
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

25

A Pragmatic Approach for Software Maintenance

Process

Sanjeev Kumar Punia

(Associate Professor)
IIMT College of Engineering, Gr.

Noida

Anuj Kumar, Ph.D
(Professor)

Accurate Institute of Engineering &
Technology, Gr Noida

Trilok Rawat
(Associate Professor)

IIMT College of Engineering, Gr.
Noida

ABSTRACT

This paper describes the use of a process support tool that is

used to collect metrics for upgrading our electronic retail

system. The incremental prototype lifecycle approach is used

in which each increment is categorized by an effort type and a

project component. The different effort types used to span all

phases of development are as acquire, build, comprehend and

design. The project components include data and process

models expressed by an object oriented modeling language

and process algebra respectively. The components are build

using C++ classes and function templates that include source

and data files. This categorization is independent from

incremental prototype approach and equally applicable to

other software lifecycles also. The process support tool i.e.

process wise integrator (PWI) ensure the consistency between

models and C++ source code. It also supports the interaction

between multiple developers and multiple metric collectors.

Keywords

Process, comprehend, object-oriented and process metrics

1. INTRODUCTION
The process modeling is very potential and powerful

technology that may be utilized in order to understand the

experiments and development process further. Rombach et.al

[1] suggested that process technology may be enhanced by

combining the process modeling and software measurement.

Shepperd [2] stated that research work can be divided into

different parts those may attempt to collect product metrics by

using the process model as a framework. Phalp [3] find that

the modeling technique is used to display the measurement of

data and process by make a single graphical model that

combine metrics and process models.

All these techniques use process terminology, phase activities

or boundaries for structural data collection. However, till now

only small work is reported for the study of software

maintenance for uses this complementary discipline. This

paper is based on the study of collecting maintenance data

with respect to four independent categories. Perry et.al [4] use

the same approach but they examination the process at much

more detailed level and apply the information into a more

generic framework. This paper contains five sections where

section 2 describes its adoption and process maintenance. The

description of the application is shown in sections 3. Section 4

describes the implementation method that is used to measure

and maintain process and last section explains our data

collection procedures followed by the result and analysis.

The work reported here is based on the incremental lifecycle

prototype. The incremental phase defines the changes to be

made in most of the existing systems that use incremental

lifecycle prototype. The refinement of the prototype use rapid

design repeatedly. Allman et.al. [5] suggests that the

achieving long term goals are crucial for development.

Generally long term goals are not fully understandable so that

decomposition of long term goal into manageable short term

goals is morale boosting progress for the developers. The

actual coding of implementation starts after the furnishing of

the prototype. The separate test phase is not included into the

code while implementation includes the same test that is used

with the prototypes. The compilers perform code checking

and debugging during development to produce a sets of run

time test.

The main feature of this project is to encourage the developers

to develop experiments with their own and customer ideas.

Therefore, many experiments were performed with prototype

features and implementation language during development.

2. LITERATURE REVIEW
Parnas [6] explained that, software engineers are not fully

trained for design change although second release was being

evolved by same developers of the original system. Turner

et.al [7] explained that the developers still find it difficult to

produce a good design for a new system on the first try if they

take a similar project.

They suggest that this problem may be practically solved by

implementing a subset of the problem initially and then

enhance the implementation iteratively till the complete

solution of the problem. Additional, they stated that the skill

and productivity level increases by using the same team for

the successive implementation where constraints did not force

to reuse the previous implementation in progress. A subjective

assessment indicates that developers reuse approximately half

of the old code due to temptation in producing new code by

using new function and class methods. This code reuse the

approach matches the philosophy of Allman et.al [5] as they

stated that it is never too late to start new code and discard all

existing old code.

Turner et.al [7] explained that the lifecycle concept of

performing activities systematically support the idea of

careful planning prior to machine access for the effective use

of the expensive computer resources while some researchers

argument shows that the lifecycle concept is unsuitable for the

development of evolving systems today.

Curtis et.al [8] stated that the sequential views are not fully

accountable for the important process attributes like iteration

and feedback loops. They explained that the concept of

conventional software lifecycle has been significantly altered

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

26

with acknowledge of the prototype. Agresti et.al [9]

challenges the assumption that the development follows a

rigid sequence of activities from requirements specification of

coding and testing. The lifecycle model offers a large grained

view of the development process and cannot represent critical

lower level details of a project. Kellner et.al [10] states that

many smaller processes are overlooked in lifecycle

description as processes may be examined in terms of a whole

phase instead of multiple numbers of sub processes during the

operation phase that give a less detailed view.

