International Journal of Computer Applications (0975 8887)
Volume 99 - No. 2, August 2014

Hybrid Intelligent Intrusion Detection System using
Bayesian and Genetic Algorithm (BAGA): Comparitive
Study

Y V Srinivasa Murthy
Research Scholar
Department of CSE
National Institute of Technology Karnataka

Kalaga Harish D K Vishal Varma
4/4 B.Tech CSE 4/4 B.Tech CSE
GITAM University GITAM University

Karri Sriram & B V S S Revanth
4/4 B.Tech CSE
GITAM University

ABSTRACT

Intrusion detection system (ID.S) is one of the emerging tech-
niques for information security. Security mechanisms for an infor-
mation system should be designed to prevent unauthorized access
of system resources and data. Many intelligent learning techniques
of machine learning are applied to the large volumes of data for the
construction of an efficient intrusion detection system (I D.S). This
paper presents an overview of intrusion detection system and a hy-
brid technique for intrusion detection based on Bayesian algorithm
and Genetic algorithm. Bayesian algorithm classifies the dataset
into various categories to identify the normal/ attacked packets
where as genetic algorithm is used to generate a new data by ap-
plying mutation operation on the existing dataset to produce a new
dataset. Thus this algorithm classifies K D D99 benchmark intru-
sion detection dataset to identify different types of attacks with high
detection accuracy. The experimental result also shows that the ac-
curacy of detecting attacks is fairly good.

Keywords:

Intrusion Detection System (I.D.S), Detection Accuracy, Bayesian
classification, Genetic algorithms

1. INTRODUCTION

Information Security, intrusion detection is the act of detecting ac-
tions that attempt to compromise the confi-dentiality, integrity or
availability of a resource. When Intrusion detection takes a preven-
tive measure without direct human intervention, then it becomes an
Intrusion-prevention system. Intrusion detection can be performed
manually or automatically. Manual intrusion detection might take
place by examining log files or other evidence for signs of intru-
sions, including network traffic. A system that performs automated
intrusion detection is called an Intrusion Detection System (IDS).
An IDS can be either host-based, if it monitors system calls or
logs, or network-based if it monitors the flow of network packets.
Modern IDSs are usually a combination of these two approaches.

[9] Another important distinction is between systems that iden-
tify patterns of traffic or application data presumed to be malicious
(misusedetectionsystems), and systems that compare activities
against a 'normal’ baseline (anomalydetectionsystems).

1.1 Intrusion Detection

Intrusion detection systems (/D) are an essential part of the se-
curity infrastructure. They are used to detect, identify and stop in-
truders. The administrators can rely on them to find out successful
attacks and prevent a future use of known exploits. IDS are also
considered as a complementary solution to firewall technology as
they recognize against the network that are missed by the firewall.
Nevertheless, IDS are plagued with false positive alerts, letting se-
curity professionals to be overwhelmed by the analysis tasks.[8]
Therefore, IDS employ several techniques in order to increase the
detection probability of suspect threats while reducing the risk of
false positives. While using pattern matching to detect intrusions,
IDS users try to refine the attack signatures and limit the search to
smaller traffic intervals. On the other hand, by using protocol anal-
ysis in the detection process, IDS rely on protocol specification in
order to adequately analyze the traffic. So, they will be able to un-
derstand each field in the packet, and supervise the right execution
of the protocols which leads to reduce the number of false positives.
An Anomaly-Based Intrusion Detection System is a system for de-
tecting computer intrusions and misuse by monitoring system ac-
tivity and classifying it as either normal or anomalous. The classi-
fication is based on heuristics or rules, rather than patterns or sig-
natures, and will detect any type of misuse that falls out of normal
system operation. This is as opposed to signature based systems
which can only detect attacks for which a signature has previously
been created. In order to determine what attack traffic is, the system
must be taught to recognize normal system activity. This can be ac-
complished in several ways, most often with artificial intelligence
type techniques. Systems using neural networks have been used to
great effect. Another method is to define what normal usage of the
system comprises using a strict mathematical model, and flag any

