
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

8

Thermal Uniformity-Aware Application Mapping for

Network-on-Chip Design

Pradip Kumar Sahu1, Kanchan Manna2, Tapan Shah3 and Santanu Chattopadhyay4

Electronics and Electrical Communication Engineering,
Indian Institute of Technology, Kharagpur, West Bengal, India

ABSTRACT

Ensuring thermal-uniformity in an integrated circuit chip is

very essential for its correct operation. Thus, in the Network-

on-Chip (NoC) based system design as well, it is essential to

attach cores of the application core graph to the routers in the

topology graph so that thermal uniformity across the chip is

maintained. However, the performance of the application

should not be sacrificed to a great extent. Also, the CPU time

needed to explore the overall search-space is quite high. This

paper presents a tool to the designers to explore the search-

space in a controlled fashion. The designer can specify the

communication cost degradation that can be tolerated and the

amount of effort put in to identify the potential solutions. All

non-dominated solutions (in terms of communication cost and

temperature variance) are reported from which the designer

can choose the appropriate one for implementation.

General Terms

Thermal-aware application mapping, Heuristic, Network-on-

Chip

Keywords

Application mapping, Communication cost, Mesh topology,

Network-on-Chip, Temperature variance, Thermal uniformity

1. INTRODUCTION
In recent years, power density in processor has doubled every

three years. This rate is expected to increase further within

next one or two generations, due to the higher rate of

shrinking feature size, increasing transistor count, and faster

frequency scaling, compared to the reduction in operating

voltage [1]. High-performance circuits consume large amount

of power due to their increased bandwidth requirement, higher

frequency of operation, and higher level of system integration.

A good amount of consumed power is converted directly into

dissipated heat. Such a system must be designed to ensure

good thermal behavior of the chip, even when the maximum

power is dissipated by it. A major concern in today’s system

design is the thermal heating of ICs. As Network-on-Chip

(NoC) consists of different cores, each having its own power-

profile, area, frequency of operation etc, it results in non-

uniform heating of the chip. This may result in delay variation

across the chip. This not only affects circuit performance but

also decreases their reliability. Hence, ensuring thermal

uniformity across the chip is a necessity. Excessive localized

heating occurs much faster than chip-wide heating. Since

power dissipation is non-uniform across the chip, this leads to

the creation of thermal hotspots that can cause timing errors or

even physical damage. One solution to this problem is the

usage heat sink and some other cooling techniques. As a

result, various cooling solutions have been proposed in the

literature. As power consumption increases, there is a non-

linear relationship between the cooling capabilities and the

cost of the solution [2]. Apart from heat sink and cooling

strategies, another solution to the problem is the placement of

cores – the placement should be guided not only by their

communication requirements, but also their temperature

profile.

A major challenge in thermal uniformity-aware NoC based

system design is to determine the association of routers of the

fabric to the cores of an application. An application consists

of a set of tasks, each of which is implemented by an IP core.

As the tasks need to interchange messages between

themselves, so do the IP cores. After the cores participating in

an application have been decided, the application can be

represented in the form of a core graph [3], defined as

follows.

Definition 1: The core graph for an application is a directed

graph, with each vertex representing a core

and the directed edge representing the

communication between the cores and . The weight of

edge , denoted by , represents the bandwidth

requirement of the communication from to .

On the other hand, the given NoC topology can be represented

in the form of a topology graph [3].

Definition 2: The NoC topology graph is a directed graph

 with each vertex representing a node in the

topology and the directed edge representing a direct

communication between the vertices and . The weight of

the edge , denoted as , represents the bandwidth

available across the edge .

A mapping of the core graph onto the topology graph

 is defined by the function,

 .

The function associates core to router . Naturally,

assuming that at most one core can be attached to each router,

mapping is defined only when . The quality of such

a mapping is defined in terms of the total

 of the application under this mapping.

The communication between each pair of cores can be treated

as flow of a single commodity . The value

of commodity , corresponding to the communication

between cores and is equal to , the bandwidth

requirement. If is mapped to the router and is

mapped to , the set of all commodities is

defined as follows.

 (1)

Also,

 (2)

The link between two individual routers and of the

topology has a maximum bandwidth of . The total

commodity flowing through such a link should not exceed this

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

9

bandwidth. The quantity
 indicating the value of

commodity flowing through the link is given by,

 (3)

where, indicates the deterministic routing path

between the router nodes and in the topology. Satisfaction

of bandwidth limitations of individual links must be ensured.

That is, all mapping solutions should satisfy the following

relation.

 (4)

If all bandwidth constraints are satisfied, the

 Tx of a mapping solution is given by,

 (5)

Here, is the number of hops between the

topology nodes and . For a deterministic shortest path

routing, corresponds to the minimum number of

hops between the constituent nodes. Since

 is very much dependent on the

mapping solution, the overall mapping problem is often

formulated to optimize the , ensuring

that the bandwidth constraints of all individual links are

satisfied. affects the performance of

the overall system and its energy consumption, as both of

these factors are directly proportional to the total .

Fig.1. Thermal profile for TGFF graph G3

(Communication-aware mapping [7])

Communication cost = 107888.02

Temperature variance = 146.83

Peak Temperature = 462.06°K

Several application mapping algorithms have been proposed

in the literature to minimize the communication cost and

energy consumption of NoC [4]. However, algorithms which

minimize communication cost of the mapping may not

consider the thermal effects, resulting in hotspots and high

peak temperatures. It may also create very high temperature

variance within the chip, resulting in uneven delay across the

chip. This paper presents the design of our proposed mapping

algorithm to minimize both communication cost and

temperature variance for a given application. Temperature

variance and peak temperature should be reduced with a

limitation on permissible communication cost trade-off. Our

mapping strategy has been developed for mesh topology,

though it can very easily be extended to any other topologies.

In the following, this scenario has been discussed with an

example application core graph (named G3) generated using

TGFF [5], the random task graph generator. The TGFF tool

[5] have been used the to generate a few task graphs with

cores. By varying bandwidth, number of start nodes and in-

out degree for nodes, different task graphs have been

generated via TGFF. The bandwidths are varied from

 to for some graphs and to

 for other graphs. The in-out degrees of nodes are

varied from 1 to 8 to generate both low and high

communication graphs. Number of start nodes also varied to

generate different graphs and to see the effect of mapping

solutions upon them. The bandwidth values for the edges are

also generated randomly to get heterogeneous communication

behavior of cores. 64-core NoCs are implemented as 8×8.

A thermal simulation using HotSpot tool [6] has been applied

upon a communication-aware application mapping of the core
graph (G3) using discrete Particle Swarm Optimization [7].

Power densities of the cores are generated randomly within

10–60 (W/cm2) [8]. Router power values are calculated using

their switching activities. Temperature profile of the

communication-aware mapping of the application graph G3

has been shown in Fig. 1. The resulting communication and

temperature metrics are also noted in the figure.

Here temperature variance is the summation of squared

differences of individual tile temperatures from the average

chip temperature.

Fig.2. Thermal profile for TGFF graph G3 (Thermal

uniformity-aware mapping)

Communication cost = 119782.0

Temperature variance = 110.78

Peak Temperature = 455.53°K

 (6)

Where, = Temperature variance of chip

 = Temperature of ith tile inside the chip

 = Average temperature of chip

 N = Total number of tiles inside the chip

Peak temperature is the maximum temperature of a tile

inside the chip.

 , for i = 1, 2, …, N (7)

As shown in Fig.1, there is quite a large variation in

temperature across the chip, almost 45°. Such a wide variation

may create a non-uniform delay at different regions of the

chip. This motivates us to go for a thermal uniformity-aware

application mapping. The goal of the strategy is to reduce the

temperature variance across the chip. Peak temperature of the

chip also gets reduced in some cases. The temperature profile

of thermal uniformity-aware mapping of G3 application

benchmark obtained using the technique discussed in this

paper is shown in Fig. 2. Temperature variance is reduced by

almost 25%, but the communication cost increases by 11%.