Often, the real software development processes do not consist

distinct phases. Balzer et.al [11] argues that the software

methodologies are unrealistic for separate specification from

implementation. They claim that every specification is an

implementation of some other high level specification so the

partitioning of the development process into specification and

implementation phase is completely arbitrary.

Due to these problems, many ideas of conventional software

lifecycle model have been challenged and consequently

largely rejected. However, many introduced terminologies

still used and these terminologies reject the application of

conventional lifecycle. They also addressed the software

measurement and process modeling related problems.

Rombach [12] stated that models and measures are

inseparable and quality improvement plan requires

measurably improved development processes.

3. METHODOLOGY
This paper involves developing a prototype process

representation language for software processes specification.

The application used for this study revolved around an

electronic point of sale system developed by Greenwood et.al

[13]. In last three years approximately 5K NCSL were

developed. The data reported here belongs to release 2 of the

electronic point of sale system which was developed two

years ago. Thus the maintenance process deals with a large

amount of legacy coding, maintaining and altering according

to customer requirements.

The software models use the process of algebra and an object

oriented modeling language for translation into C++

developed by Henderson [14]. We use a process wise

integrator (PWI) evolution model that is developed by Parker

et.al [15]. According to Greenwood [16], the project team

play several roles in process wise integrator (PWI) model and

two of them are explained below in brief.

1. Developer's role: It covers three types of main actions.

a. Effort actions: effort actions are used to measure the

time spent by a developer by working on a

particular component. The collected information is

used to identify the name of specific component and

the type of effort action performed. Here effort is

being recorded for 1/4 of the day i.e. corresponds to

1.5 hours excluding break time.

b. Agrees actions: agree actions are used to find two

components in a relationship those are agree with

each other.

c. Change actions: change actions are used to correct

the model supplied data. The user is able to indicate

that a component has been changed without

recording associated 1/4 day effort. All effort

information is recorded by the developer after the

expansion of the effort.

2. Measurer's role: It is shown by the metrics team that is

responsible to extract the developer effort information from

process wise integrator log. It covers two types of main

actions

a. Modify action: modification is a default action

included by process wise integrator which allows

the role change possibility in the future.

b. Output effort log: output effort log is used to extract

the effort log information and write to a standard

text file.

According to Henderson et.al [17], the actions of the

developer for recording purpose is based on the pumping

model that is categorize into following four types.

a. Acquire: acquire is used to acquire and customize

the existing software that include the acquisition of

other people's code and coding techniques from the

literature.

b. Build: built is used to code the low level modules,

unit test and build the test harnesses.

c. Comprehend: comprehend is used to understand the

system that possibly involve literature surveys and

experiment with hardware and software.

d. Design: design is used to design high level models

or platform software before coding and integration

test planning.

4. ANALYSIS AND EVALUATION

4.1. Chronological analysis of developer

activities

Figure 1

The graph of figure 1 shows the relation between times spent

per task by the developer and component database. It shows

that most time consuming activity of comprehension is

performed in the initial stages of the project. The developers

are completely concentrated to understand the activity during

the first week of the project. During the first few weeks i.e.

weeks 2 to 4, the developer spent a small amount of time to

acquire and customize the existing software and tools those

are to be use for experiment with coding techniques.

Figure 1 also shows, that the relationship between the

cumulative time spent during design and the week number is

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

27

almost linear between weeks 2 to 8. As suggested by Curtis

et.al [8], the design time spent can be accounted by team

meetings. In our case, the developers met to exchange

information and to discuss the shared process support details.

However, the design of the project was seems to be finalize

from week 9 onwards while small amounts of time spent for

adding extra functionality to the design in weeks 11 to 17 and

the developer's efforts were almost solely concentrated on

coding. After that almost all the available time spent on anti

regressive activities such as the code restructure and the

documentation updating.

As Gersick [18] suggested, that there is a critical point

halfway by a project group where the team comes to a

consensus in progress. This may be reflected by the delivery

of the design and coding effort concentration. The flatter

section of the graph indicate consolidation period in the

project. After completely evaluating the task around week 7

there is a need of occasional couple time period to understand

the project in weeks 15 and 16. Figure 1 also shows that the

cumulative time spent for the developer activity like time and

build is almost linear throughout the duration of the project.

4.2. Chronological analysis of the project

database

Figure 2

The graph of figure 2 shows the relation of the cumulative

time spent for each types of the component in the database.

The graph shows that the relationship between modeling

cumulative time and week number is fairly linear during early

stage in the projects. From week 9 onwards, only small time is

given to modeling and subsequent effort was concentrated on

coding.

