On Fuzzy Contra $g^* \alpha$ -Continuous Functions

Madhulika Shukla Department of Applied Mathematics, Gayan Ganga Insitude of Technology and Sciences Jabalpur (M.P.) 482011 India

ABSTRACT

In this paper we introduce and study the new class of functions called fuzzy contra $g^*\alpha$ -continuous and fuzzy almost contra $g^*\alpha$ -continuous mappings on fuzzy topological spaces. We investigate some of their properties. Also we provide the relation between fuzzy contra $g^*\alpha$ -continuous mappings and fuzzy almost contra $g^*\alpha$ -continuous mappings.

General Terms Fuzzy topology, fuzzy generalized closed set, fuzzy $g\alpha$ -closed, fuzzy $g^*\alpha$ -closed set, fuzzy contra α -continuous function fuzzy $g^*\alpha$ -continuous.

Keywords

Fuzzy contra $g^*\alpha$ -continuous function, fuzzy Contra $g^*\alpha$ irresolute function, fuzzy almost contra $g^*\alpha$ -continuous functions.

1. INTRODUCTION

The fuzzy α -open and fuzzy α -continuous mappings were introduced and generalized by Bin Shahana [4]. N. Levine [8] introduced the concepts of generalized closed sets in general topology in the year 1970. Veera kumar [13] introduced and study the concept of g^* -closed set and g^* continuity in topological space. In 2006, Eradal and Etienne [5] introduced the notation of fuzzy contra continuous mapping. S. S. Benchalli and G. P. Siddapur [3] introduced the notation of generalized pre-closed sets in fuzzy topological space in 2011. Recently M. Shukla introduced the concept of fuzzy contra g^*p -continuous [11] and fuzzy contra g^*s - continuous [12] in fuzzy topological space.

In this paper we introduce and study the new class of mappings called fuzzy contra $g^*\alpha$ -continuous and fuzzy almost contra $g^*\alpha$ -continuous functions in fuzzy topological spaces. Also we define the relation between of fuzzy contra $g^*\alpha$ -continuous and fuzzy almost contra $g^*\alpha$ -continuous and fuzzy almost contra $g^*\alpha$ -continuous spaces and study some of their properties.

2. PRELIMINARY

Let X be a non empty set. A collection τ of fuzzy sets in X is called a fuzzy topology on X if the whole fuzzy set 1 and the empty fuzzy set 0 is the members of τ and τ is closed with respect to any union and finite intersection. The members of τ are called fuzzy open sets and the complement of a fuzzy open set is called fuzzy closed set.

The **closure** of a fuzzy set λ (denoted by $cl(\lambda)$) is the intersection of all fuzzy closed which contains λ . The **interior** of a fuzzy set λ (denoted by $int(\lambda)$) is the union of all fuzzy open subsets of λ . A fuzzy set λ in X is fuzzy open (resp. fuzzy closed) if and only $int(\lambda) = \lambda$ (resp. $cl(\lambda) = \lambda$).

Definition 2.1: Let (X, τ) be a fuzzy topological space. A fuzzy set λ in the space X is called:

- (i) semi-open fuzzy set [1] if $\lambda \leq cl(int(\lambda))$ and semi-closed fuzzy set if $int(cl(\lambda)) \leq \lambda$.
- (ii) pre-open fuzzy set [4] if $\lambda \leq int(cl(\lambda))$ and preclosed fuzzy set if $cl(int(\lambda)) \leq \lambda$.
- (iii) α -open fuzzy set [4] if $\lambda \leq int(cl(int(\lambda)))$ and α -closed fuzzy set if $cl(int(cl(\lambda))) \leq \lambda$.
- (iv) regular open fuzzy set [1] if $\lambda = int(cl(\lambda))$ and regular closed fuzzy set if $\lambda = cl(int(\lambda))$.

The α -closure (resp. semi-closure, pre-closure) of a fuzzy set λ in fuzzy topological space (X, τ) is intersection of all α -closed (resp. semi-closed, preclosed) fuzzy sets in X containing λ and is denoted by $\alpha - cl(\lambda)$ (resp. $scl(\lambda), pcl(\lambda)$).

