
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.11, August 2014

15

Protocol for Coordinated Checkpointing using Smart

Interval with Dual Coordinator

Manoj Kumar Niranjan

Rustamji Institute of Technology,
BSF Academy, Tekanpur

Mahesh Motwani
UIT-RGPV, Bhopal

ABSTRACT
Checkpointing is a very popular technique for fault tolerance

in distributed systems. The proposed protocol tolerates the

transient faults. In the protocol, all processes take checkpoints

to form a global consistent checkpoint. The protocol handles

the failures of initiator and non-initiator.

Keywords

Distributed Systems, Checkpointing, Fault Tolerance, Smart

Interval.

1. INTRODUCTION
A distributed system is an application that executes a

collection of protocols to coordinate the actions of multiple

processes on a network, such that all components cooperate

together to perform a single or small set of related tasks. A

Fault Tolerant Distributed System can recover from failures

without performing incorrect actions. The failure may be a

network failure, network partition failure, timing failure,

byzantine failure, omission failure, fail-stop failure or halting

failure.[1] A good distributed system must overcome to these

failure which can be achieved by fault tolerance. The fault

tolerance can be achieved by using Checkpointing which is a

popular fault tolerance technique. Our paper presents a new

algorithm for checkpointing which can tolerate the failure of

any process (node) as well as Coordinator Process (Node).

Our algorithm tolerates the temporary failures which generally

occurs due to software problems and can be removed by

restarting the process.

2. CHECKPOINTING
Checkpointing is the method of periodically recording the

states of the system onto the stable storage. Any such

periodically saved state is called the checkpoint of the process

[2]. A global state [3] of a distributed system is a set of

individual process state per process [2]. Checkpointing may

be one of two types, i.e., independent and coordinated

checkpointing. In Independent checkpointing, each process

takes checkpoint independently without requiring any

synchronization when a checkpoint is taken [4]. In

coordinated checkpointing, the processes coordinate their

checkpointing action in such a way that the set of local

checkpoints taken is consistent [5,6,7].

3. EXISTING WORK
In the existing work, the initiator communicates with other

processes to create a checkpoint. In these old checkpointing

protocols, if message communication takes place after

checkpoint request of initiator, the global checkpoint may be

inconsistent. This is shown in fig. 1 in which message m is

sent by P0 after receiving a checkpoint request from the

initiator. If m reaches P1 before the checkpoint request, the

checkpoint will become inconsistent because checkpoint c1,x

confirms that message m is received from P0, while

checkpoint c0,x says that it is not sent from P0. [8]

Fig. 1. Message communication between P0 and P1

causing inconsistent checkpoint

In another protocol, the message communication is allowed

within a fixed time interval only. This concept reduces

message communication [9] which is beneficial in decreasing

the communication overhead. The main drawback of this

protocol is the fixation of a particular process as initiator

process. Since a fixed process will act as initiator in entire

system execution, thus the probability of failure will be high.

In another checkpointing protocol, the process initiator is not

fixed which reduces the probability of failure of initiator. The

drawback of this protocol is that the message communication

could be accomplished at any time i.e., there is no concept of

fixed time interval for message communication. Hence it

increases communication overhead and output commit latency

[10].

If we discuss the existing protocols, we found that there is no

protocol that takes care of initiator process. The existing

protocols assume that initiator process never fails. Our

algorithm removes this assumption.

4. PROPOSED WORK
The proposed protocol overcomes to these shortfalls. The

proposed protocol uses a fixed time interval for message

communications which controls the message communication.

This fixed time interval is called smart interval. This concept

reduces the communication overhead. The protocol also gives

chance to every process to act as initiator process which

reduces the probability of failure of initiator.

The present work suggests a new coordinated checkpointing

algorithm in which each process is given chance to act as

checkpoint initiator. The checkpoint initiator sends messages

to other processes to be prepare for checkpoint and then to

take checkpoint. However, a process has to maintain a log of

received, sent and unacknowledged messages of the current

checkpointing interval. After receiving take checkpoint

message from initiator, all the processes change the status of

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.11, August 2014

16

checkpoint from tentative to permanent and send it to initiator.

