
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

29

XML Parsing on Multicore Processors and Data

Representation in .NET Tree Control

Navreet Kaur
M-Tech. (CSE)
LLRIET, Moga

Harwinder Singh Sohal
Assistant Professor, IT Deptt

LLRIET, Moga

ABSTRACT

The purpose of this research is to optimize the parsing process

of the XML files. There are several ways to parse the XML

files. But to comply with the advanced multicore CPUs and

their fast performance the XML parsing logics need to be

refined and optimized with parallel processing approach. The

parallel XML parsing is a step towards this approach. It

makes the reading of XML data faster because parser runs on

more engines to extract the data. There are several advantages

of parallel XML parsing like fast execution, high throughput,

time saving, proper CPU utilization and load balancing. To

perform the parsing processes simultaneously, the XML files

need to be split in small uniform portions. Now it will execute

the parsing logic on multiple threads on each CPU’s core to

parse the each portion of XML file without interfering with

each others. In other words, an each segment will be an input

to the parser running on different threads on different CPU

cores. To enhance the system performance the multicore

processors based devices have been introduced. Such system’s

processing is much faster than conventional sequential

processing systems especially when it does repetitive

calculations on vast amounts of data. This technique becomes

more important when a candidate system or development

application is model based application which operates on the

XML files. This approach plays a significant role to enhance

the application’s capability to process large amount of data,

improve application performances by providing quick results

and eventually expeditious the application processing and

dependent operations.

Keywords
XML, Parsing, CPU

1. INTRODUCTION
XML stands for Extensible Markup Language. It is a markup

language which looks like HTML file. The difference

between XML and HTML is, it is designed to carry the data

and to transport the data to the client application whereas

HTML is used to display the data only. In XML the tags are

not predefined the user can define the tags according to the

requirement. In case of HTML the tags are predefined. The

XML is the technique which is used to create the common

information. Both XML and HTML contains markup symbols

to describe the contents of the web pages or files. It is very

popular now days and adopted by many developers and

companies to carry the computer product information and to

share the information in consistent way. The design goal of

XML is simplicity and usability over the Internet. The data in

XML is represented in the form of tree. XML is important and

common tool used now days for data transmission. In XML

the element tags are case sensitive and the tags cannot contain

any space characters and any other characters. The root

elements which are single contain the other elements. Parsing

means reading the XML document/file according to the

structure. An XML parser is the piece of software that reads

the XML files extracts the valuable data and transport that

information to the client application. It provides the methods

for client application to work with XML document/file. It may

have some validation rules to parse the document and

formatting checks. One XML parser may not work for other

XML files. It only operates on those types of files which

comply the parser rules and reading logic. There are three

kinds of parsers which are commonly used SAX, DOM and

the pull.

2. RELATED WORK
Le Liu et al. (2008) [11] presented PSJ an efficient Parallel

Structural Join algorithm for evaluating XPath. PSJ can skip

many ancestor or descendant elements by evenly and

efficiently partitioning the input element lists into some

buckets. PSJ obtains high performance by evaluating XPath

step in each bucket in parallel. It was very efficient to

partition the input lists and was effective to evaluate XPath

step in buckets and therefore PSJ achieves a high speed up

ratio. They implemented proposed algorithm and the

experimental results showed that PSJ algorithm achieved high

performance and outperforms the existing state-of-the-art

methods significantly.

Abdul Nizar M. and P. Sreenivasa Kumar(2009)[1]
described the processing of backward XPath axes against

XML streams was challenging for two reasons: (i) Data was

not cached for future access.(ii) Query contained steps

specifying navigation to the data that already passed by.

While there were some attempts to process parent and

ancestor axes, there were very few proposals to process

ordered backward axes namely, preceding and preceding-

sibling. For ordered backward axis processing the algorithm,

in addition to overcoming the limitations on data availability

had to take care of ordering constraints imposed by these

axes. In this paper, authors showed how backward ordered

axes can be effectively represented using forward constraints.

They discussed an algorithm for XML stream processing of

XPath expressions containing ordered backward axes. The

algorithm used a layered cache structure to systematically

accumulate query results. Their experiments showed that the

new algorithm gains remarkable speed up over the existing

algorithm without compromising on buffer space requirement.

Wei Lu and Dennis Gannon (2009) [12] introduced a

general purpose parallel XML processing model ParaXML

designed for multicore CPUs. The processing of the XML

documents however had been recognized as the performance

bottleneck in those systems as a result the demand for high-

performance XML processing grows rapidly. On the hardware

front the multicore processor is increasingly becoming

available on desktop-computing machines with quad core

shipping now and 16 core system within two or three years.