As shown in Fig. 2, the peak temperature is also reduced by

1.5%.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

10

This paper presents a thermal uniformity-aware application

mapping strategy onto mesh-based NoC using a constructive

heuristic to make the temperature profile uniform, as well as

reduce the peak temperature with tolerable performance

degradation. The salient features of the approach are as

follows.

1. A trade-off has been established between performance and

temperature variance of the system.

2. The technique is flexible in the sense that the user can set

the tolerance limit for the communication cost in their

design. The amount of effort the mapper employs (thus,

the CPU time) is also controllable.

The rest of the paper is organized as follows. Section 2

surveys the works reported in the literature on NoC mapping

techniques. Section 3 discusses the relevant issues in mapping

algorithm design. Section 4 presents our proposed thermal

uniformity-aware mapping algorithm. Section 5 embodies the

results and analysis of the proposed approach. Conclusion is

presented in Section 6.

2. LITERATURE SURVEY
To obtain optimum solution to the application mapping

problems, several researchers have proposed Integer Linear

Programming (ILP) based formulations [9–14]. While [9]

attempts to minimize energy by shutting down certain

communication links in NoC based chip multiprocessors

(CMPs), a unified approach of energy efficient application

mapping has been presented in [10] taking care of all the sub-

problems, such as, application mapping, operating voltage

assignment, and routing. In [11], the existing ILP [10] has

been extended to find a trade-off between computation and

communication energy. In [12], factors that produce network

contention have been analyzed. It proposes an ILP

formulation for a contention-aware application mapping

algorithm in tile-based NoC to minimize inter-tile network

contention. In [13, 14], authors have presented ILP

formulation for application mapping onto mesh based NoC to

minimize energy consumption for different benchmarks.

PMAP, a two-phase mapping algorithm for placing clusters

onto processors has been presented in [15], where highly

communicating clusters are placed on adjacent nodes of the

processor network. In [3], NMAP, a mapping technique has

been proposed with minimum path routing in the mesh

architecture which satisfies the bandwidth constraint and

minimizes the average communication delay. In [16, 17],

GMAP, and PBB a branch and bound algorithm, have been

proposed that map cores onto a tile-based NoC architecture

satisfying the bandwidth constraint and minimizing the total

energy consumption. MOCA, a two phase heuristic for low

energy mesh based on-chip interconnection architecture has

been proposed in [18]. A binomial IP mapping and

optimization algorithm (BMAP) has been presented in [19] to

reduce hardware cost of the on-chip network. Spiral, a

mapping algorithm has been proposed in [20] which reduce

the cumulative energy consumption of communication links

and the overall system execution time. In [21], adaptive

feedback control based NoC architecture with multiple

voltage clocks for multiple islands has been proposed to

minimize the power consumption by exploiting dynamic

voltage-frequency scaling. Onyx, a bandwidth constrained

application mapping has been presented in [22] to minimize

the overall communication cost of NoC. CHMAP [23] is a

chain-mapping algorithm that produces chains of connected

cores in order to introduce a method for application mapping

onto mesh-based NoC. CMAP [24] is a constructive

application mapping algorithm that maps cores onto NoC

minimizing total communication cost and energy. In [25],

authors have taken NMAP [3] as their initial mapping

solution. A branch-and-bound algorithm, as in [16], has been

applied upon the NMAP mapping solution to arrive at a better

solution. CastNet, an energy-aware application mapping and

routing technique for NoC has been proposed in [26].

A two-step Genetic Algorithm (GA) for mapping applications

onto NoC has been proposed in [27], which reduces the

overall execution time. A multi-objective Genetic Algorithm

(MOGA) based application mapping technique has been

proposed in [28], where one-one as well as many-many

mapping between switches and tiles have been taken into

consideration to minimize energy consumption and required

link bandwidth. In [29], CGMAP, a genetic algorithm based

application mapping technique has been proposed that uses

the chaotic mapping operator instead of the random processes

in GA. GAMR [30], a genetic algorithm based mapping and

routing approach addresses a two phase mapping of IP cores

onto NoC architecture and generates a deterministic dead-lock

free minimal routing path for each communication to

minimize the total communication energy and maximum link

bandwidth of the NoC architecture. GBMAP, an evolutionary

approach for mapping cores onto NoC architecture has been

proposed in [31], which reduces energy consumption and total

bandwidth requirement of NoC. PLBMR, a Particle Swarm

Optimization (PSO) based two-phase application mapping

algorithm proposed in [32] minimizes the NoC

communication energy and allocates the routing path for

balancing the link-load. A mapping technique based on

discrete PSO has been presented in [33]. However, it only

considers improvement over genetic algorithm based method

and reports relative improvements only. In [34], a hybrid

multi-objective algorithm has been proposed, where Dijkstra

shortest path algorithm has been used to find the shortest path

among communicating cores to satisfy the bandwidth

constraints and then a multi-objective pareto based PSO

technique is applied upon that to improve performance.

PSMAP [35], a meta-heuristic strategy using PSO technique

has been proposed to reduce both static and dynamic cost of

NoC for mesh based application mapping. A discrete multiple

PSO based mapping technique has been proposed [7] to

optimize the performances using deterministic initial

solutions. In [36], an Ant Colony Optimization (ACO) based

algorithm has been proposed for application mapping onto

NoC to minimize the bandwidth requirement. The results have

been compared with random mapping techniques.

The above mapping techniques do not consider the

temperature effect during mapping. Temperature affects

performance, power, and reliability of the system. A

temperature-aware task mapping and scheduling technique

has been proposed in [37], which maps tasks using a heuristic

and a floorplanning tool to reduce the peak temperature.

Power densities are expected to increase faster in future

technologies, as the operating voltage no longer scales as

quickly as it has. The International Technology Roadmap for

Semiconductor (ITRS) Document (2003) [1] has projected

very little change in operating voltage. A good amount of

work has been proposed to design new packages that provide

good heat removal capacity and arrange circuit boards to

improve air flow. Chips are packaged with die placed against

a spreader plate, often made of aluminium, copper or some

other highly conductive material, which is in turn placed

against a heat sink of aluminium or copper that is cooled by a

fan [38]. On the thermal modeling of ICs, HotSpot [6] is an

accurate and automated fast thermal estimation tool that

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

11

calculates transient temperature response, given the physical

characteristics and power of units on the die. It is based on an

equivalent circuit of thermal resistances and capacitances that

correspond to micro-architecture blocks and essential aspects

of the thermal package.

Dynamic thermal management (DTM) for MPSoC or NoC

refers to hardware and software strategies which work

dynamically, at run-time, to control different IP cores

operating temperature. On the other hand, in case of static

thermal management (STM), generally the thermal

management is performed off-line, before the application is

run and at the time of application mapping. The DTM

techniques for MPSoC or NoC have been proposed to reduce

the thermal packaging and cooling costs. It controls

overheating by keeping the temperature below a critical

threshold. Computation migration and fetch toggling are

examples of such techniques [38]. To overcome the

limitations of worst case thermal management, a distributed

dynamic thermal management scheme, called ThermalHerd

has been proposed in [39], [40] for on-chip networks, which

can dynamically regulate the network temperature profile and

guarantee safe on-line operations with little performance

impact. Many thermal management techniques have been

proposed to reduce the overall power consumption of the chip.

