
International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

29

Development of Beowulf Cluster to Perform Large

Datasets Simulations in Educational Institutions

Mkhuseli Ngxande

Computer Science Department
Fort Hare University, South Africa

Nyalleng Moorosi
Computer Science Department

Fort Hare University, South Africa

ABSTRACT

This paper presents the design and development of the

Beowulf cluster that can be used by institutions to perform

research that requires high performance computing. In many

industries and scientific applications there is often a need to

analyse large datasets using computational power of

distributed and parallel systems. The High Performance

Computing (HPC) components are very expensive but with

the use of commercial-off-the-shelf (COTS) hardware

components, the costs can be lowered down. COTS provide

inexpensive computing alternative to educational institutions

to perform their research that need high performance

computers. In High Performance Computing jobs are divided

into several small jobs that can be distributed in to all the

nodes and they run concurrently on the system, this is made

possible by the use of parallel computing. This paper will

address the advantage that the Beowulf clusters have in the

high performance computing field as well as how it can be

implemented using COTS. The most important part of this

paper is to investigate the factors that affect the cluster.

General Terms

High performance computing system.

Keywords

High Performance Computing, Beowulf Clusters, Large data

sets, Parallel Computing.

1. INTRODUCTION
 High performance computing can be defined as a computing

environment which applies supercomputers and computer

clusters to address complex computational requirements [1].

HPC was introduced in the early 1960’s by Seymour Cray at

Control Data Corporation (CDC) [2]. Since then the field has

expanded rapidly. Unfortunately, while the need for this

specialized equipment increased with exponential growth of

data, the equipment has largely remained very expensive.

Clusters technologies are easier to understand and administer

and they offer unrivalled availability and are largely

expandable to unlimited number. Handling large datasets can

be a huge problem for most institutions and industries because

of high computational and storage requirements, which

creates the need for specialized computers to perform the

analyses.

 These specialized computers can be used in many fields such

as Bioinformatics, Computational Electromagnetics and

Network Simulations. Almost every company or institution

that deals with large data needs fast processing power and lot

of storage. With the increasing availability of inexpensive and

faster computers, more users are interested in gaining the

technological benefits. There is no upper boundary to the

needs of computer processing power; even with the rapid

increase in power, the demand is considerably more than what

is available.

2. PARALLEL COMPUTING
Parallel computing is a way of dividing a large job into

several tasks and using more than one processor

simultaneously to perform these jobs [3]. Computer scientists

have noticed the importance of parallel computing this

technology has been used because it has the following

advantages:

 Solve larger problems;

 Faster turn-around time;

 Overcome limits to serial computing;

 Cheap components to achieve high performance.

The field of HPC has grown rapidly but it has however been

not accessible to under-resourced entities due to the high cost.

This has led to the introduction different architectures such as

symmetric multiprocessors, vector processors and cluster

computing. These architectures each have advantages but the

one that will be discussed in this paper is cluster computing

architecture.

The cluster computing architecture is a concept where a set of

loosely connected computers work together so they can be

logically viewed as one computer. It is technique came up on

distributed systems which are computers connected together

which share computing tasks assigned to the system [4].

These connected computers communicate using the network

to pass massages between them. Clusters consist of

computers, and switches which are used for the

communication. There are two types of cluster nodes: master

node and computing nodes which are connected over the

network.

This paper proposes the use of Beowulf cluster in the

educational institution to carry out high performance

computing research. This type of cluster is chosen because it

has a low cost and produces high performance commuting.

This technique firstly appeared in 1994 and it was introduced

by Thomas Sterling and Donald Becker at The Centre of

Excellence in Space Data and Information Sciences (CESDIS)

when they were commissioned to investigate whether

clustered computers could perform heavy computational tasks

at a greater capability than contemporary workstations [5].

Figure 1 shows the high level of Beowulf architecture where

there is a master node which is connected to a public network

and also a private network which contains compute nodes.

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

30

Figure 1: High Level Beowulf Architecture [6].

The compute nodes are connected to a switch so as to

communicate with each other and also for a master node to

distribute jobs to compute nodes. There are many benefits in

using this type of cluster which are as follows:

 Cost-effective: The cluster can be built form

inexpensive commodity components that are widely

available;

 Keeps pace with technologies: It is easy to employ

the latest technologies to maintain the cluster;

 Scalability: it is easy to expand the cluster;

 Flexible configuration: the users can tailor a

configuration that is suitable to them and allocate

the budget that meets the performance requirements

of the analyses.

