+DE 

(proposed) 
2.7119 

0.9396≤|H(e)|≤ 1.009 

(0.0695) 

|H(e)|≤0.0499 

(0.0499) 

 

CSO 

 

4.4900 
0.8299≤|H(e)|≤1.025 

(0.1954) 

|H(e)|≤0.1285 

(0.1285) 

 

DE [38] 

 

2.8960 
0.8955≤|H(e)|≤1.014 

(0.1188) 

|H(e)|≤0.1100 

(0.1505) 

 

PPO [34] 

 

3.9332 
0.9401≤|H(e)|≤1.0010 

(0.0717) 

|H(e)|≤0.1692 

(0.1692) 

HYBRID [32] 3.9724 
0.9625≤|H(e)|≤1.0265 

(0.0639) 

 

|H(e)|≤0.1536 

(0.1536) 

HEURISTIC [36] 4.6635 
0.9584≤|H(e)|≤1.0080 

(0.0504) 

 

|H(e)|≤0.1477 

(0.1477) 

 

TIA [18] 

 

4.1819 
0.9229≤|H(e)|≤1.000 

(0.0771) 

|H(e)|≤0.1424 

(0.1424) 

 

HTGA [17] 

 

4.8372 
0.9460≤|H(e)|≤1.000 

(0.0540) 

|H(e)|≤0.1457 

(0.1457) 

 

HGA [7] 

 

14.5.78 
0.9224≤|H(e)|≤1.001 

(0.0779) 

|H(e)|≤0.1819 

(0.1819) 

 

Table 4. Design results for band-pass filter 

Method Magnitude 

Error 

Pass band performance Stop band 

performance 

CSO+DE 

(proposed) 
1.0655 

0.9597≤|H(e)|≤1.010 

( 0.0504) 

|H(e)|≤0 .0468 

(0. 0468 

 

CSO 

 
1.6024 

0.9758≤|H(e)|≤1.010 

(0.0348) 

|H(e)|≤0.0756 

(0.0756) 

 

DE [38] 

 

1.2580 
0.9851≤|H(e)|≤1.000 

(0.0226) 

|H(e)|≤0.0473 

(0.0473) 

 

PPO [34] 

 

1.4212 
0.9839≤|H(e)|≤1.006 

(0.0203) 

|H(e)|≤0.0512 

(0.0512) 

 

HYBRID [32] 

 

1.3121 
0.9825≤|H(e)|≤1.0249 

(0.0423) 

|H(e)|≤0.0473 

(0.0473) 

 

HEURISTIC [36] 

 

1.4360 
0.9896≤|H(e)|≤1.0041 

(0.0147) 

|H(e)|≤0.0627 

(0.0627) 

 

TIA [18] 

 

1.5204 
0.9681≤|H(e)|≤1.000 

(0.0319) 

|H(e)|≤0.0679 

(0.0679) 

 

HTGA [17] 

  

1.9418 
0.9760≤|H(e)|≤1.000 

(0.0234) 

|H(e)|≤0.0711) 

(0.0711) 

 

HGA [7] 

 

5.2165 
0.8956≤|H(e)|≤1.000 

(0.1044) 

|H(e)|≤0.1772 

(0.1772) 
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Table 5. Design results for band-stop filter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Higher order digital IIR filter design 
For designing higher order digital IIR filter, 200 equally spaced 

points are set within the frequency domain [0, π]. The order of 

the digital IIR filter is given as M+2N; where M and N denotes 

the number of filter coefficients. In the proposed method the 

value of the order of the digital IIR filter for the LP, HP, BP and 

BS filters has been varied ranging from 1 to 30 by varying the 

values of M and N. In other words, the order of the filter is not 

kept constant. The objective of the optimization problem is to 

minimize the absolute error (i.e., L1-norm) of magnitude 

response subject to the stability constraints given by Eq. (9.1) - 

Eq. (9.5) under the prescribed design conditions given in Table 

1. 