Unfortunately almost all of the present XML processing

http://searchsoa.techtarget.com/definition/markup
http://en.wikipedia.org/wiki/Internet
http://www.stylusstudio.com/xml/parser.html#sax
http://www.stylusstudio.com/xml/parser.html#dom
http://www.stylusstudio.com/xml/parser.html#pull

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

30

algorithms are still using serial processing model thus being

unable to take advantage of the multicore resource. They

believed that a parallel XML processing model should be a

cost-effective solution for the XML performance issue in the

multicore era.

Zacharia Fadika et al. (2009) [24] adapted the Hadoop

implementation to determine the threshold data sizes and

computation work required per node for a distributed solution

to be effective. They also presented an analysis of parallelism

using PIXIMAL toolkit for processing large-scale XML

datasets that utilizes the capabilities for parallelism that were

available in the emerging multi-core architectures. Multi-core

processors are expected to be widely available in research

clusters and scientific desktops and it is critical to harness the

opportunities for parallelism in the middleware instead of

passing on the task to application programmers.

Martin Krulis and Jakub Yaghob (2010) [14] stated

Current XPath processors use direct approach to query

evaluation which was quite inefficient in some cases and

usually implemented serially. This may be a problem in case

of processing complex queries on large documents. They

proposed algorithms and XML indexing techniques which

were more efficient and which can utilize standard parallel

templates. Their implementation was highly scalable and

outperforms common XML libraries.

Rongxin Chen and Weibin Chen (2010) [14] introduced that

various XML query applications had come to the fore recently

performance optimization becomes the research hotspot. With

the popularity of multi-core computing condition

parallelization appears as an important optimization measure.

This paper presented a parallel solution to XML query

application through the combination of parallel XML parsing

and parallel XML query. The XML parsing is based on

arbitrary XML data partition and parallel sub-tree

construction with the final merging procedure. After XML

parsing the region encodings of XML data were obtained for

relation matrix construction in that the XPath evaluation in

query procedure was based on relation matrix. The matrix

construction procedure and query primitives are parallelized

to boost performance. As a whole their solution makes use of

multi-core environment through parallelization of key

execution stages in query process.

Adriana Georgieva and Bozhidar Georgiev (2012) [6]

introduced some development problems and solutions

concerning the parallel implementation of an algebraic

method for XML data processing. They proposed parallel

algorithm which first partitions the XML document into

chunks and then apply the parallel model to process each

chunk of XML tree. The authors suggested a different point of

view about XML parsers with the creation of advanced

algebraic processor (including all necessary software tools,

search techniques and programming modules). The

possibilities of this linear algebraic model combined with

principles of parallel programming allow efficient solutions

for parsing, search and manipulation over semi-structured data

with hierarchical structures.

V.M. Deshmukh1 and G.R. Bamnote (2012) [22] proposed

that extensible markup language XML had become the de

facto standard for information representation and interchange

on the Internet. As XML becomes widespread it is critical for

application developers to understand the operational and

performance characteristics of XML processing. The

processing of XML documents had been regarded as the

performance bottleneck in most systems and applications.

XML parsing is a core operation performed on an XML

document for it to be accessed and manipulated. XML

processing occurs in four stages: parsing access modification

and serialization. Parsing was an expensive operation that can

degrade XML processing performance.

Peter Ogden et al.(2013)[16] proposed in online social

networking network monitoring and financial applications

there was need to query high rate streams of XML data but

methods for executing individual Xpath queries on streaming.

XML data had not kept pace with multicore CPUs. For data-

parallel processing, a single XML stream is typically split into

well-formed fragments which were then processed

independently. Such an approach however introduced a

sequential bottleneck and suffers from low cache locality

limiting its scalability across CPU cores. They described a

data-parallel approach for the processing of streaming XPath

queries based on pushdown transducers.

3. PROBLEM FORMULATION
In Generic methodologies of XML parsing the whole XML is

read at once. Then the top root tag of the XML is looked,

parse the attribute and element values for tags available

underneath of root tag. This technique is quite expensive

when there is large and huge number of XML files to parse

and process. There are researches going on to speed-up the

XML parsing by using the fixed number of threads to parse

the different stages of the XML. In that approach XML

parsing could be divided into a number of stages. Each stage

would be executed by a different thread. This approach may

provide speedup, but software pipelining is often hard to

implement well, due to synchronization, load-balance and

memory access costs. More promising is a data-parallel

approach. Here, the XML document would be divided into

some number of chunks and each thread would work on the

chunks independently. As the chunks are parsed, the results

are merged. This approach has also many limitations; as if the

XML is too big then the chunk count will be very big. So

there is a need to create so many threads for those. Overall it

will slow down the system performance. Also if the thread

count will be fixed then CPU may not be used properly. So

here to overcome the above problems, the proposed idea is to

create the threads based upon the CPU’s cores. The numbers

for threads creation per CPU core are set and multiply it with

the number of cores to run the threads parallel.

