
International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.17, August 2014

51

An Assessment of Hybrid LRU (H-LRU) with Existing

Page Replacement Algorithms

ABSTRACT
The goal of any page replacement algorithm is to reduce fault

rate by selecting best victim page to remove. This paper

presents a framework through which, we tried to compare our

previous work i.e. H-LRU [1] with other existing algorithms

and prove that it has a better performance in average than

former methods. Our major attempt in this paper is to extend

our previous work HLRU and to compare characteristics of

some former methods with HLRU. The general idea behind

the comparison is to evaluate the hit ratio of pages for

different algorithms and to prove that it has the best

performance among all .For this purpose we consider

traditional algorithm like FIFO, LRU and some recent

approaches like PRO-LRU, H-LRU.

Keywords
Page Replacement, LRU, FCFS, PRO-LRU, H-LRU,

1. INTRODUCTION
Managing the memory in a computer system entails two or

more levels of memory to be organized. Among these levels,

one with shortest access time is selected as the first level, also

called as primary memory. A major method for organizing

the memory space and allocating the limited space between

the applications to be accomplished was the memory

segmentation. But, because of the phenomenon of external

fragmentation capitulated to evidently wasting the memory

space, this method was swapped with the paging method.

Also, the latent memory wasting was the reason for the paging

method to be inefficient. So a method based on a grouping of

these two models was introduced to settle their problems. In a

paging basis, the obtainable memory space is divided into

blocks called as page frames. Each application asking the

memory is subdivided into some pages and will be given a

number of page frames to enclose some of these pages. This

number is resolved by the operating system and can be

different for applications. Until the memory encloses at least

one empty page frame, assigning the frames for the
applications and loading the pages into them is simple,

relatively. But, the main problem in organizing the frames

will be evolved when all available frames have been assigned

to the applications and there are no empty frames. The

solution for this, will be ejecting one or more pages from the

memory and free some frames to be assigned for new pages. It

is important to decide which page(s) must be ejected. Evicting

a page can influence the system performance that may be

required in close future because it inflicts a reloading time

overhead.

Page replacement is one of the most valuable methods of

keeping page faults. This process basically happens when

there is no gratis page in the physical memory. The

superiority of page replacement algorithms have a

significant affect on the working of the process of replacing

pages. Like all other aspects of computer science, the concept

of page replacement algorithms also underwent evolution and

development. It was particularlly in the span of 1960s and

1970s that this concept receive the maximum attention.

A page replacement algorithm can be local or global. When

the process calls upon a page fault, the local algorithm

chooses a replacement page that belongs to the same

processor, a set of processes sharing a memory partition.

Whereas a global algorithm can select a replacement page

from anywhere in the system memory. Pre-cleaning is an

important part of page replacement algorithms and have to be

achieved in case the selected page is dirty (or, written upon).

2. REPLACEMENT ALGORITHMS
There are many different types of replacement algorithms.

Some of which are described below:

2.1 First-in-first-out (FIFO)
The simplest page-replacement algorithm is a FIFO algorithm

(first in first out). The first-in, first-out (FIFO) [5] page

replacement algorithm is a less-overhead algorithm that

entails little book-keeping on the part of the operating system.

The idea is obvious from the name - the operating system

keeps track of each page in memory in a queue, with the latest

arrival at the back, and the earliest arrival in front. The

operating system sustains a list of all pages presently in

memory, with that page which is at the head of the list the

oldest one and the page at the tail the most topical arrival.

When a page needs to be swapped, the page at the front of the

queue (the oldest page) is considered. While FIFO is cheap

and instinctive, it results poorly in practical application.

This algorithm suffers from some drawbacks. As the first, if a

page is used frequently in multiple time periods, it will be

acknowledged as the last or oldest page, ultimately and may

be picked to be moved out from the memory, while there is a

believable probability for vital need to it. In such these cases,

the selection will be incompetent; since the swapped page

must be reloaded into memory almost immediately [8].

Another disadvantage for this algorithm narrates to this fact

that improving the memory frames designated for a process

can capitulate to a lower page fault rate.

Sanjay Kumar
Assistant Professor

Uttarakhand Technical university
Dehradun, India

Nidhi Rawat
M.Tech CSE

Uttarakhand Technical university
Dehradun, India

Pooja Khulbe
M.Tech CSE

Uttarakhand Technical university
Dehradun, India

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.17, August 2014

52

2.2 Least Recently Used (LRU)
The LRU policy is based on the principle of locality which

states that program and data references within a process tend

to cluster. The LRU page replacement policy chooses that

page for replacement which has not been used for the longest

time. For a long time, LRU was deliberated to be the most

optimum online policy.

LRU while being operative, is again, not without problems.

The first drawback among them is the fact that it is very costly

to implement it. In fact, the most costly method in linked with

LRU, which facilitates in attaining what it is meant to. This

can be a factor for not choosing this algorithm. The second

problem with this approach is the difficulty in

implementation. LRU policy does nearly as well as an optimal

policy, but it is intricate to implement and imposes significant

overhead.

The LRU is based on the observation that pages that have

been used a lot in the last few instructions will probably be

utilized a lot again in the next few. Contrarily, pages that have

not been utilized for ages will probably remain unused for

longest period of time. This idea suggests a realizable

algorithm: when a page fault takes place, evict the page that

has been unused for the longest period of time.