Statistical
analysis

Host system or >, .
- Pre-processin;
network sniffer [P P]

3

Response

Alert manager
manager

[— o ——
Knowledge Long-term |
base storage |

| Gul T
|

Fig. 1. Standard Intrusion Detection System

deviation from this as an attack. This is known as strict anomaly
detection.[10]

1.1.1 Missue-Based Detection. Misuse detection monitors for
deviations in normal protocol. This method is useful to detect at-
tempts by a user or application attempting to gain unauthorized
access to a system. The misuse detection approach attempts to rec-
ognize attacks that follow intrusion patterns that have been recog-
nized and reported by experts. Misuse Detection catches intrusions
in terms of characteristics of known attacks or system vulnerabil-
ities; any action that conforms to the pattern of a known attack or
vulnerability is considered intrusive. These systems are vulnerable
to intruders who use new patterns of behavior or who mask their
illegal behavior to deceive the detection system [2]]. This was im-
plemented using the following approaches:

(1) Rule-Based Languages
(a) RUSSEL
(b) P—BEST
(2) State Transition Analysis Tool Kit
(3) Colored Petri Automata
(4) Automatically Build Misuse Detection Models
(5) Abstraction-based Intrusion Detection

1.1.2 Anomaly - Based Detection. Anomaly detection methods
were developed to coun-ter this problem. With the anomaly detec-
tion approach, one represents patterns of normal behavior, with the
assumption that an intrusion can be identified based on some devi-
ation from this normal behavior; any action that significantly devi-
ates from the normal behavior is considered intrusive and an intru-
sion alarm is produced. This was implemented using the following
approaches:

(1) Statistical Methods
(a) NIDES/STAT
(b) Haystack
(2) Machine learning & Data Mining Techniques
(a) Time — Based Inductive Machine
(b) Instance based learning
(c) Neural Networks
(d) Audit Data Analysis and Mining

(3) Computer Immunological Approach
(4) Specification — Based Methods

(5) Information — Theoritic Measures

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 2, August 2014

Table 1. Attack Classification

Denial of Service ‘ Remote-to-Local ‘ User to root ‘ Probe ‘
Smurf Guess-Password Imap Ipsweep
Snmp ‘Warezmaster Load module Nmap
Back ftp-write Butter_overflow | Portsweep
Land Multihop Rootkit Saint

Neptune Phf Hokk satan

Intrusion detection systems (I DS’s) are usually de-ployed along
with other preventive security mechanisms, such as access control
and authentication, as a second line of defence that protects infor-
mation systems. There are several reasons that make intrusion de-
tection a necessary part of the entire defence system. First, many
traditional systems and applications were developed without se-
curity in mind .In other cases, systems and applications were de-
veloped to work in a different environment and may become vul-
nerable when deployed in the current environment. (For example,
a system may be perfectly secure when it is isolated but become
vulnerable when it is connected to the Internet). Intrusion detec-
tion provides a way to identify and thus allow responses to, attacks
against these systems. Second, due to the limitations of information
security and software engineering practice, computer systems and
applications may have design flaws or bugs that could be used by
an intruder to attack the systems or applications. As a result, certain
preven-tive mechanisms (E.g., firewalls) may not be as effective as
expected.

Intrusion detection complements these protective mechanisms to
improve the system security. Moreover, even if the preventive se-
curity mechanisms can protect information systems successfully, it
is still desirable to know what intrusions have happened or are hap-
pening, so that we can understand the security threats and risks and
thus be better prepared for future attacks. In spite of their impor-
tance, IDS?s are not replacements for preventive security mech-
anisms, such as access control and authentication. Indeed, IDSs
themselves cannot provide sufficient protection for information
systems. As an extreme example, if an attacker erases all the data
in an information system, detecting the attacks cannot reduce the
damage at all. Thus, IDSs should be deployed along with other pre-
ventive security mechanisms as a part of a com-prehensive defence
system.