The set of these checkpoints form global checkpoint. If

initiator does not receive all the local checkpoints, it issues

abort message to all other processes for not making the

tentative checkpoint permanent.

At any instance, initiator and co-initiator work together. After

creating global checkpoint, the initiator maintains another

copy on co-initiator that can be used in case of failure of

initiator.

5. SYSTEM MODEL
Let us consider a distributed system of ‘n’ processes, P0, P1,

……, Pn-1. The no. of processes ‘n’ is fixed for the duration

of execution. Let the checkpoints be denoted as CPki, i.e.,

initial checkpoint CPk0 (i=0), first checkpoint CPk1 (i=1),

second checkpoint CPk2 (i=2) and so on (here k is the process

no.). The initial checkpoint is taken when the system is being

initialized. Each process maintains its own independent data

structures, states and computations. Processes have no shared

memory and no global clock. All communications among

processes are through message passing only. We are assuming

followings:

The network is secure, reliable and homogeneous with infinite

bandwidth and zero latency. The topology doesn’t change and

the transport cost is zero.

The network guarantees reliable FIFO (First In First Out)

delivery of messages between any pair of processes. The

assumption of FIFO delivery assures the message

synchronization.

There is one initiator process and one co-initiator process. In

case of failure of initiator process, the co-initiator process will

act as initiator and the next process will act as co-initiator.// Is

This assumption

Here, latency is the time between initiating a request for data

and the beginning of the actual data transfer. Bandwidth is a

measure of the capacity of a communications channel. The

higher a channel’s bandwidth, the more information it can

carry. The topology is the different configuration that can be

adopted in building networks, such as ring, bus, star or mesh.

The network will be homogeneous if it is running a single

network protocol.

The message communication will took place only in specified

time interval which is elapsed between the control messages

for prepare checkpoint and take checkpoint. If any process

sends a message within this time interval, it has to be logged

and the process execution is continued. This enables handling

of lost messages. [10] The initiator process sends the control

messages for prepare checkpoint and take checkpoint to other

processes.

6. PROTOCOL DESCRIPTION
The checkpoint initiator process sends checkpoint-prepare-

request-message to other processes to start checkpointing. The

other processes send their responses to the initiator process. If

initiator process received replies from all processes within

specified time-interval then it sends take-checkpoint-request-

message and if initiator process does not receive replies from

any process within specified time-interval then it will send

abort-checkpoint-request-message. The set of checkpoint of

all processes received by initiator process is called global

checkpoint. A local checkpoint is denoted by CPki where k is

the process id and i is the checkpoint number. The ith global

checkpoint is the set CPi={CP0i, CP1i,………, CPn-1i} in a

system of n processes. CPi is said to be consistent if and only

if j,k[0,n-1]:j≠k(CPjiCPki) where  denotes the

happened-before relation described by Lamport in [12].

The maximum transmission delay to reach a message to

destination is t. The T is the checkpointing interval. Here

T>3t, since checkpoint interval (T) is obviously greater than

specified time-interval and the length of specified time-

interval is bound to be at least 3t to survive the transmission

delay of control messages (checkpoint-prepare-request-

message, response of checkpoint-prepare-request-message and

take-checkpoint-request-message and each transmission will

take at least t) and to enable logging of computational

messages. Fig.2 shows the message communication using

smart-interval [11]. The P1, P2, P3 are processes which are

communicating during interval. Here, K and (K+1) are two

consecutive checkpoints. The S.I. is smart interval.

Fig. 2. Diagram showing message communication during

specified time-interval

Now, if the initiator process fails, a new initiator process has

to be selected. The protocol should also save the global

checkpoint which is stored at the initiator. Our protocol

creates a backup copy of global checkpoint which can be used

at the failure of initiator process. The backup copy will be

stored at the process which will act as initiator, if initiator

process fails. The process next to initiator process will act as

co-initiator process.