Example let’s say there are 4 threads run in parallel then:

1. In case of single core, it may reduce the performance.

2. In case of multi-core, CPU may not be utilized

properly.

So here to overcome the above problems, the proposed idea is

to create the threads based upon the CPU’s cores. The

numbers for threads creation per CPU core are set and

multiply it with the number of cores to run the threads

parallel.

4. OBJECTIVES
XML Parallel parsing based upon multicore is the very

efficient technique. It will also increase the performance of

the system while XML parsing. The objectives of this

technique are following:

1. Utilizing multicore rather than single core.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

31

2. Multithreading on core capability to enhance

computation process.

3. Load balancing using segmented parse set.
4. To speed up the data read operation.

5. METHODOLOGY
In order to speed up the XML parsing process and to utilize

the CPU properly the number of threads per CPU core is to be

set as two. By creating two threads it will not slowdown the

CPU performance and reduces the XML parsing time. In this

process there are take five phase to execute the whole process.

These phases are Block identification, Build job Queue/Pool,

Thread Manager, XML Parsing and Data Representation.

Thread Manager will allocate each thread to each manager to

speed up the process. Different phase have different working.

This process improves the speed of the XML parsing and

improves the throughput and also improves the XML search

At last the XML data has been represented which is to be

parsed into the tree representation form. The five different

phase of the process are:

5.1 Parsing Process Description
1. Block Identification: In this module the XML file is first

loaded and identify the segments at second level of data. As

shown in the below example segments will be identified as

N1, N2…Nn.

<Message>

<Note name =“N1”>

 <heading>Reminder</heading>

 <body>Don't forget me this

weekend! </body>

 </Note>

<Note name =“N2”>

 <heading>Reminder</heading>

 <body>Don't forget me this

weekend!</body>

 </Note>

<Note name =“Nn”>

 <heading>Reminder</heading>

 <body>Don't forget me this

weekend!</body>

</Note>

</Message>

2. Build Job Queue/pool: In this module all possible

segments found at second level are read that will act as small

XML. Here LINQ queries are used provided by .Net

frameworks to separate the parallel XML element segments.

Each segment will be queued in a list which will read by first

to last index for parsing.

3. Thread Manager: In this section the CPU type will be

identified and set the thread count. The count of CPU cores

will be checked and multiply with 2 and set the max threads

count for parsing. It will also traverse the job queue and

execute thread for every element for parsing. For this “Parallel

foreach” looping method is recommended to effectively use

the system CPU cores.

4. XML Parser: It will take the input as XML segment and

parse the data. In this section the query approaches will be

followed which is the fastest way to read the XML data. XML

parser reads the whole data.

XDocument xdoc = XDocument.Load("Seg1"));

var lv1s = from lv1 in xdoc.Descendants("Note")

 select lv1.Attribute("heading").Value;

It will fill the appropriate data structure and store the objects

as values and the Names as keys in a MAP. It will help in

easy data retrieval from the parsed data. In the query phase

use the LINQ query is used for faster execution.

5. Data Representation: After completing the parsing

processes, this module will read the map/data dictionary filled

by XML parser and display the XML contents visually in .Net

tree control to in proper hierarchy and readable form for better

understanding. In the data representation phase the data would

be represented in the tree form so that it should be clearly

understandable by the user. In the data representation phase

the whole segmented data is merged into one place.

5.2 Block Diagram

Figure 1: Block diagram showing parsed data of every section

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

32

5.3 Flow Chart of the Parsing Process

Figure 2: Flow Chart of the Parsing Process

6. RESULT
As evidence, the proposed idea has been in a tool. It has been

tested on different system configurations. It is giving and

results as expected and showing adequate saving too. It is

properly balancing the load and parsing the data on

simultaneously on multi cores. So that, on different runs it

will have different time consumption. Underlying results from

XML parsing on multicore using multiple threads practices

illustrates the behavior of parallel parsing technique. It

improves the execution time by running the certain number of

multiple threads on each core. There are few examples given

below as evidence.

