
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.19, August 2014

23

Parallel Job Scheduling in Cloud with Lookahead and

Workload Consolidation

Swathi S

MTech Student
TKM College of Engineering

Kollam, India

Thushara A
Associate Professor

TKM College of Engineering
Kollam, India

Shabi Kamal
Assistant Professor

TKM College of Engineering
Kollam, India

ABSTRACT

The cloud computing paradigm enables consumers to run their

applications in remote data centers. Many of these

applications may be complex which requires parallel

processing capabilities. Parallel job scheduling techniques

mainly focus on improving responsiveness and utilization. For

a data center that deals with parallel jobs, it is important to

devise an optimal schedule which results in maximal

utilization of available node capacity. For that, this paper

propose a parallel job scheduling technique which uses the

key concepts such as workload consolidation through

virtualization technologies and backfilling with look ahead

mechanism. The proposed method is compared to scheduling

using backfilling technique with workload consolidation. The

results show that the proposed method with lookahead

mechanism has shown better performance.

General Terms

Cloud computing, Parallel Job Scheduling, Backfilling,

Resource Consolidation.

Keywords

Workload Consolidation, Backfilling with workload

consolidation, Backfill with Lookahead.

1. INTRODUCTION
Parallel job scheduling in distributed environment[1] has been

a major research area for several years. With the advancement

in cloud computing paradigm, the high performance

computing (HPC) applications can be executed in remote data

centers. With Infrastructure as a Service (IaaS) cloud service

delivery model, computational capacity is delivered over the

internet to end users. The parallel computing applications

which require simultaneous execution of its processes on

different nodes can be executed in a remote data center

through the cloud paradigm with this advance in technology.

Scheduling of such parallel jobs in a computational cloud data

center is the main focus of this paper. Many parallel job

scheduling strategies have been proposed for scheduling

parallel jobs in distributed environment. Most of them focus

on reducing makespan and response time as well as improving

the utilization of processors available in a distributed system.

The main goal of this work is to propose a better scheduling

technique in a computational cloud data center that improves

the node utilization and reduces the make span by considering

the virtualization technology.

A parallel job can be characterized by the number of nodes it

requires for execution and the expected execution time. A

process in a parallel job may wait for the data from other

process, so communication and synchronization is there

between processes of a parallel job. Thus, a parallel job

requires simultaneous execution of its processes in a number

of nodes. If the requirement of a parallel job cannot be

satisfied with the available number of nodes, there is a chance

that those available nodes may remain idle. This constraint

leads to under utilization of nodes that run parallel jobs.

Many HPC applications require complex parallel

computation. Several Massively Parallel Processors (MPPs)

have been used for the computation of these HPC

applications. All these systems had their own parallel job

scheduling policies. With the development of cloud paradigm,

these complex HPC applications can be executed in remote

data centers. Concepts of parallel job scheduling techniques in

MPPs can be effectively used in a cloud data center by

applying some changes. In cloud efficiency can be further

improved by exploiting the virtualization capabilities of cloud.

The proposed model exploits the virtualization capability

through workload consolidation and uses the FCFS with

backfill technique for queue management. Also, the concept

of lookahead is introduced to improve the packing of parallel

jobs in the resultant schedule and thereby improving the

utilization further.

The remainder of this paper is organized as follows: Section 2

discusses the related work on parallel job scheduling

techniques. Details regarding the parallel job scheduling

techniques studied and proposed are given in Section 3.

Section 4 discusses the simulation details and the results

obtained. The conclusion and future work are given in Section

5.

