
International Journal of Computer Applications (0975 – 8887) 

Volume 99– No.3, August 2014 

41 

Literature Survey of Clone Detection Techniques 

 

                 Sonam Gupta     P. C Gupta, Ph.D
 

    
              Research Scholar,   Department of Computer Science & Engineering 

         Suresh Gyan Vihar University    University of Kota 
               Jaipur (Rajasthan), India                                               Kota (Rajasthan), India 

                  
          

ABSTRACT 
Code clones are the codes which have same code in the 

system and so it is difficult to locate all the same codes in the 

system when any change is to be done. Researchers have 

proved that almost 70% of the effort done during maintenance 

is just because of the occurrence the clones in the system. A 

number of approaches had been given earlier to detect various 

types of clones [39]. This paper presents the systematic 

literature review of all the detection approaches researched so 

far. Along with it this paper also gives the advantages to 

implement them and also all the defects due to which they 

were not able to completely detect the clones. It also gives a 

novel approach to automatically detect the clones irrespective 

of the matter that whether the code is in same order or any 

statement has been inserted, deleted or modified in the code 

fragment. 

Keywords 
Clones maintenance, Program dependence graph, tree-based 

approach, false positives, and hybrid approach 

1. INTRODUCTION 
Maintenance effort of the system increases with the increase 

in complexity of the system. There are four types of 

maintenance namely corrective maintenance, adaptive 

maintenance, perfective maintenance and preventive 

maintenance [36]. Corrective maintenance is the reactive 

modification for a software product performed after delivery 

to correct discovered problems. Adaptive maintenance is the 

modification of a software product, performed after delivery, 

to keep a software product usable in a changed or changing 

environment. Perfective maintenance is the modification of a 

software product after delivery to improve performance or 

maintainability. Preventive maintenance is the modification of 

a software product after delivery to detect and correct latent 

faults in the software product before they become effective 

faults. Arthur states that only one-fourth or one-third of all 

life-cycle costs are attributed to software development and 

that some 67% of life-cycle costs are expended in the 

operation-maintenance phase of the life cycle [35,37]. The 

major challenge during maintenance is the difficulty to trace 

the product or the process that created the product, changes 

are not adequately documented, lack of change stability and 

ripple effect when making changes. There are many 

approaches that had given by many researchers to detect such 

types of changes primarily known as clones. In this paper we 

have presented a systematic literature survey for the detection 

of clones. The rest of the paper is organized as follows.  

Section II consists of the literature survey of past 10 years in 

the field of clone detection along with it the section also gave 

a novel approach to overcome the flaws of previous 

approaches. Section III consists of conclusion and future work 

and section IV consists of all the references from where the 

survey has been done. 

2. LITERATURE SURVEY 
This section includes the literature survey of past 10 years in 

the clone detection techniques. This will help to find the 

various merits and demerits of various approaches developed 

so far so that a new and better approach of clone detection can 

be developed.  

Text-Based Approach: The code fragments are considered as 

sequence of text and are compared with each other as the 

basis of various transformations like removing comments, 

whitespace, newlines etc. There are various researchers who 

found various techniques to detect clones on the basis of text. 

Baker [2,3] used line-based string matching algorithm by 

making the tokens of each sequence/line of the text by help of 

a tool named as Dup. This technique consists of all the basic 

properties of text-based technique, along with this it also 

replaced identifiers, variables and types with a special 

parameter so that even if the name of variable is different the 

clone can be identified. But this tool was not able to support 

exploration and navigation between the duplicated codes and 

moreover it cannot detect clones if the code is written in 

different style. This problem was overcome by Koshke et 

al.by [23] by finding the clones on the basis of tokens rather 

than lines but this was not able to keep track that whether the 

identifiers had been renamed consistently or not after 

transformation. Johnson used [19] used Karp-Rabin 

fingerprinting algorithm to detect clones on purely text basis. 

In this technique each character is included in atleast one 

substring and then the matching of those substrings is done. 