There are a number of types of cluster such as:

 Fail-over clusters: This type of cluster consists of a

group of independent computers which are

connected via a local network and are linked

together by cluster software. They operate by

moving resources between the nodes to provide

service if system components fails [7].

 Load-balancing clusters: This type of cluster is

usually used in web sites which have a high traffic,

whereby several nodes host the same site. Then a

request for a web page it is dynamically routed to

nodes that have a lower load. This is a critical issue

that is faced in parallel computing to ensure fast

processing and efficient utilization [8].

 High performance clusters: This type of cluster is

used to run parallel programs for time intensive

computations and it uses computer clusters to

address complex computational rudiments.

3. RELATED WORK
There is much work that has been done in past decades to

develop high performance clusters that at a low cost and get a

high performance.

Fan et al. proposed to use a cluster of Graphics Processing

Unit (GPU) for high performance computing where they

developed a parallel flow simulation using the Lattice

Boltzmann model (LBM) [9]. The Lattice Boltzmann model

(LBM) was developed on a GPU cluster and have simulated

the dispersion of airborne contaminants in the Times Square

area in New York City [9]. The GPU cluster was developed

for two purposes: first one was a GPU cluster for graphics and

computation, and secondly one for visualization for

interpretation large capacity data sets [9].

Hu and Evans developed a Power and Environment

Awareness Module (PEAM) for Beowulf clusters [10]. The

development of the PEAM addresses the issues that the

Beowulf clusters encounter such as heat-inducted hardware

failure which makes large scale commodity clusters fail

frequently and the cost effectiveness of Beowulf clusters is

challenged by lack of means of adapting its power state

according to varying work load [10]. The PEAM module was

developed on a Beowulf cluster at Purdue University, which

aimed at reducing the operational cost and increase the

reliability of the cluster by reducing heat generation and

optimizing workload distribution in an environment aware

manner [10].

Hsu and Feng conducted a feasibility analysis of power

awareness in commodity based high performance clusters

[11]. Hsu and Feng study revolves around a 16 processors

Opteron-based Beowulf cluster. The Beowulf cluster was

configured as four nodes of quad processors. The study

showed that a 5 % performance slowdown can be traded off

for average of 19% system energy which is saving and 24%

system power reduction [11]. Hsu and Feng further stated that

power efficiency is the most critical part for developing cost-

effective, small-footprint clusters [11]. Hsu and Feng

performed various tests such as benchmark tests of different

software’s to compare power consumption between them. The

HPL and NAS MPI benchmarks were compared so as to see

which can save power.

Al-shaikh et al. proposed to build High-Availability (HA)

clusters based model for high performance computing [12].

Al-shaikh et al. also proposed to investigate the hardware and

management layers of the HA-HPC cluster design together

with the parallel applications layer [12]. Al-shaikh et al. stated

that one of the challenges in a clustered environment is to

keep system failure to minimum levels and achieve the

highest possible level of system availability [12]. Al-shaikh et

al. analyzed small scale HA-HPC functionality and

performance, for the evaluation and eight- nodes cluster were

used.

4. IMPLEMENTATION
The Beowulf implementation that is proposed was built in a

computer with the following specifications: Pentium (R)

Dual-core E5200 @ 2.50 GHz, 2.50 GHz processor, 2

Gigabytes of RAM and 250 Gigabytes of hard drive. The

connection medium was a Cisco system catalyst 2960 series

switch. The cluster runs on Linux Ubuntu 13.10 for master

node and a mini version of Linux Ubuntu 13.10 for the

compute nodes. The cluster consists of one master node and

five compute nodes.

There are standard software that must be installed for a cluster

to work properly, these software are Massage Passing

Interface (MPI) which is used for distribution of the jobs, the

Network File System (NFS) which is for sharing files

remotely and the Secure Shell (SSH) which is responsible for

remote login to the compute nodes. These are most important

software in the cluster to be complete and work properly.

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

31

4.1 Message-passing Libraries
This is a standardized system which is portable message-

passing system that is used in clusters, parallel computers and

also in heterogeneous networks [13]. It is not a programming

language but it is used to define the syntax of the core library

for the use of portable message-passing languages such as

C++, C and FORTRAN. These message-passing libraries are

needed when one needs to perform intensive calculations, it is

use to divide and distribute independent jobs to different

computers. For this project MPICH2 was used. Message-

passing interface because it is the most used library for

numerical analysis. The goal of massage passing interface is

to provide a widely used standard for writing massage passing

programs, also the interface attempts to more portable,

efficient, flexible and practical. The MPI is the only message

passing library that is considered a standard because it is

supported on virtually all high performance computing

platforms.