However, there are some localized temperature problems in

NoC, referred to as hotspots. In [41], authors have proposed a

hotspot prevention technique that dynamically reconfigures

the functionalities at runtime across the IPs in order to balance

the temperature profile. The temperature management with

software techniques, especially OS-level task scheduling has

been proposed in different literatures for both single and

multi-core processors. A thermal aware dynamic OS-level

work-load scheduling have been proposed in [42] to get better

thermal profile with negligible performance overhead. In this

technique, when temperature reaches the critical value, a

heuristic is applied to distribute the workload for better

temporal and spatial temperature distribution.

In case of static thermal management, the thermal balancing is

done before the application is run, that is, at the time of core

placement, depending on communication requirement among

cores of MPSoC or NoC and their temperature profile. The

physical location of cores, the load of each core, and the

communication across the cores of a NoC, contribute to the

power consumption and are directly related to hotspots [43].

An IP virtualization and placement technique based on

Genetic Algorithm (GA) has been proposed in [44] for regular

NoC architectures, which attempts to achieve a thermal

balance while minimizing the communication cost via

placement. IP virtualization, which maps the logic processing

unit onto processing elements (PEs), thus allowing the PE to

virtually perform the computation and communication, affects

the power consumption and the communication cost. The

mapping problem formulated in [44] is a three-objective

optimization problem – communication cost, energy

consumption, and thermal balance. Communication cost and

energy consumption are related to of NoC. A

pareto based mapping technique using Genetic Algorithm has

been proposed in [45], which minimizes the average

 and achieves thermal balance. In NoC, power is

dissipated when packets traverse through switches and links.

The dominating power consuming operations are buffer reads

and writes, switching, routing decisions, channel allocation

and link utilization. A systematic methodology, such as,

application independent power-aware routing algorithm and

buffer sizing for NoC, targeting temperature reduction has

been proposed in [46]. This achieves significant peak

temperature reduction. The cores having more communication

volume should be mapped close to each other for

minimization of communication cost and energy

consumption. Because of high communication volume these

cores have high temperature and easily cause creation of

hotspot regions. A multi-objective ant colony algorithm

(MOACA) has been proposed in [47] that maps IP cores onto

mesh based NoC, which optimizes energy consumption and

thermal balance.

In some thermal management techniques, thermal balancing is

done before the application is run as well as it includes some

hardware and software strategies which work dynamically, at

run-time, to control the operating temperature of different IPs.

A temperature-aware thermal management technique has been

proposed in [48] for thermal balancing of MPSoC. In this

technique, authors have first performed an integer linear

programming (ILP) based static task scheduling for

minimization of energy consumption and reduction of

hotspots. Then an OS-level dynamic scheduling as in [42] has

been applied upon it to arrive at a better thermally balanced

solution. A temperature-aware task mapping algorithm has

been proposed in [49] to prevent hotspot in MPSoC platform.

Next, uniform thermal distribution has been performed using

adaptive multi-threshold values during run-time. In this

technique, the algorithm keeps track of the temperature of the

cores, and swaps the mapped tasks when the core temperature

is relatively higher than average chip temperature. The cores

may be switched off if they exceed an absolute maximum

temperature. For power reduction in NoCs, different voltage-

frequency selection techniques have been proposed.

The strategies proposed above come up with a single solution.

Ideally, the synthesis process should be able to explore a large

number of alternatives and report non-dominated solutions,

when the solutions are judged from performance and thermal

angles. This paper attempts to bridge the gap by generating a

good number of solutions depending upon the amount of

tolerable performance sacrifice and computational effort that

the designer is ready to pay. The most suitable solution from

this set can be chosen by the designer.

3. RELEVANT ISSUES IN MAPPING

ALGORITHM DESIGN
A thermal uniformity-aware mapping strategy has to take care

of both the resulting temperature distribution and the overall

communication cost. A strategy attempting communication

overhead reduction will try to put highly communicating cores

close to each other, while thermal-aware strategies will

attempt to put cores consuming high power, far away. The

amount of emphasis to be put on either aspect will have its

effect on the solution quality. In the following a discussion

has been presented on the same, from the three different

angles.

A. Core sequencing – the order in which the cores should be

picked up for mapping by the algorithm.

B. Objective function formulation – the relative weight to be

put on the two aspects of optimization.

C. Communication cost tolerance – that allows the

algorithm to explore solutions with more thermal

uniformity around one with almost similar

communication cost.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

12

Table 1: Communication cost and temperature variance of different core sequencing strategies

A. Core Sequencing

Any heuristic mapping procedure essentially works with an

ordering of cores (either implicitly or explicitly) to pick up the

successive cores for mapping to the routers. Thus, a major

challenge in the development of thermal-aware mapping

strategy is to identify a technique to order the cores, so that

the dual purpose of ensuring thermal uniformity and

minimizing communication cost could be achieved. To evolve

such a strategy, it’s first tried with the following three

alternatives that put full emphasis on the power consumed by

the cores, disregarding the communication requirements.

Strategy 1: Sort cores in descending order of power

consumption and map consecutive cores at close proximities.

Strategy 2: Sort cores in descending order of their power

consumption and try to map consecutive cores away from

each other.

Strategy 3: Alternately select one high power consuming core

and a low power consuming one. Map consecutive cores in

this order close to each other.

To get the mapping solutions picking up cores in either of

these strategies, a constructive algorithm has employed,

similar to the initial population generation policy in [7]. Only

the core ordering is depicted by the strategy. The results

produced show very good improvement in thermal variation

over a purely communication cost aware strategy. The

communication-aware strategy uses the same algorithm,

however, the cores are picked up in decreasing

communication requirement order. The communication

overhead increases significantly, in three strategies making all

of them unacceptable (Table 1). However, this shows that the

choice of core order affects the final solution significantly and

warrants the development of a good ordering strategy. In the

following, the strategy followed in this work has been

presented.

To identify a good sequence it proceeds as follows. First, it

computes the sequence, of cores sorted in descending

order of their power consumption values. Communication cost

of such a solution is quite high, compared to a

communication-aware mapping (as demonstrated in Table 1).

For an application with N cores, it next generates N

sequences, each starting with a unique core. The sequence

 is the sequence of cores in which the core,

 appears as the first one. In such a sequence, the

next core selected is the highest communicating one with the

core . In general, if already mapped ith cores from

the sequence, the (i+1)th core is selected to be the highest

communicating one with these ith cores. The procedure is

illustrated in Procedure Find_Core_Sequence.

For each of N sequences , it computes distance ,

defined as follows.

 (8)

where index(s, k) is the index of core k in sequence s. Thus,

 is a measure of similarity between the

sequences (sequence with core i as the starting core)

and (decreasing order of power sequence). If the

distance is high, sequence is almost the opposite of

the sequence. If the distance is low, almost

resembles the sequence. Both these sequences are

unacceptable. Hence, it chooses the sequence which is equal

or nearest to the average distance. Such a sequence will

resemble a mix of high and low power consuming cores. This

is expected to be beneficial for both thermal and

communication cost minimization. The process has been

described in procedure Find_Best_Sequence.

TGFF

Graphs

Strategy-1 Strategy-2 Strategy-3 Constructive Mapping

Comm.

cost

Temp.

variance

Peak

temp.

Comm.

cost

Temp.

variance

Peak

temp.

Comm.

cost

Temp.

variance

Peak

temp.

Comm.

cost

Temp.

variance

Peak

temp.