The disadvantage with this technique is that it had the 

restriction of keeping 50 lines match resulting in more number 

of false positives. Cordy et al. [9] used this text-based 

approach to detect the near miss clones for HTML web pages. 

In this technique firstly syntactic constructs are identified and 

then used as smallest comparison but this did not normalize 

any code. Ducasse et al. [12,13] presented an approach using 

dynamic pattern matching which is language independent but 

this was not able to identify meaningful clones because the 

cohesiveness of the code gets effected. Marcuss[28] gavean 

approach which used latent semantic indexing [14] and does 

not compare the whole code rather than that it identify clones 

by creating certain domains of comments and identifier 

matching. But this cannot detect clones if the structure is same 

but the name of identifiers is different. All the above detected 

techniques clearly show that although the cost of applying the 

approach is very less but the code having line break, change in 

variable name, type, change of parenthesis etc. cannot be 

identified and tested that whether it is a cloned code or not. 

Token-based approach: This technique parse the whole 

source code into sequence of tokens thereby overcoming the 

problems faced in text-based approach likechange in space, 

identifier name etc. Kamiya et al.[6]developed a tool named 

as CCFinder in which each line is divided into tokens and 

then added together to form a single token, so that even if the 



International Journal of Computer Applications (0975 – 8887) 

Volume 99– No.3, August 2014 

42 

name of identifier etc. is changed then it will not effect the 

detection of clone even if the structure of the code is same but 

there are some minor avoidable changes in the code. Even 

though Baker [2,4]also used the token scheme to detect the 

clone but it did not use any transformation technique resulting 

in detection of false positives. For more flexible tokenization 

RTF[7] used suffix array rather than suffix tree so that 

unnecessary tokens can be removed so as to reduce the false 

detection but this technique is more complex to implement. 

To overcome the problem of CCFinder and Dup i.e. cannot 

detect clones if there are minor changes in the code, CPMiner 

[26,27] was introduced which can ignore insertion/deletion or 

any modifications of code upto 1-2 statements only. Juergens 

et. al [40] gave a plug-in in visual studio which can detect the 

clones in Java and C# but the approach was not able to handle 

the defects at programmer side itself. Almost same approach 

was given by Kawaguchi et. al[41] but it was developed for 

C++ and C# but it did not overcome the problem as in [40]. 

Tree-based approach: Rather than creating tokens for each 

statement this technique creates sub trees of a fragment of the 

code and the code is said to be a cloned code if the 

corresponding sub trees match.. this is done by creating the 

AST of the code. CloneDR [8] is a well known tool which 

uses this technique. It generates the parse tree and then by the 

help of hash functions the subtrees are matched. But this 

technique was not able to identify similar clones. This 

problem was overcome by CCdiml[31] tool given by Bauhaus 

but this was not able to identify renamed identifiers. Yang[34] 

also proposed an approach based on the same technique which 

finds the syntactic difference between the versions of the 

system and creates their parse tree. Nahler et. al [33] gave the 

approach which convert the AST into XML and then by using 

data mining technique[1] it extract the clones. This approach 

was further refined by Evas & Fraser [15] to find near miss 

clones by using only AST leaves rather than the tree, but 

again it was not able to detect much of the exact clones. Duala 

Ekoko et. al[38] hd developed a tool named Clone Tracker in 

Java but again the number of false positives are much more in 

it and it is not able to detect post programming. Hoan Anh 

[43] developed a clone management tool in Java but it 

increases tht time to find the clones. All the above mentioned 

researches clearly show that AST is not able to find the 

gapped clones along with it the cost of search space also 

increases. It does not follow the data flow and also cannot 

detect the clones is the statements are reordered. All the 

drawbacks of AST can be easily overcome by the use of 

PDG-based technique. 

PDG-based technique: Program Dependency Graph (PDG) 

[20,24,25] overcome the problems faced in AST and also 

maintain the data and control flow [80] and therefore it 

become easier to clones semantically as well as syntactically. 