The MPICH2 is built so that a number of communication

infrastructures can be used, these are called devices which are

most relevant for the Beowulf environment [6]. MPICH2 is

freely available online software that is portable

implementation of MPI. It is a standard for message passing

for distributed memory applications that are used in parallel

computing. The runtime for MPICH2 consist of asset of

daemons such as mpd and hydra process managers. The

MPICH2 will be installed on all the nodes. The MPICH2

needs to be installed in the shared file which will have the

entire executable that is needed to rum MPI programs. The

following steps are taken in installing MPICH2-1.4 version.

After the software version was downloaded, the tar file was

extracted and copied to the shared directory.

4.2 Network File System (NFS) and Secure

Shell (SSH)
The files and programs used for MPI jobs need to be available

to all the nodes in the cluster. These files will be accessed on

the master node by the compute nodes. The NFS enables the

mounting of the files remotely so they can be accessed as if

they are in a local directory. The node where the files will be

saved acts as a NFS server and the NFS kernel-server portmap

is installed. For the other nodes that will access the file

remotely, NFS kernel-common portmap must installed on the

clients.

On the master node, the directories that will be shared needs

to be created and its owner change, so it can be accessed by

compute nodes. Once the directory is created it needs to be

exported to other nodes, the export file is edited with the

details of all the compute nodes. In this file the nodes that will

share this directory are listed and the permission on how to

use it. Once the conditions are stated the NFS server must be

restarted so as to update the server. On the compute nodes the

same directory is created and it is mounted with the master IP

address and the directory that will be shared. To prevent the

mounting of the directory every time the compute nodes are

booted, the fstab file is edited by adding the IP address of the

node that contains the directory and also the name of the

directory. When this is done the directory can be mounted

successfully.

For the cluster to work, the master node needs to

communicate with compute nodes and vice versa. This

communication is made possible by installing SSH server at

all nodes. Once the SSH is installed in all the nodes, the SSH

must be tested by logging into another node, this will create a

file in the SSH directory which is called unknown_hosts.

The next step is to login to the user that was created and

generate the keys that will be distributed to all the nodes. This

is done by “ssh-keygen” command and, which creates two

files and the id_dsa.pub file is transferred to other nodes.

Once the transfer is done the contents of that file is copied to

another file which is called authorized_keys and then the

communication is successful.

Once all the above applications are installed and working

correctly, a simple program was compiled to test if all nodes

are communicating to one another and the jobs are divided to

all of them. Figure 2 below show a hello program that was

used to test the communication between the nodes.

Figure 2: Hello World output results.

4.3 Htop System Monitoring
The htop system monitoring is a tool that is used in Linux to

allow the users to monitor resources and the processes that are

running in real-time. This software can be used to check the

usage per Central Processing Unit (CPU) by the programs that

are running. The htop software was installed so as to check

the usage of the programs that are running on the cluster.

An excellent collection of benchmarks that can be used on

Beowulf clusters is HPL (High performance Linpack). This

benchmark suite allows making accurate predictions on which

type of computational problems that can be suitable to be

solved on the particular Beowulf cluster. This measures the

performance of the system, this can be bone theoretical or

practical. For the theoretical performance one can submit the

hardware specifications on the HPL website to find the

theoretical system performance.

5. EXPERIMENTS
The following experiments were performed using the Linux

cluster, these experiments ranged from small to large jobs. A

theoretical and practical performance of the cluster was also

performed. The theoretical performance of the cluster is not

based on the actual performance that is obtained from a

benchmark tests but it depends the cluster specification to

determine the peak rate of execution of floating point

operation for the computer.

To calculate the theoretical peak performance of the cluster,

first it is required to calculate the peak of a master node in

GFlops and then multiply the node performance by the

number of the nodes that the cluster have. The following is

the standard formula used for node theoretical peak

performance:

Node performance in GFlops = (CPU speed in GHz) x

(number of CPU cores) x (CPU instruction per cycle) x

(number of CPUs per node.