7. CHECKPOINTING PROCESS
The checkpoint process starts at the time of system

initialization. After T time interval (which is decided by the

programmer) of previous checkpoint, the initiator process

starts the process of checkpointing. The first process will act

as initiator process in the beginning and will be denoted by

Pinit. The process next to initiator will act as co-initiator and

will be denoted by Pbinit.

The initiator process Pinit sends checkpoint-prepare-request-

message to all other processes at tprep. On receiving

checkpoint-prepare-request-message, each process write

tentative checkpoint after sending response to the initiator.

1) Now, if initiator receives response from all

processes, within (tprep+2*Ttrns), the initiator

process sends take-checkpoint-request-message to

all processes. When receiver receives take-

checkpoint-request-message from initiator process,

the tentative checkpoint is made permanent. This

will save the states of all processes which are

responsible for preparing a global checkpoint.

2) Now, suppose if one or more process fails after

responding to checkpoint-prepare-request-message,

then the tentative checkpoint (which is prepared in

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.11, August 2014

17

response to checkpoint-prepare-request-message) is

used to recover the failed process.

3) Now suppose if one or more process fails to respond

to checkpoint-prepare-request-message, the initiator

process sends abort-checkpoint-request-message to

all processes. On receiving this, the tentative

checkpoint is deleted. The copy of unacknowledged

message keeps in a log in this case.

4) If the global checkpoint created successfully, then it

has to be saved on backup initiator Pbinit. The Pinit

sends the global checkpoint data to Pbinit. After

receiving the global checkpoint Pbinit sends

acknowledgement message to Pinit. After receiving

the acknowledgement message from Pbinit, Pinit starts

the process of next checkpoint.

5) If the Pinit fails, then there may be three states:

 Pinit may fail before starting the checkpoint

process

 After starting the checkpoint process but before

completion of checkpoint process

 After completion of checkpoint process, but

before sending the global checkpoint to backup
initiator.

6) If Pinit fails before starting the checkpoint process,

then Pbinit and other process will not get checkpoint-

prepare-request-message from Pinit. If Pbinit does not

receive the checkpoint-prepare-request-message

within the specific time interval, then it first sends a

test message to Pinit to confirm the status of initiator.

If Pinit replies positively, then Pbinit takes no action,

otherwise Pbinit starts the process of next checkpoint.

It also resets its role, now, it acts as initiator and

next process will become co-initiator. After finding

the next initiator (which will be act as backup

initiator), the checkpointing process continues as

above.

7) If Pinit fails after starting the checkpoint process but

before completion of checkpoint process, then Pbinit

will not get global checkpoint data. If Pbinit does not

get the global checkpoint data which should be

received within (tprep+2*Ttrns), then it sends a test

message to Pinit to confirm the status of initiator. If

Pinit replies positively, then Pbinit takes no action,

otherwise Pbinit starts the process of next checkpoint.

It also resets its role, now, it acts as initiator and

next process will become co-initiator. After finding

the next initiator (which will be act as backup

initiator), the checkpointing process continues as

above.

8) If Pinit fails after creating the global checkpoint but

before sending it to backup initiator, then also like

previous step, backup initiator Pbinit will not receive

the global checkpoint data within (tprep+2*Ttrns).

Now, it will send a test message to Pinit to confirm

the status of initiator. If Pinit replies positively, then

Pbinit takes no action, otherwise Pbinit starts the

process of next checkpoint. It also resets its role,

now, it acts as initiator and next process will

become co-initiator. After finding the next initiator

(which will be act as backup initiator), the

checkpointing process continues as above.

9) In step (7) and (8), if Pbinit gets positive reply from

Pinit, but does not receive the global checkpoint data,

then it sends request message to send the global

checkpoint data, i.e., send-global-checkpoint-

message. It waits for t time to receive the global

checkpoint data. If it does not receive the global

checkpoint within t, then it again sends test message

to Pinit and if it gets positive reply then it repeat then

it repeat the step (9) until it get the global

checkpoint data. If it does not get positive reply,

then it start acting as initiator like step (7) and (8).