Alternatively, IDSs may be classified into host-based IDSs, dis-
tributed IDSs, and network-based IDSs accord-ing to the sources of
the audit information used by each IDS (Intrusion Detection Sys-
tem). Host-based IDSs get audit data from host audit trails and usu-
ally aim at de-tecting attack [4]][10][7][6].

1.2 Input Data Description

KDD'99 has been the most widely used data set for the evaluation
of anomaly detection methods. The data set is built based on the
data captured in DARPA’98 evaluation program. The data set con-
sists of approximately 4,900,000 single connection vectors each of
which contains 41 features and is labeled as either normal or an
attack. The attacks fall in one of the follow-ing four categories:
The datasets contain a total number of 24 training attack types, with
an additional 14 types in the test data only.

(1) Denial of Service Attack (DoS): 1t is a type of attack in which
an attacker denies legitimate users access to machines or makes
computing resources too busy to handle requests.

(2) Remote to Local (R2L): R2L occurs when a user without an
account has the ability to send packets to a machine gains local
access as a user of that machine.

(3) Userto Root (U2R): In U2R the attacker first accesses the sys-
tem with a normal user account by sniffing passwords or social
engineering and then gains root access to the system by ex-
ploiting some vulnerability.

(4) Probing Attack: It is a method of gathering information about
a network of computers with an intention of circumventing its
security controls.

1.3 Bayesian Classifier

We consider each data instance to be an n-dimensional vector of
attribute values:

X = ($1»$2,$3,-~-7$n) 1

In a Bayesian classifier which assigns each data instance to one of
m classes C, Cs, ..., (), a data instance X is assigned to the class
for which it has the highest posterior probability conditioned on X,
i.e. the class which is most probable given the prior probabilities of
the classes and the data X .That is to say, X is assigned to class C;
if and only if

P(Ci]X) > P(C;|X)Vj 21 <j<m @
According to Bayes Theorem

P(X|Ci)P(Cs)

3

Since P(X) is a normalizing factor which is equal for all classes,
we need only maximize the numerator P(X|C;)P(C;) in or-
der to do the classification. We can estimate both the values
we need, P(X|C;) and P(C;), from the data used to build the
classifier.[[L1][4]

1.3.1 Estimating Class Prior Probabilities. In general, it can be
very computationally expensive to compute the P(X|C;). If each
component z of X can have one of r values, there are rn combi-
nations to consider for each of the m classes.

In order to simplify the calculation, the assumption of class condi-
tional independence is made, i.e. that for each class, the attributes
are assumed to be independent. The classifier resulting from this
assumption is known as the Naive Bayes classifier. The assumption
allows us to write

P(x|Cy) =[] Paxlcy) @)
k=1

i.e. the product of the probabilities of each of the values of the at-
tributes of X for the given class C;.

1.4 Bayesian Classification Algorithm

Bayesian is one of the simplest density estimation methods from
which we can form one of the standard classification methods in
machine learning.

Its fame is partly due to the following properties:

e Very easy to program and intuitive

e Fast to train and to use as a classifier

e Very easy to deal with missing attributes

e Very popular in fields such as computational linguistics/NLP

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 2, August 2014

1.4.1 Steps Involved in Bayesian Algorithm

o In our improved Bayesian algorithm, we estimate the class con-
ditional probabilities for each attribute value based on their fre-
quencies in the training dataset.

e We calculate the sum of weights for each class from the training
dataset. Initially all the training dataset have unit weight.

e Then we calculated the sum of weights for each attribute value
with respect to same class.

e Finally, we calculate the class conditional probabilities for each
attribute value from the training dataset by dividing the sum of
weights for each attribute value by the sum of weights for each
class.

e After calculating the class conditional probabilities for each at-
tribute value from the training dataset, we classify the test dataset.

e If any test example is misclassified, we update the weights of
training dataset. We compare each of test example with every of
training examples and compute the similarity between them and
then weights of training dataset are increased by a fixed small value
multiplied by the corresponding similarity measure.

o If the test example is correctly classified, then the weights of
training set will remain unchanged. After weights adjustment, the
class conditional probabilities for attribute values are recalculated
from the modified training dataset.