This effort is captured by the code structures and code body

components for the second and third largest proportions of

developer time. Although no coding was done during the first

week of the project but week 2 onwards the relationship

between the cumulative times spent on code interfaces and the

project week number is fairly linear. At this time, the

developers worked on the overall structure of the C++ classes

those are used to implement the models.

The production of code for these classes implementation is

initiated much later in week 6. Figure 2 also illustrates that the

majority of initial project effort was applied to the

specification during the working of two activity periods i.e. in

weeks 1 and 2 and in week 7 respectively. Again, from the

critical point of week 8 onwards, the specification became

finalized and all developer effort was channeled towards the

implementation.

For developers, only a small time period is accounted for

platform and paradigm early in the project. These two were

associated with acquiring and comprehending the workings of

existing tools and code. Figure 2 shows that no time is spent

for the generator components at all as the developers did not

construct any tools for aiding the model conversion into code.

5. CONCLUSIONS
Here we have collect the process data for each category in the

process model by combined process models and process

metrics in recent work. The collection of data effort against

four independent categories as acquire, build, comprehend

and design represents a departure from the orthodoxy. We

conclude that generally, a large amount of the developer's

time was devoted to relate tasks legacy products comprehend

from previous releases initially. This leads us to suggest that

project effort could be reduced by supplying additional

documentation that give more details about the software

functionality.

All of this abstract information activity provides a distinct and

orthogonal view of the developer's personal process. For

example, we can see how comprehend the existing system

spans a number of process activities or phases. This approach

provides us a much more detailed picture of the process than

data collection against the process model categories that is

independent for the underlying process model. Hence this

process change invariantly and is applicable to all other

situations irrespective of the project’s process.

Although our study is on a relatively small scale but our

preliminary findings suggest that such an approach gives us a

far greater understanding of the software development process

than traditional approaches which provide an activity based

view only. Further work is continuing with different

developers and large scale projects both to learn more about

the nature of industrial software development and the

applicability of our method.

6. REFERENCES
[1] Rombach and Pfleeger, “Measurement based process

improvement”, IEEE Software, 2004.

[2] Shepperd, “Quantitative approaches to process modeling”,

Colloq. on Process Planning and Modeling, London,

2002.

[3] Phalp, “An investigation of process modeling in practice”,

Ph.D. Thesis, Bournemouth University, UK, pg. 107 -

109, 2005.

[4] Perry and Staudenmayer, “People, organizations and

process improvement”, IEEE Software, 2008.

[5] Allman and Stonebraker, “Observations of the evolution

of a software system”, IEEE Computer, pg. 27 - 32,

2002.

[6] Parnas, “Designing software for ease of extension and

contraction”, IEEE Transactions on Software

Engineering, 2009.

[7] Turner and Basili, “Iterative enhancement: A practical

technique for software development”, IEEE Transactions

on Software Engineering, pg. 390 - 396, 1998.

[8] Curtis, Elam and Walz, “Study the process of software

design teams”, 5th Software Process Workshop,

Kennebunkport, Maine, USA, pg. 52 - 53, 2009.

[9] Agresti, “The conventional software life-cycle: Its

evolution and assumptions”, IEEE Computer Society

Press 2008.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.2, August 2014

28

[10] Kellner and Curtis, “Process modeling”,

Communications of the ACM, pg. 75- 90, 2010.

[11] Balzer and Swartout, “On the inevitable intertwining of

specification and implementation”, Communications of

the ACM, pg. 438 - 440, 2009.

[12] Rombach, “Design measurement some lessons learned”,

IEEE Software, 2010.

[13] Greenwood and Warboys, “Co-operating evolving

components a rigorous approach to evolving large

software systems”, Proceedings of the18th International

Conference on Software Engineering, 2006.

[14] Henderson, “Object Oriented Specification and Design

with C++”, McGraw-Hill, 2003.

[15] Parker, Bruynooghe, Butler, Hook, Cook and

Greenwood, “Process wise Integrator: Sun hosted

system”, ICL, 2005.

[16] Greenwood, “EPOS evolution process wise integrator”,

tech. rep., Department of Computer Science, University

of Manchester, UK, 1995.

[17] Henderson and Warboys, “Configuration description for

component reuse”, 1st International Workshop on

Software Reuse, Dortmund, Germany, 2001.

[18] Gersick, “Time and transition in work teams: Toward a

new model of work development”, Academy of

Management Journal, pg. 9 - 41, 2008.

IJCATM : www.ijcaonline.org