8. ALGORITHM
Step-I:

This step is executed at initiator process Pinit

i. Send checkpoint-prepare-request-message to

remaining processes at tprep
 for (k+1)th checkpoint

ii. Remove (k-1)th checkpoint, if exist.

iii. Receive response from other processes within

(tprep+2*Ttrns)

iv. If all processes respond positively then

Send take-checkpoint-request-message to all

processes

Create global-checkpoint and send it to Pbinit.

Else (if even a single process does not respond positively

or response does not arrive to initiator process)

a. Send abort-checkpoint-request-message to all

processes

b. Retain copies of unacknowledged messages in a

log

Step-II:

This step is executed at other process Poth

i. Receive checkpoint-prepare-request-message from

initiator at trec

ii. Send own response to initiator

iii. If response is positive then Call save_state(Poth) to

write tentative-checkpoint asynchronously

iv. Wait for decision of Pinit till (t
rec+Ttrns+Ttrns)

v. If received decision is take-checkpoint-request-

message then Change status of tentative-checkpoint to

permanent

Else

Delete tentative-checkpoint

vi. Delete messages whose acknowledgements have

received. Log unacknowledged messages.

Step-III:

This step is executed at any process Pany for receiving

message

i. If ((checkpoint number in message)=(checkpoint

number in Pany))

a. Send (tag1,s_id)

b. Receive(message)

ii. else if ((checkpoint number in message)>(checkpoint

number in Pany))

a. save_state(Pany)

b. send(tag1,s_id)

c. receive(message)

iii. else if ((checkpoint number in message)<(checkpoint

number in Pany))

a. send (tag2,s_id)

b. receive(message)

Step-IV:

This steps is executed at any process Pany for writing

unacknowledged messages

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.11, August 2014

18

i. for all k

if (ack[k]=0) then write kth message in buffer

Step-V:

This steps is executed when initiator process fails

i. if Pinit fails

a. Reset the status of Pbinit to Pinit

b. Reset the status of process next to Pbinit to Pbinit

9. PERFORMANCE RESULTS
The presented algorithm is simulated using parallel virtual

machine java libraries. The environment used for simulation is

Ubuntu 13.10 with Open JDK 7. Since, we assumed

consistent network bandwidth, we created all the process on a

single computer with intel i3 processor and 2GB DDR3 RAM.

The results of simulation are as under:

No.

of

Proc

ess

Total

Exec.

Time

(in

milli-

secon

ds)

Checkp

oint

Interva

l (in

milli-

seconds

)

No. of Faults
Total

Execu

tion

Time

with

Faults

(in

milli-

second

s)