o If the new set of probabilities correctly classifies all the test ex-
amples, the algorithm terminates. Otherwise, the iteration contin-
ues until all the test examples are correctly classified or the target
accuracy is achieved. At this stage the algorithm terminates, the
class conditional probabilities are preserved for future classifica-
tion of seen or unseen intrusions.[8]]

1.5 Genetic Algorithm

Genetic algorithm is one of the components of evolutionary compu-
tation technique .A simple genetic algorithm may consist of a popu-
lation generator and a selector, a fitness estimator and three genetic
operators namely selection, mutation and crossover. The mutation
operator inverts randomly chosen bits with a certain probability.
The crossover operator combines parts of the species of two indi-
viduals, generates two new off springs, which are used to replace
low fitness individuals in the population. After a certain number of
generations, the search process will be terminated. A genetic algo-
rithm (or GA for short) is a programming technique that mimics
biological evolution as a problem-solving strategy. Given a specific
problem to solve, the input to the GA is a set of potential solu-
tions to that problem, encoded in some fashion, and a metric called
afitness functionthat allows each candidate to be quantitatively eval-
uated. These candidates may be solutions already known to work,
with the aim of the GA being to improve them, but more often they
are generated at random.

The GA then evaluates each candidate according to the fitness
function. In a pool of randomly generated candidates, we choose
promising candidates toward solving the problem. These promis-
ing candidates are kept and allowed to reproduce. Multiple copies
are made of them, but the copies may not perfect; random changes
are introduced during the copying process. These digital offspring
then go on to the next generation, forming a new pool of candidate
solutions, and are subjected to a second round of fitness evalua-
tion. Those candidate solutions which were worsened, or made no
better, by the changes to their code are again deleted; but again,
purely by chance, the random variations introduced into the pop-
ulation may have improved some individuals, making them into

better, more complete or more efficient solutions to the problem at
hand. Again these winning individuals are selected and copied over
into the next generation with random changes, and the process re-
peats. The expectation is that the average fitness of the population
will increase each round, and so by repeating this process for hun-
dreds or thousands of rounds, very good solutions to the problem
can be discovered. [3][5]

1.5.1 Methods ofChange. Once selection has chosen fit individ-
uals, they must be randomly altered in hopes of improving their
fitness for the next generation. There are two basic strategies to ac-
complish this, they are.

(1) Mutation: By applying random changes to a single individual
in the current generation to create a child.

(2) Crossover: By selecting vector entries, or genes, from a pair
of individuals in the current generation and combines them to
form a child.

1.5.2 Method Applied in this Paper. The classic example of a
mutation operator involves a probability that an arbitrary bit in a
genetic sequence will be changed from its original state. A common
method of implementing the mutation operator involves generating
a random variable for each bit in a sequence. This random variable
tells whether or not a particular bit will be modified. This mutation
procedure, based on the biological point mutation, is called single
point mutation.

1.5.3 Initialization. Initially many individual solutions [3]are
randomly generated to form an initial population. The population
size depends on the nature of the problem, but typically contains
several hundreds or thousands of possible solutions.

1.5.4 Selection. During each successive generation, a proportion
of the existing population is selected to breed a new generation.
Individual solutions are selected through a fitness-based process,
where fitter solutions (as measured by a fitness function) are typi-
cally more likely to be selected. Certain selection methods rate the
fitness of each solution and preferentially select the best solutions.
Fitness scaling converts the raw fitness scores that are returned by
the fitness function to values in a range that is suitable for the selec-
tion function. The selection function uses the scaled fitness values
to select the parents of the next generation. The selection function
assigns a higher probability of selection to individuals with higher
scaled values. [12]

Initially many individual solutions are randomly generated to form
an initial population. The population size depends on the nature of
the problem, but typically contains several hundreds or thousands
of possible solutions.