For higher order digital IIR low-pass filter, the values of M and 

N are varied. The maximum number of iterations for the 

proposed integrated algorithm has been set to 100.  A 

population of 100 cats is considered with a mixture ratio (MR) 

of 0.755. The values of MSP, SRD and CDC are taken as 20, 

0.25 and 0.80, respectively. The maximum number of iterations 

for the DE algorithm is taken as 35 and the value of the 

crossover rate (CR) and the mutation factor (fm) are set equal to 

0.85 and 0.25, respectively. The proposed algorithm shows the 

capability to design a stable low-pass filter with values of M 

and N equal to 1 and 10, respectively i.e. the order of the filter 

is 21. This designed filter with an order of 21 showed better 

magnitude approximation error over all other orders. The 

magnitude approximation error and the pass-band and stop-

band ripple magnitudes for the higher order low-pass are 

summed up in Table 6. The coefficients of the design model 

obtained for the higher order digital IIR low-pass filter are 

shown in Table 7. The frequency response and pole-zero 

diagrams for the higher order digital low-pass filter are given in 

Fig. 13 and Fig. 14, respectively. As all the poles lie inside the 

unit circle, therefore the designed high order low-pass filter is 

stable and it strictly follows the stability constraints that are 

imposed during its designing. 

A similar approach has been followed for designing the higher 

order digital IIR high-pass, band-pass and band-stop filters. The 

maximum value of order for the digital IIR LP, HP, BP, and BS 

filters for which the implemented algorithm shows competitive 

results is given in Table 8. The magnitude approximation error 

and the pass-band and stop-band ripple magnitudes for the 

higher order high-pass, band-pass and band-stop filters are 

summed up in Table 6. The coefficients of the design model 

obtained for the higher order digital IIR high-pass, band-pass 

and band-stop filters are given in Table 9, Table 10 and Table 

11, respectively. The frequency response and pole-zero 

diagrams for the higher order digital high-pass, band-pass and 

band-stop filters are given in Fig. 15- Fig. 20. In each case all 

the poles lie inside the unit circle, therefore the designed high 

order high-pass, band-pass and band-stop filters are stable and 

strictly follow the stability constraints that are imposed during 

their designing. 

 

 

 

 

 

 

 

Method 
Magnitude 

Error 
Pass band performance 

Stop band 

performance 

CSO+DE (proposed) 3.0804 
.9139≤|H(e)|≤1.0154 

(0 .10145) 

|H(e)|≤.10983 

(0.10983) 

 

CSO 

 

4.2526 
0.8912≤|H(e)|≤1.020 

(0.1296) 

|H(e)|≤0.2558 

(0.2558) 

 

DE [38] 

 

3.1385 
0.9262≤|H(e)|≤1.010 

(0.0838) 

|H(e)|≤0.1632 

(0.1632) 

 

PPO [34] 

 

4.1160 
0.9560≤|H(e)|≤1.0000 

(0.0437) 

|H(e)|≤0.1170 

(0.11170) 

HYBRID [32] 3.3443 
0.9334≤|H(e)|≤1.0041 

(0.0607) 

|H(e)|≤0.1294 

(0.1294) 

HEURISTIC [36] 3.7699 
0.9652≤|H(e)|≤1.0081 

(0.0434) 

|H(e)|≤0.1060 

(0.1060) 

 

TIA [18] 

 

3.475 
0.9259≤|H(e)|≤1.0000 

(0.0741) 

|H(e)|≤0.1278 

(0.1278) 

 

HTGA [17] 

  

4.5504 
0.9563≤|H(e)|≤1.0000 

(0.0437) 

|H(e)|≤0.1013 

(0.1013) 

 

HGA [8] 

       

6.6072 
0.8920≤|H(e)|≤1.0000 

(0.1080) 

|H(e)|≤0.1726 

(0.1726) 
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Table 6. Design results for LP, HP, BP and BS filters for higher orders 