G1(64) 10623.10 126.50 454.14 13280.0 128.31 457.37 14744.40 157.84 460.15 6734.78 184.58 463.07

G2(64) 137389.0 153.47 458.0 158329.0 111.65 453.56 192636.0 165.92 457.95 113653.0 185.38 462.43

G3(64) 143073.0 151.05 458.04 152999.0 112.34 455.33 186612.0 153.51 457.92 109327.0 156.01 458.76

G4(64) 56544.40 138.94 457.80 60123.40 172.77 462.92 64984.90 160.72 462.63 48765.40 174.17 463.79

G5(64) 7912.20 134.93 457.78 8600.08 120.14 459.53 8567.50 171.78 464.25 5933.51 175.55 464.30

G6(64) 55068.30 145.65 460.68 61470.10 115.29 455.81 66713.20 146.28 461.04 42086.60 146.98 461.08

G7(64) 9639.14 173.82 436.72 12553.30 101.54 451.94 14134.80 174.26 464.02 6259.47 179.78 465.55

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

13

Input: Core graph G,
Output: Core sequences Nseq

 While all cores are not selected as staring core do

 Select core core_num
 Count = 0
 Nseq [core_num][Count] =core_num
 While there exists unselected cores in G do
 Count ++
 Let (Ci, Cj) be the edge width highest
 communication requirement
 such that exactly one of ci and cj is
 already selected
 Set c= ci if Cj is already selected Else Set c=cj
 Nseq [core_num]=c
 Mark c selected

 Core sequence according to

decreasing power consumption Pseq

 Avgdist = 0
 For each sequence Nseq[i] do

 do

Return

B. Objective Function Formulation

The algorithm gives weight to the temperature variance and

communication cost of a solution, in order to explore the

search space by using the following cost function.

 (9)

where, Temperature variance of the mapping

 Temperature variance when wt = 1

 Comm_Cost = Communication cost of mapping

Best_cost = Communication cost of mapping when wt = 0

The value wt=1 puts full emphasis on the temperature

variance minimization, while wt=0 emphasizes

communication cost reduction. Our algorithm produces a set

of solutions corresponding to different weights. The designer

has the option to select any one from the reported solutions.

More the number of wt values explored, higher will be the

execution time of the algorithm. In order to limit it, user needs

to input the parameter Effort (the number of different wt

values to be explored). The wt values are updated as,

 (10)

The value Effort = 0 explores two values of wt (0 and 1).

C. Communication Cost Tolerance

One problem with the cost function in eq. (9) is that it

performs a trade-off between improvement in temperature

variance and degradation in communication cost. Since the

designer may not be willing to have solutions with high

communication costs (even though the thermal behavior is

very good), it is desirable to have another degree of control

over communication cost degradation. The parameter

tolerance_limit is the allowed percentage degradation in

communication cost that the user is ready to sacrifice with

respect to a fully communication-aware mapping (that is, wt =

0). To take this into consideration, the algorithm first

performs a pure communication-aware mapping. In

subsequent runs, the algorithm considers candidate solutions

with communication costs within the tolerance limit of this

mapping only.

4. MAPPING ALGORITHM
The algorithm starts with wt = 0, which optimizes only the

communication cost. Next, mapping is done with wt = 1,

which optimizes only the temperature variance having

communication cost degradation within the tolerance limit.

Now, two solutions can be – one with reduced communication

cost and the other with reduced temperature variance. Next, it

find solutions intermediate to these values. First it selects the

core sequence using the procedure Find_Best_sequence. The

number of solutions produced by the algorithm is dependent

on the Effort value provided by the user. If Effort is less,

algorithm iterates for less number of times exploring small

number of solutions. If Effort is more, the algorithm will

iterate for more number of times, exploring more solutions.

Each time the algorithm iterates, it uses a different value of

wt. As Effort increases, algorithm tries to find good solutions

using different wt values. Finally it outputs all non-dominated

solutions. A non-dominated solution is one which is better

than all others in either the communication cost or the

temperature variance. The designer can select any of these

solutions for mapping.

Algorithm Map_Graph calls the function

Do_Mapping_Cal_Cost to obtain all non-dominated mapping

solutions generated by putting the first core in a given

sequence onto each of the router positions. The solutions are

produced via the function Find_Mapping. Once all such

solutions have been generated, Do_Mapping_Cal_Cost

reports only the non-dominated ones for the perusal of the

designer.

The procedure Find_Mapping finds mapping of core graph G

onto topology graph P. This procedure takes starting core and

starting router position to start mapping. It maps the first core

to the starting router position provided. It selects next core

from the Nseq[start_core] sequence and finds positions nearby

to the already mapped cores. It constructs the set of positions

consisting of all router positions, one-hop away from any of

the mapped cores. The communication costs for each of these

positions is evaluated (using function Evaluate_Positions) and

the router positions giving minimum communication cost are

copied into the set Min_Postions. If the set Min_Positions

contains a single entry, the corresponding router position is

taken to be the Best_Position for the core. Otherwise, the

procedure Predict_Best is called to get the best position. The

procedure Predict_Best attempts to distinguish between the

router positions in Min_Positions set. To evaluate the fitness

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

14

of one such router position in Min_Positions, it places the

core under consideration at that position and then continues to

place the remaining cores in G with the core under

consideration placed at the candidate router position. Fitness

is computed as a weighted sum of temperature variance and

communication cost. However, only these solutions qualify

for fitness calculation for which the degradation in

communication cost is within the tolerance limit from

Best_cost (communication cost corresponding to a totally

communication-aware mapping). The function returns the best

position which is suitable for optimizing either the

communication cost, or the temperature variance, or both.

Mapping continues in similar fashion with remaining cores.

Function Compute_comm_cost computes the communication

cost of the mapping produced using eq. (5) (Section I). The

procedure Find_Thermal_Cost computes the temperature

profile of the NoC using the power trace and the chip layout.

The tool HotSpot [6] has been used to generate the

temperature map. Temperature variance and peak are

calculated from the generated temperature information.

 do

Procedure:

Input: Core graph G, Topology Grapg P
 Start_Core: with which core mapping should start
 flag: which optimization should be achieved
 wt: weight for optimization of objective function
Output: Minimum value of fitness Min_val, Best mapping
solution Best_mapping enum optimization flag
Begin
 For each router position u of P do
 Mark all cores of G as unmapped
 Min_val =
 Best_mapping =

 Mapping =Find_mapping (G,P,u,Start_core)
 If (flag==Cost_Opt || flag==Both_Opt)
 Cost=Compute_Comm_cost(Mapping, G)
 If(flag==Temp_Opt || flag==Both_Opt)
 Tvar=Find_Thermal_Cost(Mapping, Core_Power);
 End For
 Output all non-dominated mapping solutions
End

 c=Next core from the Nseq[Start_Core]
 Position=set of position in P with one hop
 distance from already mapped
 positions
 Evaluate_Positions (Positions)
 Min_Positions = Set of Positions with minimum
 communication cost
 If (cardinality of set Min_Positions == 1)
 Best_Position = Min_Positions [0]
 Else
 Best_Position = Predict_best(G,P,Min_
 Positions, Start_Core)
 End If
 Mapping[Best_position] = c
 Mark c mapped

Set /* Holds the cores marked
 temporarily*/
For each position do

 /* Map c to p*/

 Router positions in P one hop
 away from mapped positions

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

15

 If /* Communication-aware mapping*/

 Else /* */

/* Discard the
solution*/

 Else /* Consider both communication and
 temperature factors*/

 Set fitness of

 End If

 /* Using the tool
 HotSpot 5.01*/

5. SIMULATION RESULTS
HotSpot 5.01 [6] has been used to generate the temperature

profile after mapping the cores onto the routers of a NoC.

HotSpot requires some basic input files, such as, floor plan of

the given architecture and the power consumption profile of

each block to generate the temperature profile. Hotspot

generates temperature profile using these values and

parameters specified in a configuration file. The important

parameter values for configuration are mentioned in Table 2.

The file generated by HotSpot tool is inspected for

temperature variance and peak temperature of the chip. The

model used for simulation in HotSpot is the block model.