2. ARCHITECTURE
2.1 Components in the Architecture

e KDD Dataset: This is the initial dataset obtained from the MIT
Lincoln labs.

e Pre-Processor: The pre-processor processes the large chunks of
data and we obtain the minimized dataset with particular required
no. of attributes.

e Bayesian Algorithm Processor: This processor applies the
Bayesian Algorithm on the input dataset to classify it into various
categories.

e Classified Dataset: Now we obtain the classified dataset for
which we compute the false positive and false negative rates.

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 2, August 2014

o/ Initial Population
&

Selection

Directed Tweak ﬂ

e’

£ " Operations
--Crossover
-- Mutation

| .

| | 1

| | -
R Offspring
Generation

Fig. 2. Basic Genetic Algorithm Flow

KDD Data Set Pr_e-
Processor

T

Pre - Processed Dataset with
Minimized Data

Apply Bayesian Algorithm to
Classify Normal & Attacked Packets

Calculate False Positive & | Apply GAto Apply Bayesian Algorithm

Negative rates on classified "] generate New onNew Dataset
Dataset | Dataset
\ | e
| =
| Calculate False Positive &
— Negative rates on

s \ Comparitive
Final Results <+ sy ‘

classified Dataset

Fig. 3. Architecture of the Proposed System

e Genetic Algorithm Processor: This takes the classified dataset
as input and builds a new dataset using the Genetic Algorithm by
observing the different variations in the dataset.

e New Dataset: After the implementation of Genetic Algorithm we
have the new dataset for which we again compute the false positive
and false negative rates.

e Comparative Study and Final Results: We show a comparative
study of the false positive and false negative rates of the classified
dataset and the newly obtained dataset and show the final results.[7]

(3]

3. IMPLEMENTATION & EXPERIMENTAL
RESULTS

3.1 Flow of Steps

e The Dataset from the MIT Lincoln labs is collected and refined
to obtain distinct data packets. This is done using java programming
(3]

Table 3. Individual Cond. Probabilities: Normal

P(A1) = 06714 P(Ay) =0.6429 P(A3) = 0.0714
P(A4) = 0.8571 P(As) =0.0000 P(Ag) = 0.0428

Table 4. Minimized Dataset after
Attribute Selection

00 1.0 30 10 545400 3.0
00 10 30 1.0 54540.0 3.0
00 10 30 10 545400 3.0
00 10 30 10 54540.0 3.0
00 1.0 30 10 545400 4.0

Table 5. Minimized Dataset after Attribute
Selection

0.6714 0.6428 0.0714 0.8571 0 0.0428
0.6714 0.6428 0.0714 0.8571 0 0.0428
0.6714 0.6428 0.0714 0.8571 0 0.0428
0.6714 0.6428 0.0714 0.8571 0 0.0428
0.6714 0.6428 0.0714 0.8571 0 0.0428

e A set of data is selected to train the process and the algo-
rithm. Then we have another set called the test set with which the
Bayesian Algorithm is implemented.

e Thus after classifying the dataset into attack and normal pack-
ets using Bayesian Algorithm, we calculate the false positive, false
negative rates and the detection accuracy.

e We then apply Genetic algorithm to obtain a new generation of
dataset by selecting the required attributes from the already existing
dataset. Here, we use mutation as the reproduction operator.

e Now we use this dataset to again implement the Bayesian Algo-
rithm and classify the dataset into attack and normal packets. Also
we calculate the false positive, false negative rates and the detection
accuracy.

e Finally we show a comparative analysis of the false positive,
false negative rates and the detection accuracy.

3.2 Implementation Process

The data packet being used is of the following type:

0, udp, private, SF, 105, 146, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,1,1,0,0,0,0,1,0,0, 255,254, 1,0.01, 0, 0,0, 0,0, 0

We select 6 attributes out of the 41 attributes from the above data
packet. The final set of data used for the processing is:

Example format of 6 attributes:

0, udp, private, SF, 105, 1

In the training set we have the following probabilities for normal
and attact packets

P(normal) =70/307 P(attack) = 237/307

Now the individual conditional probabilities for each attribute be-
ing normal are shown in Table.

Now we find the probability of the packet to be an attack and a
normal packt.