Komondoor and Horwitz [20,21] gave an approach known as 

PDG-DUP which used program slicing method to identify the 

clone groups without changing its semantics. Gallagher and 

Lucas [16] extended the work of Komondoor et. al by 

applying program slices on all the variables of a code but 

could not come to any conclusion. PDG technique was used 

as an iterative approach by Krinke[24] for finding the 

maximal similar subgraph but it was not able to give a 

formula that can be used on any type of system to find the 

clone. All the researchers are using the PDG technique came 

to the conclusion that although PDG-based techniques can 

find non-contiguous clones but it cannot be applied to large 

systems. 

Metric-based technique: This technique does not compare 

the code directly instead it calculated different metric (like 

number of source lines, number of functions etc) for the code 

and then these metrics are compared. Mayrand et. al[29] used 

this technique and calculated the metrics from names, layouts, 

expression and control flow but it was not able to identify 

segment based copy-paste operation. Kontogiannis et. al [22] 

used markov model but it can only measure the similarity 

between the codes rather than finding the exact clones. They 

modified the approach by calculating the metrics on the basis 

of begin-end block and the code is said to be cloned code only 

if their metrics is approximately same. Di Ducca et. al[11] 

also used this approach to find the clones in static HTML 

pages by calculating their degree of similarity. This was done 

by calculating the Levenshtein distance of the code [67]. 

Lanubile Calefato [161,46] used eMetrics tool to identify the 

clones and then check the extracted clones manually to find 

that whether the extracted clone is a true positive or not but 

this was not feasible to be implemented for large systems. So, 

the metric-based approach is able to extract the clones from 

the code but the metrics may vary from system to system 

resulting in different cloned codes for the same system. 

Hybrid approaches: These approaches are the combination 

of various approaches discussed above. Koschke et. al [23] 

used tree based and token based technique to identify the 

clones. From the tree-based technique firstly a suffix tree is 

created and then it is compared by using token-based 

approach. This is used only to find exact and type-II clones. 

Almost similar approach was given in Microsoft’s new 

phoenix framework [32] but it can only identify clones with 

change in name of identifier not of change in its type. 

Greenan[17] gave the same approach using sequence 

matching algorithm. Jiang et al. [18] used the AST in 

Euclidean space and then Locating Sesitive Hasing (LSH) 

[10] is used to cluster the vectors based on similarity. 

Dynamic Pattern Matching technique was proposed by 

Balazinska [6] in which the characteristic metrics are 

computed for the code and then the clusters are identified 

using Patenaude’s [30] metric-based approach. De Wit [43] 

gave an approach based on dynamic change tracking and 

resolution in Java language but it failed in detecting the data 

flows and examining the clones at the programmer’s level. 

3. PROPOSED APPROACH 
All the advantages and disadvantages of various approaches 

discussed in section II clearly show that although many 

techniques but still none is able to find the clones correctly. 

So we are proposing a hybrid technique which is able to find 

more number of true positives. This approach will find all the 

clones in the system irrespective of their place and will show 

the same to the programmer so that after or during the 

development of the code the programmer itself can identify 

the chunks which contain the clone and can decide whether to 

remove the clone or it is a good smell. In the proposed work 

one or two fragments can be compared. It will give the result 

in form of chucks so it will be called as clone-chuck 

extraction algorithm. Firstly, the statements of the code will 

be examined serially if the statements are found to be 

reordered then  the semantic-preserving transformation will be 

applied to the code so that reordering of the code does not 

affect the procedure of identifying the clone. This approach 

will be a bit faster removing the sluggish behavior of many 

approaches discussed above and also will handle all types of 

clones [39]. 