Definition 2.2: Let (X, τ) be a fuzzy topological space. A fuzzy set λ in the space *X* is called:

- (i) generalized closed fuzzy set (g-closed) fuzzy set
 [2] if cl(λ) ≤ η whenever λ ≤ η and η is open fuzzy set in(X, τ).
- (ii) generalized α-closed fuzzy set (gα-closed) fuzzy set [2] if αcl(λ) ≤ η whenever λ ≤ η and η is open fuzzy set in(X, τ).
- (iii) g*- closed fuzzy set (g*-closed) fuzzy set [8] if cl(λ) ≤ η whenever λ ≤ η and η is g-open fuzzy set in(X, τ).
- (iv) g*-preclosed fuzzy set (g*p-closed) fuzzy set [3] if pcl(λ) ≤ η whenever λ ≤ η and η is g-open fuzzy set in(X, τ).
- (v) g^* -semiclosed fuzzy set $(g^*$ s-closed) fuzzy set [3] if $scl(\lambda) \le \eta$ whenever $\lambda \le \eta$ and η is *g*-open fuzzy set in (X, τ) .
- (vi) g^* -alphaclosed fuzzy set $(g^*\alpha$ -closed) fuzzy set [3] if $\alpha cl(\lambda) \leq \eta$ whenever $\lambda \leq \eta$ and η is *g*-open fuzzy set in(*X*, τ).

The complement of *g*-closed (resp. *gp*-closed, g^* closed and g^*p -closed, g^*s -closed, $g^*\alpha$ -closed) fuzzy sets are called fuzzy *g*-open (resp. *gp*-open, g^* -open and g^*p -open, g^*s -open, $g^*\alpha$ -open) sets in fuzzy topological spaces.

Definition 2.3: A fuzzy topological space (X, τ) is called T^*_{α} -space [6] if every $g^*\alpha$ -closed fuzzy set is a closed fuzzy set in *X*.

Definition 2.4: A function f from a fuzzy topological space (X, τ) to fuzzy topological space (Y, σ) is called:

(i) fuzzy-contra continuous if f⁻¹(λ) is fuzzy closed in X for every fuzzy open set λ of Y [5].

- (ii) fuzzy contra pre-continuous (fuzzy contra α-continuous [7], fuzzy contra semi-continuous) if f⁻¹(λ) is fuzzy pre-closed (fuzzy α-closed, fuzzy semi-closed resp.) in X for every fuzzy open set λ of Y.
- (iii) fuzzy *g*-continuous if f⁻¹(λ) is fuzzy *g*-closed in X for every fuzzy closed set λ of Y [2].
- (iv) fuzzy g pre- continuous (fuzzy gα-continuous, fuzzy gsemi-contonuous) if f⁻¹(λ) is fuzzy gp-closed (fuzzy gα-closed, fuzzy gs-closed resp.) in X for every fuzzy closed set λ of Y [6,].
- (v) fuzzy g*- continuous if f⁻¹(λ) is fuzzy g*-open in X for every fuzzy open set λ of Y [8].
- (vi) fuzzy g^*p -continuous (fuzzy $g^*\alpha$ -continuous, fuzzy g^*s -continuous) if $f^{-1}(\lambda)$ is fuzzy g^*p -open (fuzzy $g\alpha^*$ -open, fuzzy g^*s -open) in X for every fuzzy open set λ of Y [3,].
- (vii) A function $f: X \to Y$ is called fuzzy contra g^*p continuous (fuzzy contra g^*s -continuous) if $f^{-1}(\lambda)$ is fuzzy g^*p -closed (fuzzy g^*s -closed) set in X for every open set λ in Y [11].
- (viii) fuzzy almost continuous if $f^{-1}(\lambda)$ is fuzzy open in X for every fuzzy regular open set λ of Y [1].

3. FUZZY CONTRA $g^*\alpha$ -CONTINUOUS FUNCTION

Definition 3.1. A function $f: X \to Y$ is called **fuzzy** contra $g^*\alpha$ -continuous if $f^{-1}(\lambda)$ is fuzzy $g^*\alpha$ -closed set in X for every open set λ in Y.

Theorem 3.2. Every fuzzy contra continuous function is fuzzy contra $g^*\alpha$ -continuous function.

Proof: It follows from the fact that every fuzzy closed set is $g^*\alpha$ -closed set.