These probabilities obtained are:

P(normal) =0 P(attack) = 0.0001

So, from the above results, we say that the packet is an ATTACK.
The minimized dataset after attribute selection is shown in Table. F]
Now the Conditional probabilities for Normal and Attack packets
are shown in Table. [5] &[] respectively.

Now as we observe the dataset is classified as each an attack by the
algorithm.

The overall probabilities for each data packet are shown in Table.

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 2, August 2014

Table 6. Minimized Dataset after Attribute Selection

0.8016 0.6962 0.0843 0.7046 0.0843 0.0548
0.8016 0.6962 0.0843 0.7046 0.0843 0.0548
0.8016 0.6962 0.0843 0.7046 0.0843 0.0548
0.8016 0.6962 0.0843 0.7046 0.0843 0.0548
0.8016 0.6962 0.0843 0.7046 0.0843 0.0548

Table 7. Minimized Dataset after Attribute Selection

Normal 0 0 0 0 0
Attack 0.0001 0.0001 0.001 0.0001 0.0001

Table 8. Minimized Dataset after Attribute Selection

Attack/ Instances Instances Detection
Normal Detected Taken Accuracy
Back 99 99 100
Buffer_overflow 25 25 100
ftp_write 5 5 100
Guess_Password 96 100 96
Imap 0 0 0
Ipsweep 148 150 98.6
Land 8 9 89
Load_module 2 2 100
Neptune 104 100 100
Nmap 79 84 94
Portsweep 97 102 95
Rootkit 6 13 46
Smurf 102 100 100
Snmpguess 92 104 88
Teardrop 8 12 67
Normal 105 100 98

3.3 Experimental Results

Detection Accuracy is computed with the implemantation of the
algorithm on the each attack as shown in Table.[§]

The information provided in Table. 8] is represented in graphical
format shown in figure. [f which describe the number of instances
taken, detected with accuracy information for each attack.

Figure. [§] shows the false positive rate obtained when the input
dataset is classified using Bayesian Algorithm. As we observe,
there are 5 false positives in classifying the dataset. Figure.[5]shows
the false negative rate obtained when the input dataset is classified
using Bayesian Algorithm. As we observe, there are 10 false neg-
atives in classifying the dataset. Figure. [7]shows the false negative
rate obtained when the newly generated input dataset is classified
using Bayesian Algorithm. As we observe, a number of attacker
profiles may be observed as normal users by making certain varia-
tions in the profile.

4. COMPARITIVE STUDY

Now, we compare the detection accuracies and false alarm rates of
the algorithms. We prove by this that the detection accuracy has
increased and the false alarm rate has decreased. We also com-
pare the intrusion detection performance among Neural Network
(NN), Support Vector Machines (SVM), Naive Bayesian Classifier,
and our Bayesian algorithm implemented with Genetic Algorithm
(GABA) on KDD’99 dataset. The comparative results are summa-
rized in the following table. [4]

As we may observe the detection accuracies of various algo-
rithms have been compared. The proposed system of implementing

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 2, August 2014

Table 2. Selected Feature Description of KDD-CUP’99 DATASET [[]]

Feature name | Description | Type |
duration Length of the connection in number of Seconds Continuous
protocol_type | Type of the protocol, e.g. TCP, UDP, etc. Discrete
service Network service on the destination, e.g., http, telnet, etc. Discrete
src_bytes Number of data bytes from source to destination Continuous
dst_bytes Number of data bytes from destination to source Continuous
count Number of connections to the same host as the current connection in the past two seconds | Continuous
Select Graphy
s = False negatives of
genfns Bayesian algarithmm
genfps - |
- close |
8 r . -
TE
B |
5
4 F
3
=> L
1 » /\
u E B A
0 =2 4 5