There are a few implementation methods for this algorithm

that attempt to diminish the cost yet keep as much of the

performance as possible. The most costly method is the linked

list method, which utilizes a linked list enclosing all the pages

in memory. At the front is the most recently used page and at

the back of this list is the least recently used page, which is a

very time-consuming process. LRU's weakness is that its

performance tends to degenerate under many quite common

reference patterns. On the other hand one important advantage

of the LRU algorithm is that it is agreeable to full statistical

analysis.

2.3 Pro- LRU
In this section, a LRU based algorithm is introduced, and is

referred to as PRO_LRU [2]. The first and most important

note about this algorithm is using an extra feature TNR (Total

no. of references), which is to count total number of

references and for selecting the outgoing pages, together with

this feature, an extra feature is also used by LRU which is

referred as STR (spent time since last reference).

 Whenever

any page fault takes place, the first parameter, TNR, will be

investigated for all pages. If there is onlya single page with

minimum TNR value, this page will be evicted from memory.

Or else, if the minimum TNR value is divided between no. of

pages, the second parameter came on existence. In the other

word, a page with most STR values with minimum TNR

value will be selected for eviction.

2.4 Hybrid LRU:

Hybrid LRU also referred as HLRU is also an extension of

LRU. It also uses the extra feature TNR (total number of

references) for each encountered page and as a modification

it uses the concept of modified reference, i.e. when a page is

modified, a modified reference, M=1 will always be set for

that page. when a page fault occurs, it examines the first

parameter, TNR for each page. If only one page is found, it

immediately replace it. Else if there is more than one page is

available with minimum TNR, it checks modified reference

for those pages and replaces the page which is recently

modified i.e. M=1.

Each time when a modified page is re-modified all modified

references for each page will be set to 0 by default.

3. PERFORMANCE ANALYSIS
To evaluate page replacement algorithms experimentally, our

previous algorithm i.e. H-LRU [1] has been implemented in C

for 25 random strings of length 20 for 2, 3 , 4 and 5 frames

correspondingly and then same strings has been evaluated for

other policies like FIFO, LRU and finally PRO-LRU for 2 , 3,

4 and 5 frames.

The obtained page fault rate depends on the replacement

algorithm, frame size and the locality of reference for cache

requests. Using total count of page faults and hits for each

algorithm, hit ratio has been calculated in average for 25

random strings and listed in table 1.

Table1. Comparison of hit ratio for various algorithm

Hit ratio can be calculated using the formula as follows-

For example suppose the total no. of hits for an algorithm is 7

and the total no. of references are 20 then total Hit Ratio will

be:

Hit Ratio = 7/20 = 0.35

(In percentage) = 35 %

 Frame

Size

FIFO

 (25

strings)

LRU

 (25

strings)

 Pro-

LRU

 (25

strings)

 H-

LRU

 (25

strings)

 2

Frame

 40.93 41.82 41.33 40.24

 3

Frame

 49.26 48.86 50.05 49.65

 4

Frame

 57.48 56.69 58.67 59.27

 5

Frame

 62.14 64.62 66.5 66.2

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.17, August 2014

53

The bar graph representing the comparison of various

algorithms has been presented in chart1.

Chart1. Bar graph for hit ratio of various algorithms

4. RESULTS
Diagram 1.1 represents the screen shot of H-LRU for a string

of length 20 for 2 frames, While implementing H-LRU in C.

Figure1.1: Screenshot of h lru for 2 frames

5. CONCLUSION
In this paper we have discussed various famous page

replacement policies like FIFO, LRU, PRO-LRU and H-LRU,

then implemented and compared them to evaluate their

efficiency and it is clear that HLRU has a best performance

among all in average. It makes easier to choose a specific

policy for a specific set of memory reference. It also explains

the variant characteristics of different algorithms, which helps

us to characterize their behavior and development of new

page replacement techniques in future development.

6. REFERENCES

[1] Pooja khulbe, Shruti pant, “HYBRID LRU Page

Replacement Algorithm” , International Journal of

Computer Applications (0975 – 8887) Volume 91 –

No.16, April 2014

[2] Ali Khosrozadeh, Sanaz Pashmforoush, Abolfazl

Akbari,Maryam Bagheri, Neda Beikmahdavi.,

“Presenting a Novel Page Replacement Algorithm Based

on LRU” , Journal of Basic and Applied Scientific

Research , 2(10)10377-10383, 2012.

[3] Kaveh Samiee, ”WRP: Weighting Replacement Policy to

Improve Cache Performance”, International Journal of

Hybrid Information Technology,Vol.2,No.2, April, 2009.

[4] O’Neil, J. E., O’Neil, E. P., Weikum, G., "An Optimality

Proof of the LRU-K Page Replacement Algorithm",

Journal of the ACM, Vol. 46, No. 1, pp. 92- 112, January

1999.

[5] Amit S. Chavan, Kartik R. Nayak, Keval D. Vora, Manish

D. Purohit and Pramila M. Chawan, “A Comparison of

Page Replacement Algorithms” , IACSIT International

Journal of Engineering and Technology, Vol.3, No.2,

April 2011

0

10

20

30

40

50

60

70

2
Frames

3
Frames

4
Frames

 5
Frames

Chart Title

FIFO

LRU

Pro- LRU

H-LRU