The converse of the above theorem need not be true as seen from the following example.

Example 3.3: Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2\}$ and μ, λ be fuzzy sets in *X* and *Y*, defined as $\mu(x_1) = 0.5$, $\mu(x_2) = 0.5$, $\lambda(y_1) = 0.4$, and $\lambda(y_2) = 0.3$. Let $\tau = \{0, \mu, 1\}$ and $\tau' = \{0, \lambda, 1\}$ be fuzzy topologies on sets *X* and *Y* respectively. We see that map $f : X \to Y$ defined as $f(x_1) = y_1$ and $f(x_2) = y_2$ Then *f* is fuzzy contra $g^*\alpha$ -continuous but not fuzzy contra continuous.

Theorem 3.4. Every fuzzy contra α -continuous mapping is fuzzy contra $g^*\alpha$ -continuous function.

Proof. Straight forward and follows from the definitions.

The converse of the above theorem need not be true as seen from Example 3.2.

Theorem 3.5. Every fuzzy contra $g^*\alpha$ -continuous mapping is fuzzy contra g^*s -continuous function as well as fuzzy g^*p -continuous.

Proof: Straight forward and follows from the definitions.

The converse of the above theorem need not be true as seen from Example 3.6 and Example 3.7.

Example 3.6: Let $X = \{x_1, x_2\}$, and $Y = \{y_1, y_2\}$. Let η_1, η_2, η_3 be fuzzy sets in *X*, μ be a fuzzy set in *Y*, defined as $\eta_1(x_1) = 0.2$, $\eta_1(x_2) = 0.3$, $\eta_2(x_1) = 0.3$, $\eta_2(x_2) = 0.5$, $\eta_3(x_1) = 0.6$, $\eta_3(x_2) = 0.7$, $\mu(y_1) = 0.5$, and $\mu(y_2) = 0.6$. Let $\tau_X = \{0, \eta_1, \eta_2, \eta_3, 1\}$ and $\tau_Y = \{0, \mu, 1\}$ be fuzzy topologies on sets *X* and *Y* respectively. Let $f: X \to Y$ defined as $f(x_i) = y_i$, i = 1, 2. Then *f* is fuzzy contra g^*s -continuous but not fuzzy contra $g^*\alpha$ -continuous.

Example 3.7: Let $X = \{x_1, x_2\}$, and $Y = \{y_1, y_2\}$. Let η_1 an η_3 be fuzzy sets in X, μ be a fuzzy set in Y, defined as $\eta_1(x_1) = 0.1$, $\eta_1(x_2) = 0.2$, $\eta_2(x_1) = 0.4$, $\eta_2(x_2) = 0.6$, $\eta_3(x_1) = 0.7$, $\eta_3(x_2) = 0.7$, $\mu(y_1) = 0.2$ and $\mu(y_2) = 0.5$. Let $\tau_X = \{0, \eta_1, \eta_2, \eta_3, 1\}$ and $\tau_Y = \{0, \mu, 1\}$ be fuzzy topologies on sets X and Y respectively. Let $f: X \to Y$ defined as $f(x_i) = y_i$, i = 1, 2. Then f is fuzzy contra g^*p -continuous but not fuzzy contra $g^*\alpha$ -continuous.

Theorem 3.8. If a function $f: (X, \tau) \to (Y, \sigma)$ is fuzzy contra $g^*\alpha$ –continuous and (X, τ) is fuzzy T^*_{α} -space, than f is fuzzy contra continuous.

Proof. Let λ be open fuzzy set in *Y*. Then $f^{-1}(\lambda)$ is $g^*\alpha$ -closed fuzzy set in *X*. Since *X* is fuzzy T^*_{α} -space. $f^{-1}(\lambda)$ is closed fuzzy set in *X*. Thus *f* is fuzzy contra continuous function.

Theorem 3.9. If a function $f: (X, \tau) \to (Y, \sigma)$ is fuzzy contra α -continuous and (X, τ) is fuzzy T_{α}^* -space, than f is fuzzy contra $g^*\alpha$ -continuous.