Filter 
Magnitude 

Error 
Pass band performance Stop band performance 

Low pass 0.4415 
.9736≤|H(e)|≤ 1.0025 

(.0289) 

|H(e)|≤ .0165 

(.0165) 

High pass 1.3011 
.9566≤|H(e)|≤ 1.0035 

(.0469) 

|H(e)|≤ .0365 

(.0365) 

Band pass 1.4050 
0.8983≤|H(e)|≤1.0259 

(0.1276) 

|H(e)|≤0.0558 

(0.0558) 

Band stop 1.5962 
0.9383≤|H(e)|≤1.0369 

(0.0987) 

|H(e)|≤0.0058 

(0.0058) 

 

             
Figure 13: Frequency response of low-pass filter           Figure 14: Pole-zero graph of low-pass filter 

 

Table 7. Coefficients of higher order digital IIR low-pass filter model 

i ai bi pi qi ri si 

1 0.955436 -0.23323 -0.82761 0.862866 -0.282868 0.793914 

2 
  

-0.36536 0.666834 -0.353394 0.726129 

3 
  

-0.15326 0.332212 -1.383251 0.811921 

4 
  

-0.28251 0.947229 0.135189 0.709821 

5 
  

-1.04653 1.01382 -1.096107 0.793458 

6 
  

-0.25392 0.577384 -0.418003 0.760396 

7 
  

-0.30302 0.666392 -0.396457 0.987272 

8 
  

-0.0965 0.973019 -1.100241 0.449556 

9 
  

-0.57781 0.914929 -0.170077 0.70893 

10 
  

-0.24857 0.661966 -1.012402 0.306022 

 

                           Table 8. Maximum order value for LP, HP, BP and BS filter 

Filter Type Value of M Value of N Highest filter order 

Low pass 1 10 21 

High pass 9 10 29 

Band pass 8 8 24 

Band stop 0 8 16 
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                  Table 9. Coefficients of higher order digital IIR high-pass filter model 

i ai bi pi qi ri si 

1 -0.9234 0.418052 0.460105 0.597587 0.227621 -0.21511 

2 -0.71695 0.592525 -0.20409 0.462956 1.711294 0.829661 

3 -0.54713 -0.0186 0.572147 0.59382 -1.37524 0.945672 

4 0.288159 0.591604 0.388979 0.463274 0.775344 0.582439 

5 -0.35593 0.526687 1.214154 0.970965 0.412198 0.710932 

6 -0.87854 0.582256 0.264757 0.729288 1.002729 0.769827 

7 0.429151 0.385023 0.094856 0.641091 -0.26397 0.818443 

8 0.138863 0.219739 0.259445 0.585192 0.041931 0.687743 

9 -0.84435 0.555961 0.547873 -1.23904 0.361303 0.988219 

10 
  

0.216581 0.548821 -1.11304 0.539285 

 

 

 

 
Figure 15: Frequency response of high-pass filter            Figure 16: Pole-zero graph of high-pass filter 

 

                Table 10. Coefficients of higher order digital IIR band-pass filter model 

i ai bi pi qi ri si 

1 -0.01612 -0.82934 -0.035871 -0.03587 -0.00142 0.333975 

2 -0.00057 -0.48702 0.000176 -0.72184 -0.16715 0.240474 

3 0.001655 -0.39692 0.000625 0.545119 0.3156 0.637425 

4 -0.00074 0.205631 0.014481 0.017047 -0.00127 0.237155 

5 -0.32179 0.859644 -0.000071 -0.88273 -0.63178 0.431595 

6 0.485594 0.609457 0.001495 -0.31395 0.879371 0.953247 

7 0.268998 -0.89744 -0.013903 -1.62367 -0.06631 0.304196 

8 -0.02625 0.588891 -0.000261 -0.83095 -0.48391 0.629734 
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Figure 17: Frequency response of band-pass filter        Figure 18: Pole-zero graph of band-pass filter 