Power consumption of the cores are generated randomly

between 10-60 (W/cm2) [8] and router power values are

calculated by their switching activities. Temperature variance

is calculated using eq. (6), and the peak temperature using eq.

(7).

This algorithm has been tested on several graphs and results

have been noted. First, it has calculated results for different

tolerance and Effort values for application core graphs

generated by TGFF [5]. Table 3 summarizes the results.

Fig. 3 shows the solutions generated by different Efforts as

shown in Table 3 for different tolerance values. From Fig. 3, it

can be noted that in case of 5% and 10% tolerances, there is a

significant difference over temperature variance but limited

number of solutions are generated due to less tolerance

allowed for communication cost. As shown in Fig. 4, in case

of 20% tolerance, the solution points are parabolic in nature,

Table 2. HotSpot parameters

Chip Specifications

Chip thickness in meter 0.00015

Silicon thermal conductivity in W/(m-K) 100.0

Silicon specific heat in J/(m3-K) 1.75×106

Temperature threshold for DTM (Kelvin) 354.95

Heat Sink Specifications

Convection capacitance in J/K 140.4

Convection resistance in K/W 0.1

Heat sink side in meter 0.06

Heat sink thickness in meter 0.0069

Heat sink thermal conductivity in W/(m-K) 400.0

Heat sink specific heat in J/(m3-K) 3.55×106

Heat Spreader Specifications

Spreader side in meter 0.03

Spreader thickness in meter 0.001

Heat spreader thermal conductivity in W/(m-K) 400.0

Heat spreader specific heat in J/(m3-K) 3.55×106

Interface Material Specifications

Interface material thickness in meter 2.0×105

Interface material thermal conductivity in W/(m-

K)

4.0

Interface material specific heat in J/(m3-K) 4.0×106

which is required for such an optimization. There is a good

difference in temperature variance as well as communication

cost. For 30% tolerance the solution quality does not improve

over 20%. This happens due to creation of large number of

intermediary solutions which appear to be promising at the
time of their generation but do not yield good complete
solutions. Fig. 5 shows the CPU time for different tolerance

values with Efforts 7. It can be noted that CPU time increases

with increase in tolerance values. From 20% to 30%, there is a

stiff increase in CPU time. However, from 5% to 20%

tolerance there is almost a linear increment of the CPU time

requirement. Therefore, from Fig. 4 and Fig. 5, choosing 20%

tolerance appears to be a good trade-off between solution

quality and CPU time.

Hence, it has chosen 20% tolerance value for all subsequent

results. Effort also plays important role in finding good

solutions. As Effort value increases, algorithm finds more

number of good solutions. Table 4 shows the communication

cost, corresponding temperature variance and peak

temperature for different TGFF application graphs with

different Effort values for 20% tolerance.

From Table 4, it can be noted that for Effort 7, healthy

solutions have been found. Fig. 6 shows solutions for different

Effort values. For less Effort, very few solutions are generated

and also the solution quality is poor. The observation is more

prominent in Fig. 7. However running the algorithm for

higher Effort is time consuming. Fig. 8 shows the CPU time

behavior for different efforts. From this, it is clear that as

Effort increases, CPU time also increases almost linearly.

Table 5 notes comparison among communication cost

optimization (wt=0), temperature optimization (wt=1) and

both communication cost and temperature optimization

(wt=0.5) of different TGFF graphs after mapping onto NoC.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

16

Effort

Tolerances of Communication Cost in %

5 10 20 30

(Comm. Cost,

Temp. Variance)

(Comm. Cost,

Temp. Variance)

(Comm. Cost,

Temp. Variance)

(Comm. Cost,

Temp. Variance)

1
(113895, 147.09)

(114577, 140.39)
(114269, 127.01)

(111572.0, 134.44)

(114247.0, 118.33)

(119782.0, 110.78)

(123274.0, 108.35)

(116063, 120.58)

(116536, 116.54)

(116983, 115.56)

(117029, 114.43)

(126949, 112.70)

(130985, 107.35)

3

(112058, 154.06)

(113895, 147.09)

(114577, 140.39)

(112715, 132.02)

(114269, 127.01)

(111572.0, 134.44)

(112572.0, 124.54)

(114247.0, 118.33)

(118768.0, 111.64)

(119782.0, 110.78)

(122655.0, 108.96)

(123274.0, 108.65)

(110948, 130.20)

(126949, 112.70)

(130060, 112.44)

5

(112058, 154.06)

(113895, 147.09)

(114577, 140.39)

(112715, 132.02)

(114269, 127.01)

(115379, 126.74)

(111387.0, 136.74)

(111572.0, 134.44)

(112572.0, 124.54)

(112769.0, 123.10)

(114247.0, 118.33)

(118768.0, 111.64)

(119782.0, 110.78)

(122655.0, 108.96)

(123274.0, 108.65)

(110078, 137.13)

(126949, 112.70)

(130060, 112.44)

7

(112058, 154.06)

(113895, 147.09)

(114577, 140.39)

(111599, 136.15)

(114269, 127.01)

(115825, 120.24)

(119093, 117.08)

(111387.0, 136.74)

(111572.0, 134.44)

(112572.0, 124.54)

 (112769.0, 123.10)

(114247.0, 118.33)

(118768.0, 111.64)

(119782.0, 110.78)

(122655.0, 108.96)

(123274.0, 108.65)

(110078, 137.13)

(120576, 114.35)

(126949, 112.70)

(130060, 112.44)

Table 3. Different tolerance values and Effort values for TGFF graph G3 (64 cores)

100

110

120

130

140

150

160

105000 110000 115000 120000 125000 130000 135000

Te
m

p
e

ra
tu

re
 V

ar
ia

n
ce

Communication Cost

5%

10%

20%

30%

Fig 3: Communication cost vs. temperature variance of different tolerance values for G3

Tolerance

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

17

From the table it can be noted that improvement in

temperature variance is quite high, up to 30% for most of the

cases and degradation in communication cost is limited to

20% as specified by the user.

Table 6 notes the communication cost and temperature

variance of different TGFF graphs after mapping onto NoC

using different mapping techniques. Here also it can be noted

that our proposed thermal uniformity-aware algorithm using

temperature optimization technique and combined

temperature and communication cost optimization technique

produce better temperature variance than other mapping

techniques. Last row of Table 6 shows the communication

cost of different mapping techniques normalized with respect

to [7]. It also shows temperature variances normalized with

respect to the thermal uniformity-aware mapping with weight

wt = 1.0. The same information has also been plotted in Fig. 9

and 10 respectively. The thermal mapping produces good

saving in temperature variance compared to the other mapping

methodologies.

6. CONCLUSION

This paper proposed a thermal uniformity-aware application

mapping strategy to reduce temperature variance as well as

peak temperature with tolerable communication cost

degradation. In this mapping technique a trade-off has been

established between performance and temperature variance of

the system. The technique is flexible in the sense that the user

can set the tolerance limit for the communication cost

degradation in their design. The parameter Effort can also be

varied to generate more number of solutions. Thus, it provides

a performance- and thermal-aware application mapping tool

for NoC design. As this problem is NP-complete, evolutionary

based optimization technique can be used for better result.