Proof. Let λ be open fuzzy set in *Y*. Then $f^{-1}(\lambda)$ is α -closed fuzzy set in *X*. Since *X* is fuzzy T^*_{α} -space. $f^{-1}(\lambda)$ is $g^*\alpha$ -closed fuzzy set in *X*. Thus *f* is fuzzy contra $g^*\alpha$ -continuous function.

Theorem 3.10. If a function $f: (X, \tau) \to (Y, \sigma)$ is fuzzy contra $g^*\alpha$ –continuous and (X, τ) is fuzzy T^*_{α} -space, than f is fuzzy contra α -continuous.

Proof. Let λ be open fuzzy set in Y. Then $f^{-1}(\lambda)$ is $g^*\alpha$ -closed fuzzy set in X. Since X is fuzzy T^*_{α} -space. $f^{-1}(\lambda)$ is closed fuzzy set in X. And every closed fuzzy set is α -closed fuzzy set. Thus f is fuzzy contra α -continuous function.

Theorem 3.11 Let (X, τ) and (Y, σ) be two fuzzy topological spaces. The following statement are equivalent for a function $f: X \to Y$.

- (i) f is fuzzy contra $g^*\alpha$ continuous.
- (ii) f⁻¹(λ) is g^{*}α-open fuzzy set in X for each closed fuzzy set λ in Y.
- (iii) for each x ∈ X and each closed fuzzy set λ in Y containing f(x). there exist a g*α-open fuzzy set η in X containing x such that f(η) ≤ λ.
- (iv) for each $x \in X$ and open fuzzy set μ in *Y* noncontaining f(x), there exists a $g^*\alpha$ -closed fuzzy set ϑ in *X* non-containing *x* such that $f^{-1}(\mu) \leq \vartheta$.

Proof. (i) \Rightarrow (ii). Let λ be a closed fuzzy set in (Y, σ) . Then 1- λ is fuzzy open. By (i), $f^{-1}(1 - \lambda) = 1 - f^{-1}(\lambda)$ is $g^*\alpha$ -closed fuzzy set in X. So $f^{-1}(\lambda)$ is $g^*\alpha$ -open fuzzy set in X.

(ii) \Rightarrow (*i*). proof as above.

(ii) \Rightarrow (*iii*). Let λ be any closed fuzzy set in *Y* containing f(x). By (ii). $f^{-1}(\lambda)$ is $g^*\alpha$ -open fuzzy set in (X, τ) and $x \in f^{-1}(\lambda)$. Take $\eta = f^{-1}(\lambda)$. Then $f(\eta) \leq \lambda$.

(iii) \Rightarrow (*ii*). Let λ be a closed fuzzy set in *Y* and $x \in f^{-1}(\lambda)$. From (iii), there exists a $g^*\alpha$ -open fuzzy set η in *X* containing *x* such that $\eta \leq f^{-1}(\lambda)$. We have $f^{-1}(\lambda) = \bigcup_{x \in f^{-1}(\lambda)} \eta$. Thus $f^{-1}(\lambda)$ is $g^*\alpha$ -open fuzzy set in (X, τ) .

(iii) \Rightarrow (iv). Let μ be any open fuzzy set in (x, t). (iii) \Rightarrow (iv). Let μ be any open fuzzy set in Y noncontaining f(x). Then 1- μ is a closed fuzzy set containing f(x). By (iii) there exists a $g^*\alpha$ -open fuzzy set η in X containing x such that $f(\eta) \le 1 - \mu$. Hence $\eta \le f^{-1}(1-\mu) \le 1 - f^{-1}(\mu)$ and then $f^{-1}(\mu) \le 1 - \eta$. Take $\vartheta = 1 - \eta$. We obtain that ϑ is a $g^* \alpha$ -closed fuzzy set in *X* non-containing *x*.

The converse can be shown easily.

Definition 3.12. A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called **Fuzzy Contra** $g^*\alpha$ -irresolute if $f^{-1}(\lambda)$ is $g^*\alpha$ -closed fuzzy set in X for every $g^*\alpha$ -open fuzzy set λ in Y.

Theorem 3.13. A function $f:(X,\tau) \to (Y,\sigma)$ is fuzzy contra $g^*\alpha$ -continuous if and only if $f^{-1}(\lambda)$ is $g^*\alpha$ -open fuzzy set in X for every $g^*\alpha$ -closed fuzzy set λ in Y.