6.1 XML parallel parsing with different

threads on 2 cores CPU

I. XML parallel parsing with 2 threads on 2 cores CPU:

XML parsing is done at this level by selecting 2 threads

on 2 cores CPU. The total number of threads on 2 cores

processor will be run 4 at this level. The total time it will

take to parse the data is 109.2002 milliseconds.

II. XML parallel parsing with 3 threads on 2 cores CPU:

XML parsing is done at this level by selecting three

threads at 2 cores CPU. On each core three threads will

be run. The total number of 6 threads will be run on the 2

cores processor to parse the XML document. Total time

taken by parser to parse the data is 78.001 milliseconds.

III. XML parallel parsing with 4 threads on 2 cores CPU:

XML parsing is done at this level on 2 cores CPU with 4

threads that run parallel on each cores CPU. The total

number of 8 threads will be run on 2 cores processor to

parse the selected XML document. Four threads will be

run on each core to parse the XML document. Total time

taken by parser to parse the data is 156.003 milliseconds.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

33

Figure 3: Execution time taken by different threads at 2 cores CPU

6.2 XML parallel parsing with different

threads on 4 cores CPU
I. XML parallel parsing with 2 threads on 4 cores CPU:

XML parsing is done at this level by selecting 2 threads

on 4 cores CPU.The total number of eight threads will

run on 4 cores. It will take less time to parse the whole

document as compared to the single processor and

multiple processors. Total time taken by parser to parse

the data is 94.0054 milliseconds.

II. XML parallel parsing with 3 threads on 4 cores CPU:

XML parsing is done at this level by selecting 3 threads

on each 4 cores CPU. As the four threads will run on each

core, the total number of threads will be run 12 to parse

the whole document. It will take less time to parse the

whole document as compared to parsing with parallel

processing with 2 threads on each core. It makes the

execution faster and utilizes the CPU processor more

efficiently. Total time taken by parser to parse the data is

72.011 milliseconds.

III. XML parallel parsing with 4 threads on 4 cores CPU:

XML parsing is done at this level by selecting 4 threads

on each 4 cores CPU. The four threads will run on each

core, the total number of threads will be run 16 to parse

the whole document. It will take less time to parse the

whole document as compared to parsing with parallel

processing with 2 threads on each core. It makes the

execution faster and utilizes the CPU processor more

efficiently. Total time taken by parser to parse the data is

55.003 milliseconds.

Figure 4: Execution time taken by different threads at 4 cores CPU

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

34

Figure 5: Comparison between 2 cores and 4 cores CPU

Table1: Execution Time of different cores

7. CONCLUSION & FUTURE WORK

7.1 Conclusion
By doing all these exercises and data analysis it can be said

that it is very much important to tune up the XML parsing

algorithms where the systems are dependent upon the XML

based data. XML data is sequential in nature, so data reading

is time consuming task if user has to extract the data from

each segment one by one in single flow to improve the

performance of the systems which use the XMLs a lot and

expect the desired data at the earliest. In such systems, if user

can save even a microsecond matters a lot. It becomes more

important when system needs to perform XML based

operations when frequent updates are there or the support files

are referred in the XML file’s contents. In such scenarios, if

system uses the multiple threads on multi-cores for parallel

parsing of XML components then it will utilize the system

resources properly and desired results and further operations

will be faster. In addition, the use of LINQ queries is

beneficial to collect the parallel XML segments and for quick

element data reading which is very much optimized on .Net

Frameworks.

7.2 Future work
Present work can be improved further for extracting of XML

files. The research in XML parsing has accumulated many

advantages. In general there are three types of parsing

techniques are sequential parsing, pipelining and the parallel

parsing technique. As there is scope of improvement in

different parsing techniques. The present work discussed

about the data extraction of XML files and their segments on

multi-core CPUs simultaneously. As the part future work, it

can be enhanced for searching the contents in the XML files.

It has been observed that it is very much time consuming if

user search the contents in set of XML files by one by one. To

precede this approach further, there is a need to run the

individual/multiple threads for searching the contents logic on

multi-core CPU. It will be very quicker than normal

sequential approach.

8. REFERENCES
[1] Abdul Nizar M. and P. Sreenivasa Kumar (2009)

“Ordered Backward XPath Axis Processing against

XML Streams” XSym '09 Proceedings of the 6th

No. of

cores

No. of

threads

Execution Time (in milliseconds)

2 2 109.2002

3 78.001

4 156.003

4 2 94.0054

3 72.011

4 55.003

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.18, August 2014

35

International XML Database Symposium on Database

and XML Technologies Pages 1 - 16.

