On Fuzzy Contra $g^*\alpha$-Continuous Functions

Madhulika Shukla
Department of Applied Mathematics,
Gayan Ganga Insitute of Technology and Sciences
Jabalpur (M.P.) 482011 India

ABSTRACT
In this paper we introduce and study the new class of functions called fuzzy contra $g^*\alpha$-continuous and fuzzy almost contra $g^*\alpha$-continuous mappings on fuzzy topological spaces. We investigate some of their properties. Also we provide the relation between fuzzy contra $g^*\alpha$-continuous mappings and fuzzy almost contra $g^*\alpha$-continuous mappings.

General Terms Fuzzy topology, fuzzy generalized closed set, fuzzy $g\alpha$-closed, fuzzy $g^*\alpha$-closed set, fuzzy contra α-continuous function fuzzy $g^*\alpha$-continuous.

Keywords
Fuzzy contra $g^*\alpha$-continuous function, fuzzy Contra $g^*\alpha$-irresolute function, fuzzy almost contra $g^*\alpha$-continuous functions.

1. INTRODUCTION

In this paper we introduce and study the new class of mappings called fuzzy contra $g^*\alpha$-continuous and fuzzy almost contra $g^*\alpha$-continuous functions in fuzzy topological spaces. Also we define the relation between of fuzzy contra $g^*\alpha$-continuous and fuzzy almost contra $g^*\alpha$-continuous mappings.

2. PRELIMINARY
Let X be a non empty set. A collection τ of fuzzy sets in X is called a fuzzy topology on X if the whole fuzzy set and the empty fuzzy set 0 is the members of τ and τ is closed with respect to any union and finite intersection. The members of τ are called fuzzy open sets and the complement of a fuzzy open set is called fuzzy closed set.

The closure of a fuzzy set λ (denoted by $cl(\lambda)$) is the intersection of all fuzzy closed which contains λ. The interior of a fuzzy set λ (denoted by $int(\lambda)$) is the union of all fuzzy open subsets of λ. A fuzzy set λ in X is fuzzy open (resp. fuzzy closed) if and only $int(\lambda) = \lambda$ (resp. $cl(\lambda) = \lambda$).

Definition 2.1: Let (X, τ) be a fuzzy topological space. A fuzzy set λ in the space X is called:
(i) semi-open fuzzy set [1] if $\lambda \subseteq cl(int(\lambda))$ and semi-closed fuzzy set if $int(cl(\lambda)) \subseteq \lambda$.
(ii) pre-open fuzzy set [4] if $\lambda \subseteq int(cl(\lambda))$ and pre-closed fuzzy set if $cl(int(\lambda)) \subseteq \lambda$.
(iii) α-open fuzzy set [4] if $\lambda \subseteq int(cl(\lambda))$ and α-closed fuzzy set if $cl(int(\lambda)) \subseteq \lambda$.
(iv) regular open fuzzy set [1] if $\lambda = int(cl(\lambda))$ and regular closed fuzzy set if $\lambda = cl(int(\lambda))$.

The α-closure (resp. semi-closure, pre-closure) of a fuzzy set λ in fuzzy topological space (X, τ) is intersection of all α-closed (resp. semi-closed, pre-closed) fuzzy sets in X containing λ and is denoted by $\alpha = cl(\lambda)$ (resp. $scl(\lambda), pcl(\lambda)$).