Theorem 3.14. Every fuzzy contra $g^*\alpha$ -irresolute mapping is fuzzy contra $g^*\alpha$ -continuous.

Proof. Let $f: X \to Y$ is fuzzy contra $g^*\alpha$ -irresolute function. Let λ be a fuzzy open set in Y. Then λ is $g^*\alpha$ -open fuzzy set in Y. Since f is fuzzy contra $g^*\alpha$ -irresolute. $f^{-1}(\lambda)$ is $g^*\alpha$ - fuzzy closed set in X. Hence f is fuzzy contra $g^*\alpha$ -continuous function.

Theorem 3.15. Let $f: X \to Y$, $g: Y \to Z$ be two functions then

- (i) $gof: X \to Z$ is fuzzy contra $g^*\alpha$ -continuous, if f is fuzzy contra $g^*\alpha$ -continuous and g are fuzzy continuous.
- (ii) $gof: X \to Z$ is fuzzy contra $g^*\alpha$ -continuous if f is fuzzy contra $g^*\alpha$ -irresolute and g is fuzzy $g^*\alpha$ -continuous.

4. FUZZY ALMOST CONTRA $g^*\alpha$ -CONTINUOUS FUNCTION

Definition 4.1. A function $f:(X,\tau) \to (Y,\sigma)$ is called **Fuzzy almost contra** $g^*\alpha$ -Continuous if $f^{-1}(\lambda)$ is fuzzy $g^*\alpha$ -closed set in X for every regular open set λ in Y.

Theorem 4.2. Every fuzzy contra $g^*\alpha$ -continuous function is fuzzy almost contra $g^*\alpha$ -continuous.

Proof. Since every regular fuzzy open set is open fuzzy set, such that every fuzzy contra $g^*\alpha$ -continuous mappings is fuzzy almost contra $g^*\alpha$ -continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.3: Let $X = \{x_1, x_2\}, Y = \{y_1, y_2\} \lambda$, and μ be a fuzzy set in *X* and *Y* defined as $\lambda(x_1) = 0.5$, $\lambda(x_2) = 0.5$, $\mu(y_1) = 0.3$, $\mu(y_2) = 0.5$. Let $\tau = \{0, \lambda, 1\}$ and $\tau' = \{0, \mu, 1\}$ be fuzzy topologies on sets *X* and *Y* respectively. The map $f: (X, \tau) \rightarrow (Y, \tau')$ defined as $f(x_i) = y_i, i = 1, 2$ is fuzzy almost contra $g^*\alpha$ -continuous map but not fuzzy contra $g^*\alpha$ -continuous.

Definition 4.4. A function $f: X \to Y$ is said to be fuzzy regular set connected if $f^{-1}(\lambda)$ is fuzzy clopen in *X* for every fuzzy regular open set λ of *Y*.

Theorem 4.5. If a function $f: X \to Y$ is fuzzy almost contra $g^*\alpha$ -continuous and fuzzy almost continuous, then *f* is fuzzy regular set connected.

Proof. Let λ be a fuzzy regular open set in (Y, σ) . Since f is fuzzy almost contra $g^*\alpha$ -continuous and fuzzy almost continuous, $f^{-1}(\lambda)$ is fuzzy $g^*\alpha$ -closed and open. Hence $f^{-1}(\lambda)$ is fuzzy clopen. Therefore f is fuzzy regular set connected.

Definition 4.6. A fuzzy topological spaces (X, τ) is called fuzzy $g^*\alpha$ -connected if *X* cannot be written as the disjoint union of two non-empty fuzzy $g^*\alpha$ -open sets.

Theorem 4.7. Let (X, τ) and (Y, σ) be two fuzzy topological spaces. The following statement are equivalent for a function $f: X \to Y$.

- (i) f is fuzzy almost contra $g^*\alpha$ continuous.
- (ii) $f^{-1}(\lambda)$ is fuzzy $g^*\alpha$ -open set in X for every regular closed set λ in Y.
- (iii) for each $x \in X$ and each fuzzy regular closed set λ in Y containing f(x). there exist a fuzzy $g^*\alpha$ -open set η in X containing x such that $f(\eta) \leq \lambda$.
- (iv) for each $x \in X$ and fuzzy regular open set μ in *Y* noncontaining f(x), there exists a fuzzy $g^*\alpha$ -closed set ϑ in *X* non-containing *x* such that $f^{-1}(\mu) \leq \vartheta$.