[2] Barbosa D(2002) ToXgene: a template-based data

generator for XML, In : Proceedings of ACM

Management of Data (SIGMOD), pp. 616.

[3] Fernando F et.al (2009) 2LP Double-lazy XML Parser in

Journal of Information Systems, pp. 145-163.

[4] Gao Z. (2007) A High Performance Schema-Specific

XML Parser, IEEE Intl. Conf. on e-Science and Grid

Computing, pp. 245-252.

[5] Gong Li (2010) XML Processing by Tree-Branch

symbiosis algorithm, 2nd International Conference on

Future Computer and Communication, Volume1.

[6] Georgieva A and Georgiev B (2012) Parallel Processing

Model for XML Parsing in Journal of Communication

and Computer, 1258-1262.

[7] G.R.Bamnote(2013) An Empirical Study: XML Parsing

using Various Data Structures, International Journal of

Computer Science and Applications, Vol. 6, No.2.

[8] James R. Otto et.al (2001) Extensible Markup Language

and Knowledge Management in Journal of Knowledge

Management, 5(3), pp. 278-284, MCB University Press.

[9] Jie Tang et.al(2013) Acceleration of XML Parsing

through Prefetching, IEEE TRANSACTIONS ON

COMPUTERS, VOL. 62, NO. 8.

[10] Kwon, J et.al (2005) FiST: the scalable XML document

_ltering by sequencing twig patterns, In: Proceedings of

the 31st international conference on Very Large

Databases (VLDB), pp. 217 – 228

[11] Le Liu et al. (2008) “Parallel Structural Join Algorithm

on Shared-memory Multi-core Systems”.

[12] Li Lu W. and Gannon, D. (2008) ParaXML: A Parallel

XML Processing Model on Multicore CPU, Techincal

Report.

[13] Li Xiaosong (2009) Key Elements Tracing Method for

Parallel XML Parsing in Multi-coreSystem, in

International Conference on Parallel and Distributed

Computing, ApplicationsandTechnologies, IEEE.

[14] Martin Krulis and Jakub Yaghob(2010) “Efficient

Implementation of XPath Processor on Multi-Core

CPUs” J. Pokorn_y, V. Sn_a_sel, K. Richta (Eds.):

Dateso 2010, pp. 60{71, ISBN 978-80-7378-116-3.

[15] Nicola M. and J. John(2003) XML Parsing: A Threat to

Database Performance, Proc. 12th Int’l Conf.

Information and Knowledge Management (CIKM 03),

ACM Press, pp.175-178.

[16] Peter Ogden et al.(2013) “Scalable XML Query

Processing using Parallel Pushdown Transducers”

Proceedings of the VLDB Endowment, Vol. 6, No. 14.

[17] Rongxin c. et.al (2002) A Parallel Solution to XML

Query Application in Computer Engineering College,

Jimei University.

[18] S. Chen et al. (2006) Twig2Stack: Bottom-up processing

of generalized-tree-pattern queries over XML documents

In VLDB, pages 283–294.

[19] Su Cheng Haw and G. S. V. Radha Krishna Rao(2007)

A Comparative Study and Benchmarking on XML

Parsers, Advanced Communication Technology, The 9th

International Conference (Volume:1) ISSN :1738-9445 ,

pp. 321 – 32.

[20] Seung Min Kim and Suk Yoo(2009) DOM Tree

Browsing of a Very Large XML Document: Design and

Implementation in Journal of Systems and Software,

82(11), pp. 1843-1858.

[21] Tong T. et al.(2006) Rules about XML in XML, Expert

Systems with Applications, Vol. 30, No.2, pp. 397-411.

[22] V.M. Deshmukh and G.R. Bamnote(2012) Design And

Development Of An Efficient XML Parsing Algorithm,

International Journal of Applied Science and Advance

Technology , Vol. 1, No. 1, pp. 5-8.

[23] Y. Pan et al.(2007) Parallel XML Parsing Using Meta-

DFAs,Proc. 3rd IEEE Int’l Conf. e-Science and Grid

Computing (e-Science 07), IEEE CS Press, pp. 237-244.

[24] Zacharia Fadika (2009) Parallel and Distributed

Approach for Processing Large-Scale XML Datasets in

Computer Science Department, Binghamton University

P.O. Box 6000, Binghamton, NY 13902-6000, USA

IJCATM : www.ijcaonline.org