International Journal of Computer Applications (0975 – 8887) 

Volume 99– No.3, August 2014 

43 

4. CONCLUSION AND FUTURE WORK 
In this paper we have surveyed papers of past 10 years and 

found that there many approaches given by various 

researchers to detect the clones which primarily includes text 

based, token based, tree based, PDG based, metric based and 

hybrid technique. Although many algorithms had been 

developed based on these approaches but still none is able to 

find the clone with accuracy and efficiency. Some algorithms 

can detect only a particular type of clone and some are so 

slow that whole system comes to a bottleneck if large system 

is to be compared. So we have also proposed an algorithm 

which will find all types of clones that too with accurate 

clones and more efficiency. Moreover by using the clone-

chunk extraction algorithm the developer can decide whether 

to remove it or not and then can mention the same in the 

documentation so that the maintenance team do not waste 

their time in resolving the issues regarding the clones.  

Our future work will be to implement the clone-chunk 

extraction algorithm and check it on various systems. 

5. REFERENCES 
[1] Brenda S. Baker. Finding Clones with Dup: Analysis of an 

Experiment. IEEE Transactions on Software 

Engineering, Vol. 33(9): 608-621, September 2007. 

[2] Brenda S. Baker. A Program for Identifying Duplicated 

Code. In Proceedings of Computing Science and 

Statistics: 24th Symposium on the Interface, Vol. 

24:4957, March 1992. 

[3] Brenda S. Baker. Parameterized diff. In Proceedings of the 

10th ACM-SIAM Symposium on Discrete Algorithms 

(SODA’99), pp. 854-855, Baltimore, Maryland, USA, 

January 1999.  

[4] Brenda S. Baker. On Finding Duplication in Strings and 

Software. Journal of Algorithms, 1993. 

[5] Brenda Baker. On Finding Duplication and Near-

Duplication in Large Software Systems. In Proceedings 

of the Second Working Conference on Reverse 

Engineering (WCRE’95), pp. 86-95, Toronto, Ontario, 

Canada, July 1995. 

[6] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, 

Bruno Lague, Kostas Kontogiannis. Measuring Clone 

Based Reengineering Opportunities. In Proceedings of 

the 6th International Software Metrics Symposium 

(METRICS’99), pp. 292-303, Boca Raton, Florida, USA, 

November 1999. 

[7] Hamid Basit, Simon Pugliesi, William Smyth, Andrei 

Turpin, and Stan Jarzabek. Efficient Token Based Clone 

Detection with Flexible Tokenization. In Proceedings of 

the Joint Meeting of the European Software Engineering 

Conference and Symposium on the Foundations of 

Software Engineering (ESEC/FSE’07), pp. 513-515, 

Dubrovnik, Croatia, September 2007. 

[8] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant 

Anna. Clone Detection Using Abstract Syntax Trees. In 

Proceedings of the 14th International Conference on 

Software Maintenance (ICSM’98), pp. 368-377, 

Bethesda, Maryland, November 1998. 

[9] James Cordy, Thomas Dean, Nikita Synytskyy. Practical 

Language-Independent Detection of Near-Miss. In 

Proceedings of the 14th IBM Centre for Advanced 

Studies Conference (CASCON’04), pp. 1 - 12, Toronto, 

Ontario, Canada, October 2004. 

[10] M. Datar, N. Immorlica, P. Indyk and V. S.Mirrokni. 

Locality-sensitive hashing scheme based on p-stable 

distributions. In Proceedings of the 20th annual 

symposium on Computational geometry (SoGG’04), pp. 

253-262, Brooklyn, New York, USA, June 2004. 

[11] G.A. Di Lucca, M. Di Penta, and A.R. Fasolino and P. 

Granato. Clone Analysis in the Web Era: an Approach to 

Identify Cloned Web Pages. In Proceedings of the 7th 

IEEE Workshop on Empirical Studies of Software 

Maintenance (WESS’99), pp. 107-113, Florence, Italy, 

November 2001. 

[12] St´ephane Ducasse, Oscar Nierstrasz, and Matthias 

Rieger. Lightweight detection of duplicated codea 

language-independent approach. Technical report, 

University of Bern, Institute of Computer Science and 

Applied Mathematics, Bern, Switzerland, February 2004. 