%

time

incre

ase
Initia

tor

Oth

ers

10 1000 100 1 4 1413 41.30

11 2000 110 2 6 2637 31.85

12 3000 120 3 8 3819 27.30

13 4000 130 4 10 4945 23.63

14 5000 140 5 12 6264 25.28

15 6000 150 6 14 7645 27.42

16 7000 160 7 16 8843 26.33

17 8000 170 8 18 10161 27.01

18 9000 180 9 20 11514 27.93

19

1000

0 190 10 22 12806
28.06

20

1100

0 200 11 24 14275
29.77

21

1200

0 210 12 26 15662
30.52

22

1300

0 220 13 28 17063
31.25

23

1400

0 230 14 30 18304
30.74

24

1500

0 240 15 32 19921
32.81

25

1600

0 250 16 34 21462
34.14

26

1700

0 260 17 36 22917
34.81

27

1800

0 270 18 38 24121
34.01

28

1900

0 280 19 40 25683
35.17

29

2000

0 290 20 42 27164
35.82

30

2100

0 300 21 44 28908
37.66

31

2200

0 310 22 46 30166
37.12

32

2300

0 320 23 48 31559
37.21

33

2400

0 330 24 50 32676
36.15

34

2500

0 340 25 52 33622
34.49

35

2600

0 350 26 54 34607
33.10

36

2700

0 360 27 56 35703
32.23

37

2800

0 370 28 58 34543
23.37

38

2900

0 380 29 60 35484
22.36

39

3000

0 390 30 62 35698
18.99

40

3100

0 400 31 64 36576
17.99

41

3200

0 410 32 66 37495
17.17

Fig. 3: Graphical representation of results

10. CONCLUSION
The checkpointing protocol of this paper reduces the

communication overhead because messages are transmitted in

Smart Interval only. A global checkpoint includes each and

every checkpoint taken by the processes of the system, so it

has to be retained. In the proposed protocol, whenever

initiator process Pi sends checkpoint-prepare-request-message

for (k+1)th checkpoint, the protocol will automatically delete

the (k-1)th global checkpoint which results simplified garbage

collection. There may be two types of failures, transient and

permanent. The protocol is useful in tolerating transient

failures occurred in initiator and non-initiator processes.

11. REFERENCES
[1] Introduction to Distributed System Design, Google Code

University, http://code.google.com/edu/parallel/dsd-

tutorial.html#Basics

[2] D. Manivannan, R.H.B. Netzer & M. Singhal, “Finding

Consistent Global Checkpoints in a Distributed

Computation”, IEEE Trans. On Parallel & Distributed

Systems, Vol.8, No.6, pp. 623-627 (June 1997)

[3] J. Tsai & S. Kuo, “Theoretical Analysis for

Communication-Induced Checkpointing Protocols with

Rollback-Dependency Trackability”; IEEE Trans. On

Parallel & Distributed Systems, Vol.9, No. 10, pp. 963-

971 (October 1998)

0

200

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Ex
e

cu
ti

o
n

 T
im

e
 (

in

Se
co

n
d

s)

Processes

Execution Time without Faults

Execution Time with Faults

No. Of Faults

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.11, August 2014

19

[4] B. Bhargava and S.R. Lian, “Independent Checkpointing

and Concurrent Rollback for Recovery in Distributed

Systems-An Optimistic Approach”, Proceeding of IEEE

Symposium on Reliable Distributed Systems, pp. 3-12

(1988)

[5] Guohong Cao, and Mukesh Singhal, “On Coordinated

Checkpointing in Distributed Systems,” IEEE

Transactions On Parallel And Distributed Systems,” Vol.

9, No. 12, pp.1213-122 (Dec.1998)

[6] Sharma D. D. and Pradhan D. K., “An Efficient

Coordinated Checkpointing Scheme for

Multicomputers,” Proc. IEEE Workshop on Fault-

Tolerant Parallel and Distributed Systems, pp 36-42

(June 1994)

[7] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel, “The

Performance of Consistent Checkpointing,” Proc. 11th

Symp. Reliable Distributed Systems, pp. 39–47 (Oct.

1992)

[8] E.N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang

and David B. Johnson, “A Survey of Rollback-Recovery

Protocols in Message-Passing Systems”, ACM

Computing Surveys (CSUR), Volume 34, Issue 3

(September 2002) Page(s):375-408 (2002)

[9] Ch. D.V. Subba Rao and M.M. Naidu, “A New, Efficient

Coordinated Checkpointing Protocol Combined with

Selective Sender-Based Message Logging”, IEEE/ACS

International Conference on Computer Systems and

Applications, AICCSA 2008, pp. 444-447 (2008)

[10] Sarmistha Neogy, Anupam Sinha, Pradip K Das,

“CCUML: A Checkpointing Protocol for Distributed

System Processes”, IEEE Transactions on TENCON

2004, IEEE Region 10 Conference, Volume B, 21-24

Nov. 2004, Page(s):553 – 556 (2004)

[11] J. Makhijani, M.K. Niranjan, M.Motwani, A.K. Sachan,

A. Rajput, “An efficient protocol using smart interval for

coordinated checkpointing”, International Conference on

Advances in Information Technology and Mobile

Communication – AIM 2011

[12] K.M. Chandy & L. Lamport, “Distributed Snapshots:

Determining Global States of Distributed Systems”,

ACM Trans. On Computer Systems, Vol. 3, no. , Feb

1985, pp 63-75 (1985)

IJCATM : www.ijcaonline.org