2. RELATED WORK
Many parallel job scheduling approaches were proposed in the

literature for massively parallel processors. The basic parallel

job scheduling technique in use was First Come First Serve

(FCFS)[2]. In this approach, the parallel jobs are considered

for execution in the order of their arrival. Whenever the

request for the job at head of queue can be satisfied with the

freely available number of nodes in the system, then it can be

immediately dispatched for execution. If the request of head

of queue job cannot be satisfied with the freely available

nodes in the system, then those nodes remain idle which

results in node fragmentation. Thus the main problem with

FCFS is the under utilization of the system resources due to

this node fragmentation. In order to overcome these problems

with FCFS, techniques such as gang scheduling [3],[4],[5] and

backfilling [5], [6] were proposed. Resource sharing among

multiple parallel jobs is supported in gang scheduling. It

follows an approach where the processes of jobs are shared by

dividing the computing capacity of a node into different time

slices. [7] Proposes another approach to gang scheduling in

which the processes with complement resource needs are

placed together to minimize the interference between them.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.19, August 2014

24

Backfilling is a technique that allows jobs with lesser node

number requirement to use the idle nodes available when the

request for job at the head of queue cannot be satisfied. Many

variations to traditional backfilling approach were also

introduced to optimize the schedule. An integrated approach

to parallel job scheduling using backfilling and gang

scheduling has been introduced in [8]. An effort to introduce

parallel job scheduling concept in cloud has been proposed in

[9]. It uses the concept of backfilling along with migration to

schedule parallel jobs.

3. PARALLEL JOB SCHEDULING

TECHNIQUE
Parallel job requires the simultaneous execution of its

processes in several nodes. Many parallel jobs may compete

for resources in a data center to get executed. It is the duty of

the scheduler to effectively allocate and manage resources

available in the data center. Scheduler can be defined as the

software component that effectively manages and allocates

available resources to the competing parallel jobs which are

placed in the queue according to the scheduling policy used in

the system.

The proposed parallel job scheduling mechanism uses the

FCFS with backfill policy for queue management. Inorder to

improve utilization workload consolidation approach is

introduced by exploiting the virtualization capabilities.

Packing of jobs in the schedule is improved by applying

lookahead strategy. Basic assumptions in the proposed

method are that parallel jobs considered are of rigid jobs. i.e,

once the requirement is specified it requires that number of

nodes to complete their execution. Also, the model follows

run-to-completion strategy. i.e, once the job is dispatched for

execution, no other job is allowed to preempt it from

execution.

3.1 Workload Consolidation Approach
Workload consolidation is applied in order to improve the

utilization. As a parallel job with many processes is executed

on many processors, the computing capacity of those

processors is not fully utilized. In order to improve the

utilization of a processor that runs parts of a parallel job,

workload consolidation technique is introduced. In this

method, the computing capacity of a processor is partitioned

into two virtual machine tiers as Foreground Virtual Machine

(FVM) tier and Background Virtual Machine (BVM) tier. The

advantage of this approach is that each processor is capable of

running job parts of two different parallel jobs simultaneously

and hence improves the utilization. This approach allows the

scheduler to dispatch more number of parallel jobs at a time

and hence it also contributes to reduction of make span.

3.2 Backfilling with Workload

Consolidation
When workload consolidation is there, we can run multiple

jobs with the computing capacity of a single machine. In such

a case, when the queue order follows a First come First Serve

(FCFS) approach alone, then it will result in severe node

fragmentation due to parallelization. When the number of

nodes required for job at head of queue cannot be satisfied

with the currently idle nodes, then according to FCFS, no jobs

will be dispatched and those nodes remain idle until enough

idle nodes become available to process the job at head of

queue. This results in severe under utilization. In order to

overcome this problem, the backfilling technique is

introduced in which the jobs with less number of nodes

required for execution and which arrived later than the job at

head of queue are allowed to execute. Thus the under

utilization can be reduced when there are backfill jobs

available which can satisfy the current idle node capacity.

When backfilling is allowed in the case of workload

consolidation concept, the computing capacity of machine is

divided into two tiers, FVM and BVM, so we are able to run

job parts of two different jobs on the same machine. In this

case scheduling is done in such a way that:

When enough idle processors are available to process the job

at the head of the queue, then it is immediately dispatched.