[13] St´ephane Ducasse, Matthias Rieger, Serge Demeyer. A 

Language Independent Approach for Detecting 

Duplicated Code. In Proceedings of the 15th 

International Conference on Software Maintenance 

(ICSM’99), pp. 109-118, Oxford, England, September 

1999. 

[14] Susan T. Dumais. Latent Semantic Indexing (LSI) and 

TREC-2. In Proceedings of the 2nd Text Retrieval 

Conference (TREC’94), pp. 105-115, Gaithersburg, 

Maryland, March 1994. 

[15] Williams Evans, and Christopher Fraser. Clone Detection 

via Structural Abstraction. In Proceedings of the 14th 

Conference on Reverse Engineering (WCRE’07), 

Vancouver, BC, Canada, October 2007(to appear, 

available as Technical Report since August 2005). 

[16] Keith Gallagher, Lucas Layman. Are Decomposition 

Slices Clones? In Proceedings of the 11th IEEE 

International Workshop on Program Comprehension 

(IWPC’03), pp.251-256 Portland, Oregon, USA, May 

2003. 

[17] Kevin Greenan. Method-Level Code Clone Detection on 

Transformed Abstract Syntax Trees using Sequence 

Matching Algorithms. Student Report, University of 

California -Santa Cruz, Winter 2005.  

[18] Lingxiao Jiang, GhassanMisherghi, Zhendong Su, and 

Stephane Glondu. DECKARD: Scalable and Accurate 

Tree-based Detection of Code Clones. In Proceedings of 

the 29th International Conference on Software 

Engineering (ICSE’07), pp. 96-105, Minnesota, USA, 

May 2007. 

[19] J Howard Johnson. Identifying Redundancy in Source 

Code Using Fingerprints. In Proceeding of the 1993 

Conference of the Centre for Advanced Studies 

Conference (CASCON’93), pp. 171-183, Toronto, 

Canada, October 1993. 

[20] Raghavan Komondoor and Susan Horwitz. Using Slicing 

to Identify Duplication in Source Code. In Proceedings 

of the 8th International Symposium on Static Analysis 

(SAS’01), Vol. LNCS 2126, pp. 40-56, Paris, France, 

July 2001. 

[21] Raghavan Komondoor. Automated Duplicated-Code 

Detection and Procedure Extraction. Ph.D. Thesis, 2003. 



International Journal of Computer Applications (0975 – 8887) 

Volume 99– No.3, August 2014 

44 

[22] K. Kontogiannis, M. Galler, and R. DeMori. Detecting 

code similarity using patterns. In Working Notes of 3rd 

Workshop on AI and Software Engineering, 6pp., 

Montreal, Canada, August 1995. 

[23] Rainer Koschke, Raimar Falke and Pierre Frenzel. Clone 

Detection Using Abstract Syntax Suffix Trees. In 

Proceedings of the 13th Working Conference on Reverse 

Engineering (WCRE’06), pp. 253-262, Benevento, Italy, 

October 2006. 

[24] Jens Krinke. Identifying Similar Code with Program 

Dependence Graphs. In Proceedings of the 8th Working 

Conference on Reverse Engineering (WCRE’01), pp. 

301-309, Stuttgart, Germany, October 2001. 

[25] Chao Liu, Chen Chen, Jiawei Han and Philip S. Yu. 

GPLAG: Detection of Software Plagiarism by Program 

Dependence Graph Analysis. In the Proceedings of the 

12th ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining (KDD’06), pp. 

872-881, Philadelphia, USA, August 2006. 

[26] Zhenmin Li, Shan Lu, Suvda Myagmar, Yuanyuan Zhou. 

CP-Miner: A Tool for Finding Copy-paste and Related 

Bugs in Operating System Code. In Proceedings of the 

6th Symposium on Operating System Design and 

Implementation (OSDI’04), pp. 289-302, San Francisco, 

CA, USA, December 2004. 