100

105

110

115

120

125

130

135

140

110000 112000 114000 116000 118000 120000 122000 124000

Te
m

p
er

at
u

re
 V

ar
ia

n
ce

Communication Cost

Effort 1

Effort 7

Fig 6: Solutions for different Effort values of TGFF graph G3

100

110

120

130

140

150

42000 44000 46000 48000 50000

Te
m

p
er

at
u

re
 V

ar
ia

n
ce

Communication Cost

Effort 1

Effort 7

Fig 7: Solutions for different Effort values of TGFF graph G6

60

80

100

120

140

160

180

1 3 5 7

C
P

U
 t

im
e

 in
 s

Effort values

Fig 8: CPU time behavior for different Effort values

100

105

110

115

120

125

130

135

140

105000 110000 115000 120000 125000 130000

Te
m

p
er

at
u

re
 V

ar
ia

n
ce

Communication Cost

20%

Fig 5: Communication cost vs. temperature

variance for 20% tolerance for G3

0

50

100

150

200

250

300

350

400

450

5 10 20 30

C
P

U
 t

im
e

in
 s

Tolerance in %

Time

Fig 4: CPU time at different tolerance values for G3

Tolerance

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

18

Table 4. Results for different TGFF graphs and different Effort values for 20% tolerance

TGFF

Applicatio

n Graphs

Effort 1 Effort 3 Effort 5 Effort 7

(Comm. Cost, Temp.

Variance,Peak Temp.)

(Comm. Cost, Temp.

Variance, Peak Temp.)

(Comm. Cost, Temp.

Variance, Peak Temp.)

(Comm. Cost,Temp. Variance,

Peak Temp.)

G1

(64 cores)

(7284.27, 134.29, 460.38)

(7886.17, 125.81, 457.57)

(6988.64, 170.13, 462.83)

(7284.27, 134.29, 460.38)

(7886.17, 125.81, 457.57)

(6988.64, 170.13, 462.83)

(7284.27, 134.29, 460.38)

(7886.17, 125.81, 457.57)

(6988.64, 170.13, 462.83)

(7284.27, 134.29, 460.38)

(7326.99, 133.70, 459.77)

(7886.17, 125.81, 457.57)

G2

(64 cores)

(133467.0, 160.73, 459.53)

(134613.0, 152.16, 459.26)

(132452.0, 174.83, 459.84)

(133467.0, 160.73, 459.53)

(134613.0, 152.16, 459.26)

(132452.0, 174.83, 459.84)

(133467.0, 160.73, 459.53)

(133753.0, 155.15, 459.37)

(132452.0, 174.83, 459.84)

(133085.0, 165.06, 459.62)

(134613.0, 152.16, 459.26)

G3

(64 cores)

(111572.0, 134.44, 458.39)

(114247.0, 118.33, 456.09)

(119782.0, 110.78, 455.53)

(123274.0, 108.65, 454.15)

(111572.0, 134.44, 458.39)

(112572.0, 124.54, 458.19)

(114247.0, 118.33, 456.09)

(118768.0, 111.64, 456.06)

(119782.0, 110.78, 455.53)

(122655.0, 108.96, 454.31)

(123274.0, 108.65, 454.15)

(111387.0, 136.74, 458.47)

(111572.0, 134.44, 458.39)

(112572.0, 124.54, 458.19)

(112769.0, 123.10, 457.68)

(114247.0, 118.33, 456.09)

(118768.0, 111.64, 456.06)

(119782.0, 110.78, 455.53)

(122655.0, 108.96, 454.31)

(123274.0, 108.65, 454.15)

(111387.0, 136.74, 458.47)

(111572.0, 134.44, 458.39)

(112572.0, 124.54, 458.19)

(112769.0, 123.10, 457.68)

(114247.0, 118.33, 456.09)

(118768.0, 111.64, 456.06)

(119782.0, 110.78, 455.53)

(122655.0, 108.96, 454.31)

(123274.0, 108.65, 454.15)

G4

(64 cores)

(54634.80, 173.02, 462.39)

(54680.80, 150.33, 462.30)

(55644.10, 141.60, 461.43)

(57647.20, 122.10, 459.43)

(54634.80, 173.02, 462.39)

(54680.80, 150.33, 462.30)

(54829.80, 144.73, 462.24)

(55007.30, 141.70, 462.19)

(56206.30, 141.12, 461.09)

(57647.20, 122.10, 459.43)

(53830.80, 175.55, 462.58)

(54680.80, 150.33, 462.30)

(54829.80, 144.73, 462.24)

(55007.30, 141.70, 462.19)

(56206.30, 141.12, 461.09)

(57647.20, 122.10, 459.43)

(53152.60, 176.11, 463.05)

(54680.80, 150.33, 462.30)

(54829.80, 144.73, 462.24)

(55007.30, 141.70, 462.19)

(56206.30, 141.12, 461.09)

(57647.20, 122.10, 459.43)

G5

(64 cores)

(6833.53, 143.81, 461.82)

(6836.40, 142.01, 461.59)

(6939.91, 140.55, 460.34)

(7101.82, 139.06, 460.26)

(6811.29, 162.49, 461.92)

(6826.01, 144.21, 461.91)

(6939.91, 140.55, 460.34)

(7101.82, 139.06, 460.26)

(6811.29, 162.49, 461.92)

 (6826.01, 144.21, 461.91)

(6939.91, 140.55, 460.34)

(7101.82, 139.06, 460.26)

(6787.21, 172.09, 462.61)

(6811.29, 162.49, 461.92)

(6826.01, 144.21, 461.91)

(6939.91, 140.55, 460.34)

(7101.82, 139.06, 460.26)

G6

(64 cores)

(43782.10, 132.77, 459.31)

(44984.50, 115.57, 454.25)

(46534.80, 113.60, 455.03)

(48480.10, 108.98, 453.23)

(42695.30, 145.45, 460.33)

(43782.10, 132.77, 459.31)

(44180.0, 123.61, 458.84)

(44885.60, 117.11, 456.01)

(48480.10, 108.98, 453.23)

(42695.30, 145.45, 460.33)

(43184.30, 140.04, 460.14)

(43245.10, 139.13, 460.06)

(44791.0, 121.87, 456.65)

(44885.60, 117.11, 456.01)

(48480.10, 108.98, 453.23)

(42695.30, 145.45, 460.33)

(43184.30, 140.04, 460.14)

(44180.0, 121.61, 458.84)

(44885.60, 117.11, 456.01)

 (46534.80, 113.60, 455.03)

(48480.10, 108.98, 453.23)

G7

(64 cores)

(7153.55, 120.92, 457.30)

(7203.07, 118.88, 456.77)

(7288.39, 118.20, 456.71)

(6868.89, 177.09, 465.42)

(6982.50, 133.17, 459.82)

(7153.55, 120.92, 457.30)

(7203.07, 118.88, 456.77)

(6868.89, 177.09, 465.42)

(6982.50, 133.17, 459.82)

 (7045.54, 130.32, 459.10)

(7153.55, 120.92, 457.30)

(7203.07, 118.88, 456.77)

(6868.89, 177.09, 465.42)

(6982.50, 133.17, 459.82)

(7108.58, 127.96, 458.04)

(7153.55, 120.92, 457.30)

(7203.07, 118.88, 456.77)

(7288.39, 118.20, 456.71)

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

19

Table 5. Optimization results for different graphs with 20% tolerance

TGFF

Graph

s

Comm. Cost

Optimization

(wt = 0)

Temp.

Optimization (wt =

1.0)

Comm. Cost and

Temp.

Optimization (wt =

0.5)

% of change for wt=1.0

w.r.t. wt=0

% of change for

wt=0.5 w.r.t. wt=0

Comm.

Cost

Temp.

Varianc

e

Comm.

Cost

Temp.

Varianc

e

Comm.

Cost

Temp.

Varianc

e

Comm.

Cost

Degradatio

n

Temp.

Variance

Improveme

nt

Comm.

Cost

Degradatio

n

Temp.

Variance

Improveme

nt

G1 6734.78 184.58 7886.17 125.81 7886.17 125.81 17.10% 31.84% 17.10% 31.84%

G2

113653.

0 185.38

133753.

0 155.15

133085.

0 165.06 17.69% 16.31% 17.10% 10.96%

G3

109327.

0 156.01

123274.

0 108.65

119782.