Definition 2.2: Let (X, τ) be a fuzzy topological space. A fuzzy set λ in the space X is called:
(i) generalized closed fuzzy set ($g\alpha$-closed) fuzzy set [2] if $cl(\lambda) \leq \eta$ whenever $\lambda \leq \eta$ and η is open fuzzy set in (X, τ).
(ii) generalized α-closed fuzzy set ($g\alpha\alpha$-closed) fuzzy set [2] if $acl(\lambda) \leq \eta$ whenever $\lambda \leq \eta$ and η is open fuzzy set in (X, τ).
(iii) $g^*\alpha$-closed fuzzy set ($g^*\alpha$-closed) fuzzy set [8] if $cl(\lambda) \leq \eta$ whenever $\lambda \leq \eta$ and η is open fuzzy set in (X, τ).
(iv) $g^*\alpha$-preclosed fuzzy set ($g^*\alpha\alpha$-closed) fuzzy set [3] if $pcl(\lambda) \leq \eta$ whenever $\lambda \leq \eta$ and η is $g^*\alpha$-open fuzzy set in (X, τ).
(v) $g^*\alpha$-semiclosed fuzzy set ($g^*\alpha\alpha$-closed) fuzzy set [3] if $scl(\lambda) \leq \eta$ whenever $\lambda \leq \eta$ and η is $g^*\alpha$-open fuzzy set in (X, τ).
(vi) $g^*\alpha$-alphaclosed fuzzy set ($g^*\alpha\alpha$-closed) fuzzy set [3] if $acl(\lambda) \leq \eta$ whenever $\lambda \leq \eta$ and η is $g^*\alpha$-open fuzzy set in (X, τ).

The complement of $g\alpha$-closed (resp. $g\alpha\alpha$-closed, $g^*\alpha\alpha$-closed) fuzzy sets are called fuzzy $g\alpha$-open (resp. $g\alpha\alpha$-open, $g^*\alpha\alpha$-open) fuzzy sets in fuzzy topological spaces.

Definition 2.3: A fuzzy topological space (X, τ) is called $T_{\alpha\alpha}$-space [6] if every $g\alpha\alpha$-closed fuzzy set is a closed fuzzy set in X.

Definition 2.4: A function f from a fuzzy topological space (X, τ) to fuzzy topological space (Y, σ) is called:
(i) fuzzy-contra continuous if $f^{-1}(\lambda)$ is fuzzy closed in X for every fuzzy open set λ of Y [5].
3. FUZZY CONTRA $g\alpha$-CONTINUOUS FUNCTION

Definition 3.1. A function $f:X \to Y$ is called fuzzy contra $g\alpha$-continuous if $f^{-1}(\lambda) = \{x \in X | f(x) \in \lambda\}$ is closed in X for every open set $\lambda \subset Y$.

Theorem 3.2. Every fuzzy contra $g\alpha$-continuous function is fuzzy contra $g\alpha'$-continuous function.

Proof: It follows from the fact that every fuzzy closed set is $g\alpha'$-closed set.

The converse of the above theorem need not be true as seen from the following examples.

Example 3.3: Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2\}$ and λ_1, λ_2 be fuzzy sets in X and Y, respectively. Let $\mu(x_1) = 0.5$, $\mu(x_2) = 0.3$, $\lambda(y_1) = 0.3$, and $\lambda(y_2) = 0.7$. Then f is fuzzy contra $g\alpha$-continuous but not fuzzy contra $g\alpha'$-continuous.

Theorem 3.4. Every fuzzy contra α-continuous mapping is fuzzy contra $g\alpha$-continuous function.

Proof: Straight forward and follows from the definitions.

The converse of the above theorem need not be true as seen from Example 3.2.

Theorem 3.5. Every fuzzy contra $g\alpha'$-continuous mapping is fuzzy contra $g\alpha$-continuous function as well as fuzzy $g\alpha'$-continuous.

Proof: Straight forward and follows from the definitions.

The converse of the above theorem need not be true as seen from Example 3.6 and Example 3.7.

Example 3.6: Let $X = \{x_1, x_2\}$, and $Y = \{y_1, y_2\}$. Let η_1, η_2, η_3 be fuzzy sets in X, μ be a fuzzy set in Y, defined as $\eta_1(x_1) = 0.2, \eta_1(x_2) = 0.3, \eta_2(x_1) = 0.3, \eta_2(x_2) = 0.5, \eta_3(x_1) = 0.6, \eta_3(x_2) = 0.7, \mu(y_1) = 0.3, \mu(y_2) = 0.5$. Let $\tau_{x_1} = \{0, \eta_1, \eta_2, \eta_3, 1\}$ and $\tau_{x_2} = \{0, \mu, 1\}$ be fuzzy topologies on sets X and Y respectively. Then f is fuzzy contra $g\alpha$-continuous but not fuzzy contra $g\alpha'$-continuous.