[27] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan 

Zhou. CP-Miner: Finding Copy-Paste and Related Bugs 

in Large-Scale Software Code. In IEEE Transactions on 

Software Engineering, Vol. 32(3): 176-192, March 2006. 

[28] Andrian Marcus and Jonathan I. Maletic. Identification of 

high-level concept clones in source code.In Proceedings 

of the 16th IEEE International Conference on Automated 

Software Engineering (ASE’01), pp. 107-114, San 

Diego, CA, USA, November 2001. 

[29] Jean Mayrand, Claude Leblanc, Ettore Merlo. 

Experiment on the Automatic Detection of Function 

Clones in a Software System Using Metrics. In 

Proceedings of the 12th International Conference on 

Software Maintenance (ICSM’96), pp. 244-253, 

Monterey, CA, USA, November 1996. 

[30] J.-F. Patenaude, E. Merlo, M. Dagenais, and B. Lague. 

Extending software quality assessment techniques to java 

systems. In Proceedings of the 7th International 

Workshop on Program Comprehension (IWPC’99), pp. 

4956, Pittsburgh, PA, USA, May 1999. 

[31] Aoun Raza, Gunther Vogel, Erhard Pl¨odereder. 

Bauhaus–A Tool Suite for Program Analysis and 

Reverse Engineering. In Proceedings of the 11th Ada-

Europe International Conference on Reliable Software 

Technologies , LNCS 4006, pp. 71-82, Porto, Portugal, 

June 2006. 

[32] Robert Tairas, Jeff Gray. Phoenix-Based Clone Detection 

Using Suffix Trees. In Proceedings of the 44th annual 

Southeast regional conference (ACM-SE’06), pp. 679-

684, Melbourne, Florida, USA, March 2006. 

[33] V. Wahler, D. Seipel, Jurgen Wolff von Gudenberg, and 

G. Fischer. Clone detection in source code by frequent 

itemset techniques. In Proceedings of the 4th IEEE 

International Workshop Source Code Analysis and 

Manipulation (SCAM’04), pp. 128135, Chicago, IL, 

USA, September 2004. 

[34] Wuu Yang. Identifying syntactic differences between two 

programs. In Software Practice and Experience, 

21(7):739755, July 1991. 

[35] S. W. L. Yip and T. Lam. A software maintenance 

survey. In Proc. of the 1st Asia-Pacific Software 

Engineering Conference, pages 70–79, Dec 1994. 

[36] ISO/IEC. Software Engineering - Software Maintenance. 

ISO/IEC 14764, 1999. 

[37] L. Arthur. Software Evolution: The Software 

Maintenance Challenge. Wiley 1988. 

[38]Duala-Ekoko, Ekwa, and Martin P. Robillard. 

"Clonetracker: tool support for code clone management." 

Proceedings of the 30th international conference on 

Software engineering. ACM, 2008. 

[39] Sonam Gupta, Dr. P.C. Gupta, “ Clones : A Survey”, 

International Journal of Computer Scinece and 

Technology Vol. 3, Issue 3, July - Sept 2012. 

[40]Juergens, Elmar, Florian Deissenboeck, and Benjamin 

Hummel. "CloneDetective-A workbench for clone 

detection research." Proceedings of the 31st 

International Conference on Software Engineering. IEEE 

Computer Society, 2009. 

[41] Kawaguchi, Shinji, et al. "Shinobi: A tool for automatic 

code clone detection in the ide." Reverse Engineering, 

2009. WCRE'09. 16th Working Conference on. IEEE, 

2009. 

[42] De Wit, Michiel, Andy Zaidman, and Arie Van Deursen. 

"Managing code clones using dynamic change tracking 

and resolution." Software Maintenance, 2009. ICSM 

2009. IEEE International Conference on. IEEE, 2009. 

[43] Nguyen, Hoan Anh, et al. "Clone management for 

evolving software." Software Engineering, IEEE 

Transactions on 38.5 (2012): 1008-1026. 

 

 

 

IJCATM : www.ijcaonline.org 