0 110.78 12.76% 30.36% 9.56% 28.92%

G4

48765.4

0 174.17

57647.2

0 122.10

57647.2

0 122.10 18.21% 29.90% 18.21% 29.90%

G5 5933.51 175.55 7101.82 139.06 6939.91 140.55 19.69% 20.79% 16.96% 19.94%

G6

42086.6

0 146.98

48480.1

0 108.98

44885.6

0 117.11 15.19% 25.85% 6.65% 20.32%

G7 6259.47 179.78 7153.55 120.92 7153.55 120.92 14.28% 32.74% 14.28% 32.74%

Table 6. Communication cost and temperature variance of different mapping techniques

TGFF

Graphs

NMAP

[3]

LMAP

[50, 51]

PSO based Mapping

[7]

Comm. Cost and

Temp.

Optimization (wt =

0.5)

Temp. Optimization

(wt = 1.0)

Comm.

cost

Temp.

varianc

e

Comm.

cost

Temp.

varianc

e

Comm.

cost

Temp.

varianc

e

Comm.

cost

Temp.

varianc

e

Comm.

Cost

Temp.

Varianc

e

G1 9207.50 149.66 7441.40 165.40 6734.78 184.12 7886.17 125.81 7886.17 125.81

G2
132292.3

8
185.73

120209.5

9
159.43

107741.9

9
185.52

133085.

0
165.06

133753.

0
155.15

G3
116337.8

1
143.69

118879.4

4
193.06

107888.0

2
146.83

119782.

0
110.78

123274.

0
108.65

G4 55244.17 123.79 49694.11 155.94 45598.64 159.95
57647.2

0
122.10

57647.2

0
122.10

G5 6015.28 161.05 6267.59 174.32 5758.61 145.69 6939.91 140.55 7101.82 139.06

G6 44902.16 171.46 42394.97 165.09 40905.62 154.89
44885.6

0
117.11

48480.1

0
108.98

G7 9129.94 166.32 7655.83 201.48 6210.72 162.09 7153.55 120.92 7153.55 120.92

Normalize

d Average
1.214 1.261 1.110 1.404 1.0 1.304 1.176 1.024 1.198 1.0

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

20

Fig 9: Normalized communication cost of different mapping techniques

Fig 10: Normalized temperature variance of different mapping techniques

7. REFERENCES
[1] 2003 International Technology Roadmap for

Semiconductors (ITRS),Sematech Inc. ,

http://public.itrs.net,2003.

[2] S. H. Gunther, F. Binns, D. M. Carmean, J. C. Hall,

“Managing the Impact of Increasing Microprocessor

Power Consumption”, Intel Technology Journal, vol. 5,

no. 1, pp. 1-9, 2001.

[3] S. Murali, G. De Micheli, “Bandwidth Constrained

Mapping of Cores onto NoC Architectures”,Proceedings

of Design, Automation and Test in Europe Conference

and Exhibition (DATE), vol. 2, pp. 896-901, 2004.

[4] P. K. Sahu, S. Chattopadyay, “A Survey on Application

Mapping Strategies for Network-on-Chip Design,”

Journal of System Architecture, Elsevier, vol. 59, issue 1,

pp. 60-76, 2013.

[5] R. P. Dick, D. L. Rhodes, W. Wolf, “TGFF: Task Graphs

For Free”, Proceedings of International Workshop on

Hardware/Software Codesign, 1998.

[6] Hotspot 5.01, Thermal Modeling Tool for Integrated

Circuits.

http://lava.cs.virginia.edu/HotSpot

[7] P. K. Sahu, T. Shah, K. Manna, and S. Chattopadhyay,

“Application Mapping onto Mesh based Network-on-

Chip using Discrete Particle Swarm Optimization,” IEEE

Transactions on VLSI Systems (T-VLSI), vol. 2, issue 22,

pp. 300-312, 2014.

[8] C. Tsai, S. Kang, “Cell-level placement for improving

substrate thermal distribution,” Transaction on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 19, IEEE Press, NJ, USA, pp. 253– 266,

2000.

[9] O. Ozturk, M. Kandemir, S. W. Son, “An ILP based

Approach to Reducing Energy Consumption in NoC

based CMPs,” IEEE International Symposiun on Low

Power Electronics and Design (ISLPED), pp. 411-414,

2007.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

G1 G2 G3 G4 G5 G6 G7

N
o

rm
al

iz
e

d
 C

o
m

m
u

n
ic

at
io

n
 C

o
st

TGFF Graph

This work (wt = 1)

This work (wt = 0.5)

[3]

[50]

[7]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

G1 G2 G3 G4 G5 G6 G7

N
o

rm
al

iz
e

d
 T

e
m

p
e

ra
tu

re
 V

ar
ia

n
ce

TGFF Graph

This work (wt = 1.0)

This work (wt = 0.5)

[3]

[50]

[7]

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

21

[10] P. Ghosh, A. Sen, A. Hall, “Energy Efficient Application

Mapping to NoC Processing Elements Operating at

Multiple Voltage Levels,” IEEE International Symposiun

on Network-on-Chip (NoCS), pp. 80-85, 2009.

[11] J. Huang, C. Buckl, A. Raabe, A. Knool, “Energy-Aware

Task Allocation for Network-on-Chip Based

Heterogeneous Multiprocessor Systems,” Euromicro

International Conference on Parallel, Distributed and

Network based Processing (PDP), pp. 447-454, 2011.

[12] C. L. Chou, R. Marculescu, “Contention-Aware

Application Mapping for Network-on-Chip

Communication Architectures,” IEEE International

Conference on Computer Design (ICCD), pp. 164-169,

2008.

[13] S. Tosun, O. Ozturk, M. Ozen, “An ILP Formulation for

Application Mapping onto Network-on-Chips,”

International Conference on Application of Information

and Communication Technologies (AICT), pp. 1-5, 2009.

[14] S. Tosun, “Clustered-based Application Mapping

Method for Network-on-Chip,” Journal of Advances in

Engineering Software 42 (10), pp. 868-874, 2011.

[15] N. Koziris, M. Romesis, P. Tsanakas, G.

Papakonstantinou, “An Efficient Algorithm for the

Physical Mapping of Clustered Task Graphs onto

Multiprocessor Architectures,” Proceedings of 8th

EuroPDP, pp. 406-413, 2000.

[16] J. Hu, R. Marculescu, “Energy- and Performance-Aware

Mapping for Regular NoC Architectures,” IEEE

Trasactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 24, no. 4, pp. 551-562, 2005.

[17] J. Hu, R. Marculescu, “Energy-Aware Mapping for Tile-

based NoC Architectures under Performance

Constraints,” Proceedings of ASP-DAC Conference, pp.

233-239, 2003.

[18] K. Srinivasan, K. S. Chatha, “A Technique for Low

Energy Mapping and Routing in Network-on-Chip

Architecture,” IEEE International Symposiun on Low

Power Electronics and Design (ISLPED), pp. 387-392,

2005.

[19] T. Shen, C. H. Chao, Y. K. Lien, A. Y. Wu, “A New

Binomial Mapping and Optimization Algorithm for

Reduced-Complexity Mesh-based on-Chip Network,”

Proceedings of NOCS’07, pp. 317-322, 2007.

[20] R. Mehran, S. Saeidi, A. Khademzadeh, A. A. Kusha,

“Spiral: A Heuristic Mapping Algorithm for Network on

Chip,” IEICE Electronics Express, vol. 4, no. 15, pp.

478-484, 2007.

[21] U. Y. Orgas, R. Marculescu, D. Marculescu, “Variation-

Adaptive Feedback Control for Network-on-Chip with

Multiple Clock Domains,” Proceedings of DAC, pp. 614-

619, 2008.