Example 3.7: Let $X = \{x_1, x_2\}$, and $Y = \{y_1, y_2\}$. Let η_1, η_2, η_3 be fuzzy sets in X, μ be a fuzzy set in Y, defined as $\eta_1(x_1) = 0.1, \eta_1(x_2) = 0.2, \eta_2(x_1) = 0.4, \eta_2(x_2) = 0.6, \eta_3(x_1) = 0.7, \eta_3(x_2) = 0.7, \mu(y_1) = 0.2$ and $\mu(y_2) = 0.5$. Let $\tau_{x_1} = \{0, \eta_1, \eta_2, \eta_3, 1\}$ and $\tau_{x_2} = \{0, \mu, 1\}$ be fuzzy topologies on sets X and Y respectively. Let $f:X \to Y$ defined as $f(x_i) = y_i$, $i = 1, 2$. Then f is fuzzy contra $g\alpha'$-continuous but not fuzzy contra $g\alpha$-continuous.

Theorem 3.8. If a function $f:(X, \tau) \to (Y, \sigma)$ is fuzzy contra $g\alpha'$-continuous and (X, τ) is fuzzy T_α^*-space, than f is fuzzy contra α-continuous.

Proof. Let λ be open fuzzy set in X. Then $f^{-1}(\lambda)$ is $g\alpha'$-closed fuzzy set in X. Since X is fuzzy T_α^*-space, $f^{-1}(\lambda)$ is closed fuzzy set in X. Thus f is fuzzy contra α-continuous function.

Theorem 3.9. If a function $f:(X, \tau) \to (Y, \sigma)$ is fuzzy contra α-continuous and (X, τ) is fuzzy T_α^*-space, than f is fuzzy contra $g\alpha'$-continuous.

Proof. Let λ be open fuzzy set in Y. Then $f^{-1}(\lambda)$ is α-closed fuzzy set in X. Since X is fuzzy T_α^*-space, $f^{-1}(\lambda)$ is $g\alpha'$-closed fuzzy set in X. Thus f is fuzzy contra $g\alpha'$-continuous function.

Theorem 3.10. If a function $f:(X, \tau) \to (Y, \sigma)$ is fuzzy contra α-continuous and (X, τ) is fuzzy T_α^*-space, than f is fuzzy contra α-continuous function.

Proof. Let λ be open fuzzy set in Y. Then $f^{-1}(\lambda)$ is α-closed fuzzy set in X. Since X is fuzzy T_α^*-space, $f^{-1}(\lambda)$ is closed fuzzy set in X. Every closed fuzzy set is α-closed fuzzy set. Thus f is fuzzy contra α-continuous function.

Theorem 3.11 Let (X, τ) and (Y, σ) be two fuzzy topological spaces. The following statement are equivalent for a function $f:X \to Y$.

(i) f is fuzzy contra $g\alpha'$-continuous.

(ii) $f^{-1}(\lambda)$ is $g\alpha'$-open fuzzy set in X for each closed fuzzy set λ in Y.

(iii) For each $x \in X$ and each closed fuzzy set $\lambda \in Y$ containing $f(x)$, there exist a $g\alpha'$-open fuzzy set η in X containing x such that $f(\eta) \subset \lambda$.

(iv) For each $x \in X$ and open fuzzy set μ in Y not containing $f(x)$, there exists a $g\alpha'$-closed fuzzy set θ in X not containing x such that $f^{-1}(\theta) \subset \mu$.

Proof.

(i) \Rightarrow (ii). Let λ be a closed fuzzy set in (Y, σ). Then $1 - \lambda$ is fuzzy open. By (i), $f^{-1}(1 - \lambda) = 1 - f^{-1}(\lambda)$ is fuzzy $g\alpha'$-closed fuzzy set in X. So $f^{-1}(\lambda)$ is $g\alpha'$-open fuzzy set in X.