Fig. 7. False Negative Rate after Genetic Algorithm approach

Accuracy Graph
160
A
140
120 A\
80
o —\ JN\ _J/ \ / \\V/I e
T N AV AN W A— Y ANV A
20
i ~/ \' ./ v v
e R £ Q Q 2 & Q 2 S & & R 3
o8 AN S 2 ¢ & S F
“?Lop & s;# \"&\q*a v ‘@Q@ \‘&\.@'F‘ & &Q@?’ 9@‘ o
o & b D7 <© o <
‘)Q\e Q¢ N
A @ ——Accuracy (In%) ——Instances Detected Instances Taken

Fig. 4. Detection Accuracy Graph

Bayesian Algorithm with Genetic Algorithm has increased detec-
tion accuracy in the case of a U2R and R2L attack types where as
a lesser detection accuracy in the case of DOS and PROBE attack

types.

Select Graph.
_. = False positives of
- Bayesian algorithm
=]
Close

5
4 P
3 <
2 1
1 -
0

0 2 4 6 8 10

Fig. 5. False Positive Rate

International Journal of Computer Applications (0975 8887)

Volume 99 - No. 2, August 2014

Table 9. Variations observed in developing New Dataset

SL.No ﬂ Attack/Normal ﬂ Ay H Ay H As ﬂ Ay ﬂ As H Ag H Variations Observed ‘

1. Back 0 1 3 1 54540 2-5 As! = 54540;1 < Ag < 60

2. Buffer_overflow 0-2225 1 5 1 1000-3000 1 As < 1000

3. ftp_write 20/26 1 4/12 1 74/90 1 A5 > 200; A3! = 12

4. Guess_Password 4/5;0 1 6/2 1 25-32; 120-130 1 A1!'=0;35 < A5 < 100

5. Imap 91 1 7 4 1352 1 A3l =T;

6. Ipsweep 0 3 8 1 8/18 1 As =30/1—4

7. Land 0 1 9 2 0 1 A =15 < A5 <12

8. Load_module 75-85 1 5 1 277 1 A1 =0;Ag! =277

9. Neptune 0 1 1 2/3 0 30-300 Ayl = 2; Ag = 45/56
10. Nmap 0 1 1 5 0 1 Ayl =5
11. Portsweep 0 1 1 3/6 0 1-3 A = 45/56;; A1 = 3;30 < Ag < 165
12. Rootkit 15-55 1 4 1 40-200 1 A1 =0; A5 > 200
13. Smurf 0 3 11 1 1032; 508; 520 100-511 As =30;1 < Ag <3
14. Snmpguess 0 2 1 1 40-50 2-5 As =105;1 < Ag < 3
15. Teardrop 0 2 1 1 28 10-100 As > 200

100
- Select Graph —

fos

genfns

= Falge negatives of
Bayesian algorithm

genfps hd

Close

Fig. 6. False Negative Rate

Table 10. Acronym
Description for Table.

Feature Represenation
Al duration
A2 protocol_type
A3 service
A4 src_bytes
A5 dst_bytes
A6 flag

cse.nitk.ac.in/researchscholars/y-v-srinivasa-murthy
Table 11. Comparison of accuracies of various algorithms

Attack Typein || NN (%) || SVM (%) || NB (%) || GABA (%)
KDD’99
DOS 91.82 99.43 99.67 95.4
PROBE 95.27 98.53 99.39 96.8
R2L 94.43 96.44 99.01 98
U2R 49.05 64.07 64.45 82

80

60
mDOS

40 B PROBE

20 ER2L

BU2R

NN (%
P sum) NB (el
Proposed

GABA (%)