Proof. As theorem 3.8.

Theorem 4.8: Let *X*, *Y* and *Z* be fuzzy topological spaces and let $f: X \to Y$ and $g: Y \to Z$ be maps. If *f* is fuzzy contra $g^* \alpha$ -continuous and *g* is fuzzy almost continuous then $gof: X \to Z$ is fuzzy almost contra $g^* \alpha$ -continuous.

5. CONCLUSION

- (i) We have introduced and studied new kind of map fuzzy contra $g * \alpha$ -continuous maps on fuzzy topological spaces.
- (ii) We defined the relation between fuzzy contra α continuous and fuzzy contra $g * \alpha$ -continuous map. We investigated some of their properties.
- (iii)We proved that every fuzzy contra $g * \alpha$ -continuous map is fuzzy contra g * p -precontinuous as well as fuzzy g * s-continuous mapping but converse may not be true by use of example.
- (iv) We have established some significant properties of fuzzy contra $g * \alpha$ continuous maps.
- (v) We introduce and study new kind of fuzzy almost contra $g * \alpha$ -continuous map.

6. REFERENCES

- Azad, K. K. 1981 On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math Apl. 82, 14-32.
- [2] Balasubramanian, G. and Sundaram, p. 1997 On some generalization of fuzzy continuous, Fuzzy Sets and Systems, 86, 93-100.
- [3] Benchalli, S. S. and Siddapur, G. P. 2011 Fuzzy g*precontinuous maps in Fuzzy topological Spaces, Int. J. of Computer Appl. (0975-8887), Vol. 16- No. 2.
- [4] Bin Shahana, A. S. 1991 On fuzzy strong semicontinuity and fuzzy pre continuity. *Fuzzy Sets and Systems.* 44, 303-308.
- [5] Erdal, Ekici and Etienne E. 2006 Kerre, On Fuzzy Contra-Continuities, Advanced in Fuzzy Mathematics, Vol. 1 No. 1, pp. 35-44.
- [6] Fukutake, T., Saraf, R. K., Caldas, M. and Mishra, S. 2003 Mappings Fgp-closed sets, Bull. of Fukuoka Univ. of Edu. Vol. 52, Part III, 11-20.
- [7] Jafari, S. and Nori, T.2002 On contra- precontinuous functions, Bull. Malays Math. Sci. Soc. (2), 25(2), 115-128.
- [8] Levine, N. 1970 Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (2), 89-96.

International Journal of Computer Applications (0975 – 8887) Volume 99– No.3, August 2014

- [9] Malghan, S. R. and Benchali, S.S. 1984 Open maps, closed maps and local compactness in Fuzzy Topological spaces, JI MATh. Anal.. Appl. 99No 2, 74-79.
- [10] Mukherjee, M.N. and Ghosh, B. 1990 Some stronger forms of fuzzy continuous mappings on fuzzy topological spaces, Fuzzy Sets and Systems, 38, 375-387.
- [11] Shukla, M. 2012 On Fuzzy Contra g^*p -continuous mapping, Advance in Fuzzy Mathematics, Vol 7, No 2 91-97.
- [12] Shukla, M. 2013 On Fuzzy Contra g^* semicontinuous mapping, Int.J. Sci.& Engg. Research, Vol 4, No. 10, 529-536.

- [13] Veerakumar, M. K. R.S. 2002 g[#]-semi-closed setsd in topology, Acta Ciencia Indica, Vol.xxix M, No. 1. 081.
- [14] Yaidynathaswamy, R. 1960 Set Topology Chelsea New York.
- [15] Yuksel, S., G., Caylak and Acikgoz, A. 2010 On fuzzy S-I open sets and decomposition of fuzzy α-I continuity SDU journal of SCI. 5(1) 147-153.
- [16] Yuksel, S., G., Caylak and Acikgoz, A. 2009 On fuzzy α -I Continuous and fuzzy α -I open function Chaos Solitions Fractals 41(4) 1691-1696.
- [17] Zadeh L.A. 1965 Fuzzy Sets, Inform. and control, 8, 338-353.