(ii) \Rightarrow (i), proof as above.

(ii) \Rightarrow (iii). Let λ be any closed fuzzy set in Y containing $f(x)$. By (ii), $f^{-1}(\lambda)$ is $g\alpha'$-open fuzzy set in (X, τ) and $x \in f^{-1}(\lambda)$. Take $\eta = f^{-1}(\lambda)$. Then $f(\eta) \subset \lambda$.

(iii) \Rightarrow (ii). Let λ be a closed fuzzy set in Y and $x \in f^{-1}(\lambda)$. From (iii), there exists a $g\alpha'$-open fuzzy set η in X containing x such that $f(\eta) \subset \lambda$. We have $f^{-1}(\lambda) = \bigcup_{\alpha \in f^{-1}(\lambda)} \eta$. Thus $f^{-1}(\lambda)$ is $g\alpha'$-open fuzzy set in (X, τ).

(iii) \Rightarrow (iv). Let μ be any open fuzzy set in Y not containing $f(x)$. Then $1 - \mu$ is a closed fuzzy set containing $f(x)$. By (iii) there exists a $g\alpha'$-open fuzzy set η in X containing x such that $f(\eta) \subset 1 - \mu$. Hence $\eta \subset f^{-1}(1 - \mu) \subset 1 - f^{-1}(\mu)$ and then $f^{-1}(\mu) \subset 1 - \eta$.

4. FUZZY ALMOST CONTRA \(g \)-CONTINUOUS FUNCTION

Definition 4.1. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called fuzzy \(g \)-continuous if the fuzzy preimage of every \(\sigma \)-open subset of \((Y, \sigma) \) is fuzzy \(g \)-open in \((X, \tau) \) for every \(\sigma \)-open subset in \((Y, \sigma) \).

Definition 4.2. Every fuzzy \(g \)-open set in \(Y \) is fuzzy contra \(g \)-continuous.

Definition 4.3. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function. \(f \) is said to be fuzzy contra \(g \)-continuous if for every fuzzy \(\sigma \)-open set \(U \) in \((Y, \sigma) \), \(f^{-1}(U) \) is fuzzy \(g \)-open in \((X, \tau) \).

Theorem 4.4. If \(f \) is fuzzy \(g \)-continuous, then \(f \) is fuzzy contra \(g \)-continuous.

Proof. Let \(U \) be a fuzzy \(\sigma \)-open set in \((Y, \sigma) \). Since \(f \) is fuzzy \(g \)-continuous, \(f^{-1}(U) \) is fuzzy \(g \)-open in \((X, \tau) \) for every \(\sigma \)-open set \(U \) in \((Y, \sigma) \). Hence, \(f \) is fuzzy contra \(g \)-continuous.

Example 4.1: Let \(X = \{0, 1\} \) and \(\tau = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\} \). Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) where \(Y = \{0, 1\} \) and \(\sigma = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\} \). Then \(f \) is fuzzy \(g \)-continuous but not fuzzy contra \(g \)-continuous.

Definition 4.5. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called fuzzy \(g \)-almost contra \(g \)-continuous if \(f^{-1}(U) \) is fuzzy \(g \)-closed in \((X, \tau) \) for every \(\sigma \)-open set \(U \) in \((Y, \sigma) \).

Theorem 4.6. Every fuzzy \(g \)-closed set in \(Y \) is fuzzy \(g \)-contra \(g \)-continuous.

Proof. Let \(C \) be a fuzzy \(g \)-closed set in \(Y \). Since \(f \) is fuzzy \(g \)-continuous, \(f^{-1}(C) \) is fuzzy \(g \)-open in \((X, \tau) \) for every \(\sigma \)-open subset \(C \) in \((Y, \sigma) \).

5. CONCLUSION

We have introduced and studied new kind of mapping fuzzy contra \(g \)-continuous map. We have established some significant properties of fuzzy contra \(g \)-continuous maps.

REFERENCES