While dispatching the capacity to process the job is also

considered, when a job whose job parts have a lesser capacity

requirement (size of job is less), then it is dispatched for

execution in the BVM else if enough BVMs are not available,

then it is allowed to execute in FVMs. So here a best fit policy

is also adopted. This is required as there can be more than one

job request that arrive at the same time. So FCFS policy alone

is not enough. In such a case, in order to maximize utilization,

best fit strategy is applied. Same jobs whose arrival time is

same will be dispatched in a manner that will result in better

utilization of available capacity. So, jobs which arrive at the

same time are processed in such a way that it will improve

overall system utilization. When jobs which arrived at the

same time can’t be dispatched because of its higher node

number requirement, then backfilling will be initiated. Here, a

job with later arrival time and placed towards the end of

queue will be allowed to execute. Because its node number

requirement is less.

3.3 Backfilling with Workload

Consolidation and Lookahead Approach
In this case, a lookahead mechanism is introduced in the

above method. It is to improve the utilization, reduce response

time and hence to result in better makespan by finding the

best victim node for backfilling.

Here the mechanism is that while initiating backfilling, in

order to avoid starvation of higher priority jobs in the queue,

expected allocation time of priority jobs will be calculated.

Then backfilling is done in such a way that those backfill jobs

whose execution time is less than the expected allocation time

of higher priority jobs will be allowed to dispatch. Then the

advantage is that there will be no starvation for higher priority

jobs also the node utilization will be maximum as the backfill

job selected can complete its execution when the higher

priority job will get processors according to its requirement.

Here, a job which can be executed with lesser machine

capacity will be dispatched to BVMs which are slow

processors compared to FVMs, FVMs whose machine

capacity is more can be utilized for long jobs which requires

more processing power. In such a way we can optimize the

schedule generated.

4. SIMULATION RESULTS AND

DISCUSSION
The proposed system is simulated in cloudsim [10]. Both the

algorithms proposed in the previous session are implemented

and a result analysis is performed. The effect of schedule

generated as per the proposed algorithm with lookahead

mechanism is compared with the schedule generated by the

backfilling with workload consolidation technique. How both

schedules vary in utilization, makespan and response time are

studied by calculating each of these factors for the schedules

generated by both the algorithms. The results are studied and

how it gets affected by the system load is plotted graphically.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.19, August 2014

25

Table 1 and Figure 1 show the effect of makespan in both the

schedules. Makespan of a schedule is the length of schedule

and it can be obtained by calculating the completion time of

all the jobs in the schedule. The makespan metric analysis

indicates that the schedule generated by the proposed

algorithm resulted in better makespan.

Figure 1. System Load vs Make Span

Table 1. System load vs Makespan

SYSTEM LOAD
MAKESPAN

Ct_bbf Ct_blos

506471 4540.957 4230.12

783161 6490.147 6379.438

896600 8448.161 8059.593

1088902 10232.42 9988.987

1225056 10149.16 9836.741

1487712 13107.52 13014.59

26523522 22792.39 21782.03

31075787 27308.01 27558.97

31769829 25948.43 25615.24

48406823 45683.68 43698.42

50940030 37208.09 36724.73

79000430 74445.58 71889.57

95501861 74025.65 73413.56

98248549 91857.23 91660.42

1.23E+08 110254.2 109587

1.56E+08 143939 141646.6

Table 2 and Figure 2 show the effect of utilization of nodes in

the data center by both the schedules. Utilization of nodes in

the system can be calculated from the idle time. Idle time of a

node is the time during which the nodes in the system remain

idle. A short idle time indicates a better utilization of available

system capacity. The proposed scheduling policy results in a

better utilization compared to that of the basic backfilling with

workload consolidation approach.

Table 2. System Load vs Utilization

SYSTEM LOAD
UTILIZATION

it_bbf it_blos

506471 50584 42147

783161 71386 58998

896600 164078 122958

1088902 325056 285408

1225056 174226 142049

1487712 383451 322415

9971343 137998 112040

31075787 71574 45094

31769829 127086 97263

48406823 255390 222923

50940030 197596 154486

79000430 886909 808897

95501861 1302376 1229721

98248549 2903336 2900247

1.23E+08 2901491 2803748

1.56E+08 4641509 4401180

Figure 2. System Load vs Utilization

Table 3 and Figure 3 depict the effect on response time by

both schedules. Response time of a job is the time duration

from which the job is submitted to the system until it gets

completed. Response time of a schedule is calculated by

summing up the response times of all the jobs in the system.