Fig. 8. Comparision of Accuracies

5. CONCLUSION

Information Security plays an important role in Hi-tech computing
world. Even though firewall is used to provide security between
two different networks, it fails to care about the intranet security
(security within a single network). In order to overcome the prob-
lem a model called Intrusion Detection System is used. The process
of monitoring the events occurring in a computer system or net-
work and analyzing them for sign of intrusions is known as intru-
sion detection system (/.D.S).In this paper we applied mathemati-
cal Bayesian Classifier Algorithm technique on Dataset to identify
the normal and attacked packets. After that to enhance the algo-
rithm we applied Genetic Algorithm which generates new Dataset
using Mutation concept. Again we applied Bayesian algorithm to
detect the attacked packets. We prove that, applying the combina-
tion of Bayesian algorithm and Genetic Algorithm further improves
the detection rate to a greater extent. Here, we present an Intrusion
Detection System which uses the Bayesian Algorithm to detect and
classify the attacks from normal users. We compute the false alarm
rate in implementing this algorithm on an input dataset. Since a user
profile does not remain the same at all the time, we implement the
Genetic Algorithm to observe the different variations possible in a
user?s profile. In this way we generate a new dataset, classify this
new dataset using the Bayesian algorithm and computed the false
alarm rate.

6. REFERENCES

(1]

(2]

(3]

[4]

(5]
(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

KDD CUP - 99 task description. https://kdd.ics.uci.
edu/databases/kddcup99/task.html.

James Cannady. Artificial neural networks for misuse detec-
tion. In National information systems security conference,
pages 368-81.

Mark Crosbie and Gene Spafford. Applying genetic program-
ming to intrusion detection. In Working Notes for the AAAI
Symposium on Genetic Programming, pages 1-8. MIT, Cam-
bridge, MA, USA: AAAI, 1995.

Dewan Md Farid, Mohammad Zahidur Rahman, and Chowd-
hury Mofizur Rahman. Adaptive intrusion detection based on
boosting and naive bayesian classifier. International Journal
of Computer Applications, 24(3):12-19, 2011.

Thorsten Joachims. Making large scale svm learning practi-
cal. 1999.

John McHugh. Testing intrusion detection systems: a critique
of the 1998 and 1999 darpa intrusion detection system evalu-
ations as performed by lincoln laboratory. ACM transactions
on Information and system Security, 3(4):262-294, 2000.

Srinivas Mukkamala and Andrew Sungand Ajith Abraham.
Cyber security challenges: designing efficient intrusion detec-
tion systems and antivirus tools. Vemuri, V. Rao, Enhancing
Computer Security with Smart Technology.(Auerbach, 2006),
pages 125-163, 2005.

Srinivas Mukkamala, Andrew H Sung, and Ajith Abra-
ham. Intrusion detection using ensemble of soft computing
paradigms. In Intelligent Systems Design and Applications,
pages 239-248. Springer, 2003.

Srinivas Mukkamala, Andrew H Sung, and Ajith Abra-
ham. Intrusion detection using an ensemble of intelligent
paradigms. Journal of network and computer applications,
28(2):167-182, 2005.

Sandhya Peddabachigari, Ajith Abraham, Crina Grosan, and
Johnson Thomas. Modeling intrusion detection system using
hybrid intelligent systems. Journal of network and computer
applications, 30.

J Ross Quinlan. Decision trees and decision-making. Systems,
Man and Cybernetics, IEEE Transactions on, 20(2):339-346,
1990.

John Ross Quinlan. C4. 5: programs for machine learning,
volume 1. Morgan kaufmann, 1993.

Mahbod Tavallace, Ebrahim Bagheri, Wei Lu, and Ali-A
Ghorbani. A detailed analysis of the kdd cup 99 data set.
In Proceedings of the Second IEEE Symposium on Compu-
tational Intelligence for Security and Defence Applications
2009, 20009.

International Journal of Computer Applications (0975 8887)
Volume 99 - No. 2, August 2014

https://kdd.ics.uci.edu/databases/kddcup99/task.html
https://kdd.ics.uci.edu/databases/kddcup99/task.html

	Introduction
	Intrusion Detection
	Missue-Based Detection
	Anomaly - Based Detection

	Input Data Description
	Bayesian Classifier
	Estimating Class Prior Probabilities

	Bayesian Classification Algorithm
	Steps Involved in Bayesian Algorithm

	Genetic Algorithm
	Methods ofChange
	Method Applied in this Paper
	Initialization
	Selection

	Architecture
	Components in the Architecture

	Implementation & Experimental Results
	Flow of Steps
	Implementation Process
	Experimental Results

	Comparitive Study
	Conclusion
	References