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

32

For cluster:

CPUs based on Intel Premium(R) E5200 (2.50GHz 2-cores):

2.50 * 2 * 4 = 20 GFlops

Five PC Clusters Theoretical Peak Performance:

20 GFlops * 5 = 100 GFlops

The High Performance Linpack package was used to test the

actual performance of the Beowulf cluster. Figure 3 show the

actual performance of the Beowulf cluster.

Fig 3: HPL results. Where the y-axis has is the speed (GFlops) and x-axis is the number of processors.

5.1 Ring_MPI Experimentation.
This program estimates the time taken to send a vector of F

double precision values through each process in a ring.

Process 0 sends F double precision values to process 1, which

passes them to process 2 and so on until to the last process

sends back the value to process 0. The time for transmission is

recorded and the process is repeated in different array sizes F.

the F double precision values are random values. The

different times are recorded which are minimum, average and

maximum time taken. The computations are done in parallel

using MPI. Figure 4 shows the performance of the ring_mpi

using all the five compute nodes.

Figure 4 : Ring_MPI Results. Where y-axis is the time (seconds) and x-axis is the number of processors.

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

33

5.2 Quad_MPI Experimentation
This program approximates an integral using a quadrature

rule. It uses MPI to compute the results in parallel. The

estimation of an integral of f(x) from A to B is 50/

(pi*(2500*x*x+1)).

 A = 0.000000

 B = 10.000000

 N = 9999999

 Exact = 0.4993633

The MPI divides the computation among the processors that

the cluster has and each contribution of a processor is

determined. The error of the computation is also calculated.

The overall time taken by the program is calculated and

displayed. Figure 5 shows the performance of the Quad_MPI

program running on the Beowulf cluster.

Figure 5: Where y-axis is the time (seconds) and x-axis is the number of processors.

5.3 Circuit Satisfiability Experiment
This program demonstrates for a particular circuit an

exhaustive search for solutions of the circuit satisfy problem.

The program uses MPI to carry out the solution in parallel.

This problem assumes that a logical circuit of AND, OR and

NOT gates are given, with N binary inputs and a single

output. It determines all inputs which produce a 1 as the

result. The general problem is NP complete, so there is no

known polynomial-time algorithm to resolve the general case.

The natural way to search for solutions then is exhaustive

search by the program. In an interesting way, this is a very

risky and separate version of the problem of maximizing a

scalar function of multiple variables. The difference is that

here both the input and results only have the values 0 and 1,

rather than a constant range of real values. This problem was a

natural contender for parallel computation, since the separate

evaluations of the circuit are completely independent. Figure

6 demonstrates the circuit satisfy problem in parallel

computing.

6. DISCUSSION
Clusters can reduce the overall computational time, this part

will discuss the observed results on the experiments that were

performed, the small tasks and the big task will be discussed

and their effect on the performance of the cluster.

6.1 Small Tasks Observations and

Performance
The small tasks that were performed of the experiments

showed that jobs with small numbers such as Ring_mpi and

Prime Numbers experiments when there number of processors

are increased the performance time takes longer than in single

processor. Their communication time is bounded and because

the sequential runtime is so small, the time to send and receive

from the master node makes the programs take longer with

more nodes.

This delay is caused by the time to distribute the work and the

time for the master node to collect the results. Such programs

can also be performed in a single computer but it is done so as

to show that how the cluster handles small jobs. The

significance of these experiments was to find out which jobs

are suitable for the cluster because with small jobs can also be

executed but the problem is that with clusters there is that

communication between the nodes that takes some time.

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

34

6.2 Large Tasks Observations and

Performance

Figure 6: Circuit satisfiability Results. Where y-axis is the time (seconds) and x-axis is the number of processors.

The large jobs on the cluster are bounded by sequential

computation time just like in small jobs but with more

processors the communication factor also takes over. Because

the sequential time for larger jobs is also large this is the

advantage on the cluster to scale better than the small jobs.

With larger jobs requiring more memory and space so this

part is handled well by the cluster because their memory and

space are distributed. When the same jobs are executed in

single PC there was an error message saying that it is out of

memory and it abort the process.

6.3 Efficiency of the Cluster
The efficiency of the cluster, which was 19.8%, was

unexpected because the predicted efficiency was 83.3%,

which was found in the cluster calculator. This huge

difference was because of the condition of the computers that

were used. The processors that were installed on the

computers were very small and also the memory which it’s

self-had the effect on the cluster. Some of the effects that were

stated in chapter three also played a role in the efficiency of

the cluster. The factor that was taken note was the network

part which was limited and some of the applications were not

installed because of the security measures. In the case of

cluster the dataset may be required to reside in memory

alongside with the messaging traffic meant for the other

processors. The memory plays a huge part in the efficiency

and in the development of the cluster the memory was too low

and it was not taken into consideration that it will influence

the percent of efficiency.