By analysing the response time metrics on both schedules, it

is found that the proposed scheduling policy has shown a

short response time compared to that of the basic backfilling

scheduling policy.

Table 3. System Load vs Response Time

SYSTEM LOAD
RESPONSE TIME

Ct_bbf Ct_blos

506471 4109358 3921719

783161 9875227 9163678

896600 22531528 20715116

1088902 51943989 47648963

1487712 88536415 81731363

79000430 1.1E+08 1.07E+08

95501861 1.7E+08 1.68E+08

98248549 4.52E+08 4.48E+08

1.23E+08 4.79E+08 4.8E+08

1.56E+08 1.09E+09 1.08E+09

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.19, August 2014

26

Figure 3. System Load vs Response time

5. CONCLUSION AND FUTURE WORK
Parallel job scheduling technique proposed in the work has

been implemented in cloudsim and the result obtained has

been analysed. From the result obtained, backfilling with

workload consolidation and lookahead strategy has shown a

better result in terms of utilization, response time and make

span of schedule obtained when compared with the

corresponding metrics of the schedule generated by

backfilling with workload consolidation strategy.

The proposed work focused on scheduling of parallel jobs

which follow a non preemptive strategy. Migration of backfill

jobs can be performed in order to give priority to jobs that

arrived earlier. So on the proposed algorithms, the effect of

applying migration to parallel jobs on the schedule can be

studied.

6. REFERENCES
[1] D. Feitelson, L.Rudolph, U. Schwiegelshohn, K.Sevcik,

and P.Wong, “Theory and Practice in Parallel Job

Scheduling,” Proc.Workshop Job Scheduling Strategies

for Parallel Processing, pp. 1-34,1997

[2] U. Schwiegelshohn and R. Yahyapour, “Analysis of

First-ComeFirst-Serve Parallel Job Scheduling,”Proc.

Ninth Ann. ACM-SIAM Symp. Discrete Algorithms,pp.

629-638, 1998.

[3] D. Feitelson and M. Jettee, “Improved Utilization and

Responsiveness with Gang Scheduling,” Proc. Workshop

Job Scheduling Strategies for Parallel Processing,pp.

238-261, 1997.

[4] J. K. Ousterhout, “Scheduling techniques for concurrent

systems,” Proceedings of Third International Conference

on Distributed Computing Systems, May 1982, pp.20-30.

[5] A. Mu’alem and D. Feitelson, “Utilization,

Predictability, Workloads, and User Runtime Estimates

in Scheduling the IBM sp2 with Backfilling,”IEEE

Trans. Parallel and Distributed Systems, vol. 12, no. 6,

pp. 529-543, June 2001.

[6] Edi Shmueli, Dror G. Feitelson, “Backfilling with

lookahead to optimize the packing of parallel jobs,”

Elsevier ScienceDirect Journal of Parallel and

Distributed Computing. July 2005

[7] Y. Wiseman and D. Feitelson, “Paired Gang

Scheduling,”IEEE Trans. Parallel and Distributed

Systems,vol. 14, no. 6, pp. 581-592, June 2003.

[8] Y. Zhang, H. Franke, J. Moreira, and A.

Sivasubramaniam, “An Integrated Approach to Parallel

Scheduling Using Gang-Scheduling, Backfilling, and

Migration,” IEEE Trans. Parallel and Distributed

Systems,vol. 14, no. 3, pp. 236-247, Mar. 2003.

[9] Marco Xiaocheng Liu, Chen Wang, Bing Bing Zhou,

Junliang Chen, Ting Yang, and Albert Y. Zomaya,

Fellow, “Priority-Based Consolidation of Parallel

Workloads in the Cloud”, IEEE Transactions On Parallel

And Distributed Systems, Vol. 24, No. 9, September

2013.

[10] Rajkumar Buyya, Rajiv Ranjan and Rodrigo N.

Calheiros, “Modeling and Simulation of Scalable Cloud

ComputingEnvironments and the CloudSim Toolkit:

Challenges and Opportunities,” 2009.

IJCATM : www.ijcaonline.org