    Table 11. Coefficients of higher order digital IIR band-stop filter model 

i pi qi ri si 

1 0.276035 0.077161 1.070347 0.416726 

2 -0.65736 0.471396 0.907406 0.616825 

3 -0.49041 0.689218 -0.93682 0.74349 

4 0.463564 0.666452 1.182866 0.763803 

5 -0.42322 2.425912 -0.05168 -0.38484 

6 -0.23304 1.666553 -1.32557 0.602074 

7 0.010625 0.869665 -1.12576 0.865101 

8 -0.47262 0.622465 -0.98195 0.82437 

 
Figure 19: Frequency response of band-stop filter              Figure 20: Pole-zero graph of band-stop filter 

5.3 Robustness of the Proposed Method 
In order to check the robustness of the proposed algorithm to 

achieve global design for order 3 LP, order 3 HP, order 6 BP 

and order 4 BS filter design, 100 independent trial runs have 

been given with random seed numbers for each case and the 

variations in the magnitude response has been observed. The 

maximum value, minimum value, average value and standard 

deviation in magnitude approximation error are given in Table 

12. From the results it can be observed that for each case, the 

standard deviation is very small which indicates the robustness 

of the designed algorithm. 

A similar approach has been followed to check the robustness 

of the proposed algorithm to achieve global design for the 

design of higher order digital IIR filters. In this case too, for 

each filter, 100 independent trial runs are carried out. The 

variation in the magnitude response of all the filters has been 

studied. The maximum value, minimum value, average value 

and standard deviation of the magnitude response error are 

given in Table 13. The results obtained depict that for higher 
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order digital IIR LP, HP, BP and BS filters the standard 

deviation is very small, which proves the robustness of the 

proposed algorithm again.  

 

 

Table 12: Maximum, Minimum, Average values and Standard deviation of Magnitude error for lower filter orders 

Filter Type 
Maximum magnitude 

Error 

Minimum magnitude 

Error 

Average magnitude 

Error 

Standard Deviation of 

magnitude Error 

Low pass 3.644905 3.465051 3.516012 0.003375 

High pass 3.138020 2.629057 2.77214 0.043194 

Band pass 1.084589 0.431594 0.848758 0.026284 

Band stop 3.770113 3.036197 3.128349 0.017186 

 

Table 13: Maximum, Minimum, Average values and Standard deviation of Magnitude error for higher filter orders 

Filter Type 
Maximum magnitude 

Error 

Minimum magnitude 

Error 

Average magnitude 

Error 

Standard Deviation of 

magnitude Error 

Low pass 2.333587 0.257532 0.672438 0.153831 

High pass 1.911200 1.069993 1.408380 0.179023 

Band pass 1.735332 1.109852 1.351481 0.195027 

Band stop 2.687077 0.836648 2.076465 0.079157 

 

6. CONCLUSION 
Although the digital IIR filter design is an active area of 

research, most of the population based optimization algorithms 

face difficulties like search stagnation, slow convergence etc. 

This paper proposes an integrated cat swarm and differential 

evolution algorithm for the optimal design of digital IIR LP, 

HP, BP and BS filters. The performance assessment of the 

proposed integrated algorithm is carried out by comparing the 

obtained results with other well known algorithms. From the 

results obtained it is clear that the proposed algorithm is very 

much feasible for the designing of digital IIR filters under 

prescribed design conditions. The algorithm not only 

outperforms other proposed algorithms for minimum value of 

the order for the LP, HP, BP, and BS filters but is also capable 

of designing filters with even higher order values. Further, the 

proposed algorithm for designing the LP, HP, BP and BS filter, 

allows each filter to be designed independently. Parameter 

tuning is still a potential area for further research. The proposed 

algorithm has the capability to search the solution locally as 

well as globally and takes a start with good population. 
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