6.4 Factors that affected the Cluster
One of the factors that are affecting the cluster was the

network that was used because of the overhead and its speed,

the messages were delivered slowly and that cost the overall

performance. The memory of the distribution which was so

low contributed in the performance of the cluster. Looking at

the message passing interface there were number of factors

that were encountered such as the message size, process

number and running processes.

For the message size which played a very important part to

MPI application performance, this effect can be influenced by

latency and number of processors. For large messages the

application yield a better performance because sending

smaller size messages reduces the performance of the

application because the latency affect mostly affect short

messages.

Adding another node in the cluster can reduce the

computation time but increases the communication time. This

was observed when increasing the number of nodes for the

experimentation. When there were many processing running

in the cluster there was a delay in the production of results.

7. CONCLUSION
This paper addresses the advantages of developing a Beowulf

cluster for educational institution to undertake their research

that need more computing power and space. The Beowulf

cluster can be built using COTS hardware to cut down the

costs of buying expensive equipment.

International Journal of Computer Applications (0975 – 8887)

Volume 99 – No.15, August 2014

35

The Beowulf cluster have great advantages and are widely

used to undertake research, Beowulf clusters are easily

configured and also easy to expand the performance by

adding another nodes to the cluster. Large datasets to be

analyzed can be easily performed in the clusters.

As the network technologies advances with time and its

getting cheaper to the users and faster, a new computing

model called Grid computing, has evolved. Grid computing

which is a collection of computer resources forms a many

locations to reach a common goal. It provides to users a single

point of access which is just a website interface to these

distributed resources. The users of the grid can submit their

jobs as many as they can without being concerned about

where their jobs will run. Grid may range from single systems

to supercomputers farm that uses thousands of processors.

8. ACKNOWLWDGEMENTS
This work is based on the research undertaken within the

Telkom CoE in ICTD supported in part by Telkom SA,

Tellabs, Saab Grintek Technologies, Easttel, Khula Holdings,

THRIP and National Research Foundation of South Africa

(UID : 84006). The Centre of High Performance Computing

made this work possible by providing workshops in the field

of High performance Computing. The opinions, findings and

conclusions or recommendations expressed here are those of

the authors and none of the above sponsors accepts no liability

whatsoever in this regard.

9. REFERENCES
[1] A. M. Middleton, “White Paper HPCC Systems :

Introduction to HPCC (High-Performance Computing

Cluster),” 2011.

[2] C. P. Sosa, “HPC: Past, Present, and Future,” 2011.

[3] J. Nakano, “Parallel computing techniques,” 2004.

[4] M. O. Cortada, “High performance computing on

biological sequence alignment Miquel Orobitg Cortada

High performance computing on biological sequence

alignment,” 2013.

[5] K. Anderson, D. Aaronson, and P. Karlsson, “An

evaluation of the system performance of a Beowulf

cluster by,” 2001.

[6] S. CHAVAN, “Design and Implementation of High

Performance Computing Cluster for Educational

Purpose,” no. June, 2012.

[7] W. Highleyman, “Windows Server Failover Clustering,”

no. April 2009, pp. 1–7, 2010.

[8] J. Guo and L. N. Bhuyan, “Load Balancing in a Cluster-

Based Web Server for Multimedia Applications,” vol.

17, no. 11, pp. 1–14, 2006.

[9] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-stover,

“GPU Cluster for High Performance Computing,” vol.

00, no. 1, 2004.

[10] F. Hu and J. J. Evans, “Power and environment aware

control of Beowulf clusters,” no. May 2008, pp. 299–

308, 2009.

[11] C. Hsu and W. Feng, “A Feasibility Analysis of Power

Awareness in Commodity-Based,” no. Cluster, pp. 1–10,

2005.

[12] A. B. R. Al-shaikh, M. Sechi, and M. Notare, “Towards

Building a Highly-Available Cluster Based Model for

High Performance Computing 3. The Beowulf Cluster

Architecture,” pp. 1–8, 2006.

[13] K. Yelick, “Message Passing Programming (MPI) Slides

adopted from class notes by what is MPI ?” 2001.

IJCATM : www.ijcaonline.org