[22] M. Janidarmian, A. Khademzadeh, M. Tavanpour,

“Onyx: A New Heuristic Bandwidth-Constrained

Mapping of Cores onto Network on Chip,” IEICE

Electronics Express, vol. 6, no. 1, pp. 1-7, 2009.

[23] M. Tavanpour , A. Khademzadeh, M. Janidarmian,

“Chain-Mapping for Mesh based Network-on-Chip

Architecture,” IEICE Electronics Express, vol. 6, no. 22,

pp. 1535-1541, 2009.

[24] Y. Chen, L. Xie, J. Li, “An Energy-Aware Heuristic

Constructive Mapping Algorithm for Network on Chip,”

International Conference on ASIC (ASICON), pp. 101-

104, 2009.

[25] M. Reshadi, A. Khademzadeh, A. Reza, “Elixir: A New

Bandwidth-Constrained Mapping for Networks-on-

Chip,” IEICE Electronics Express, vol. 7, no. 2, pp. 73-

79, 2010.

[26] S. Tosun, “New Heuristic Algorithm for Energy Aware

Application Mapping and Routing on Mesh-based

NoCs,” Journal of System Architecture, 57, pp. 69-78,

2011.

[27] T. Lei, S. Kumar, “A Two-step Genetic Algorithm for

Mapping Task Graphs to a Network on Chip

Architecture,” Proceedings of the Euromicro Symposium

on Digital System Design (DSD), pp. 180-187, 2003.

[28] K. Bhardwaj, R. K. Jena, “Energy and Bandwidth Aware

Mapping of IPs onto Regular NoC Architectures Using

Multi-objective Genetic Algorithms,” International

Symposium on System-on-Chip (SOC), pp. 27-31, 2009.

[29] F. M. Darbari, A. Khademzadeh, G. G. Fard, “CGMAP:

A New Approach to Network-on-Chip Mapping

Problem,” IEICE Electronics Express, vol. 6, no. 1, pp.

27-34, 2009.

[30] G. Fen, W. Ning, “Genetic Algorithm based Mapping

and Routing Approach for Network on Chip

Architectures,” Chinese Journal of Electronics, vol. 19,

no. 1, pp. 91-96, 2010.

[31] M. Tavanpour, A. Khademzadeh, S. Pourkiani, M.

Yaghobi, “GBMAP: An Evolutionary Approach to

Mapping Cores onto a Mesh-based NoC Architecture,”

Journal of Communication and Computer, vol. 7, no. 3,

pp. 1-7, 2010.

[32] W. Zhou, Y. Zhang, Z. Mao, “Link-load Balance Aware

Mapping and Routing for NoC,” WSEAS Transactions on

Circuits and Systems, vol. 6, issue 11, pp. 583-591, 2007.

[33] W. Lei, L. Xiang, “Energy- and Latency-Aware NoC

mapping Based on Discrete Particle Swarm

Optimization,” IEEE Internationa Conference on

Communications and Mobile Computing, pp. 263-268,

2010.

[34] A. H. Benyamina, P. Boulet, A. Aroul, S. eltar, K. Dellal,

“Mapping Real Time Applications on NoC Architecture

with Hybrid Multi-objective Algorithm,” International

Conference on Metaheuristics and Nature Inspired

Computing, pp. 1-10, 2010.

[35] P. K. Sahu, P. Venkatesh, S. Gollapalli, S.

Chattopadhyay, “Application Mapping onto Mesh

Structured Network-on-Chip using Particle Swarm

Optimization,” IEEE International Symposium on VLSI

(ISVLSI), pp. 335-336, 2011.

[36] J. Wang, Y. Li, S. Chai, Q. Peng, “Bandwidth-Aware

Application Mapping for NoC-Based MPSoCs,” Journal

of Computational Information Systems, 7:1, pp. 152-159,

2011.

[37] Y. Xie, W. L. Hung, “Temperature-Aware Task

Allocation and Scheduling for Embeded Multiprocessor

System-on-Chip (MPSoC) Design,” Journal of VLSI

Signal Processing, 45, pp. 177-189, 2006.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

22

[38] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K.

Sankaranarayanan, D. Tarjan, “Temperature-Aware

Microarchitecture”, IEEE International Symposiun on

Computer Architecture(ISCA), pp. 1-12, 2003.

[39] L. Shang, L. S. Peh, A. Kumar, N. K. Jha, “Thermal

Modeling Characterization and Management of On-chip

Networks, IEEE/ACM International Symposium on

Microarchitecture, pp. 67-78, 2004.

[40] L. Shang, L. S. Peh, A. Kumar, N. K. Jha, “Temperature-

Aware On-chip Networks,” IEEE Micro, IEEE Computer

Society, vol. 26, no. 1, pp. 130-139, 2006.

[41] G. M. Link, N. Vijaykrishnan, “Hotspot Prevention

Through Runtime Reconfiguration in Network-on-Chip,”

Proceedings of the Design, Automation and Test in

Eorope Conference and Exhibition (DATE), vol. 1, pp.

648-649, 2005.

[42] A. K. Coskun, T. S. Rosing, K. A. Whisnant,

“Temperature Aware Task Scheduling in MPSoCs,” In

the Proceedings of the Design, Automation and Test in

Eorope Conference and Exhibition (DATE), pp. 1-6,

2007.

[43] C. A. Quaye, “Thermal-Aware Mapping and Placement

for 3-D NoC Design,” IEEE International Conference on

SoC, pp. 25-28, 2005.

[44] W. Hung, C. A. Quaye, T. Theocharides, Y. Xie, N.

Vijaykrishnan, M. J. Irwin, “Thermal-Aware IP

Virtualization and Placement for Network-on-Chip

Architecture,” IEEE International Conference on

Computer design (ICCD), pp. 430-437, 2004.

[45] W. Zhou, Y. Zhang, Z. Mao, “Pareto based Multi-

objective Mapping IP Cores onto NoC Architecture”,

IEEE Asia Pacific Conference on Circuits and System

(APCCAS), pp. 331-334, 2006.

[46] I. Anagnostopoulos, A. Bartzas, D. Soudris,

“Application-Specific Temperature Reduction

Systematic Methodology for 2D and 3D Network-on-

Chip,” Springer, PATMOS 2009, pp. 86-95, 2010.

[47] Y. Liu, Y. Ruan, Z. Lai, W. Jing, “Energy and Thermal

Aware Mapping for Mesh-based NoC Architectures

Using Multi-objective Ant Colony Algorithm,” IEEE

International Conference on Computer Research and

Development (ICCRD), pp. 407-411, 2011.

[48] A. K. Coskun, T. S. Rosing, K. A. Whisnant, K. C.

Gross, “Static and Dynamic Temperature-Aware

Scheduling for Multiprocessor SoCs,” IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 16, no. 9, pp. 1127-1140, 2008.

[49] H. Sarhan, O. K. Eddash, M. Raymond, A. Wassal, Y.

Ismail, “Temperature-Aware Adaptive Task-Mapping

Targeting Uniform Thermal Distribution in MPSoC

platforms,” IEEE International Conference on Energy-

Aware Computing (ICEAC), pp. 1-3, 2010.

[50] P. K. Sahu, N. Shah, K. Manna, and S. Chattopadhyay,

“A New Application Mapping Algorithm for Mesh based

Network-on-Chip Design,” IEEE International

Conference (INDICON), pp. 1-4, 2010.

[51] P. K. Sahu, K. Manna, N. Shah, and S. Chattopadhyay,

“Extending Kernighan–Lin partitioning heuristic for

application mapping onto Network-on-Chip,” Journal of

System Architecture, DOI: 10.1016/j.sysarc.2014.04.004,

2014.

IJCATM : www.ijcaonline.org

