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ABSTRACT
With large sets of text documents increasing rapidly, being able
to efficiently utilize this vast volume of new information and ser-
vice resource presents challenges to computational scientists. Text
documents are usually modeled as a term-document matrix which
has high dimensional and space vectors. To reduce the high di-
mensions, one of the various dimensionality reduction methods,
concept decomposition, has been developed by some researchers.
This method is based on document clustering techniques and least-
square matrix approximation to approximate the matrix of vectors.
However the numerical computation is expensive, as an inverse of
a dense matrix formed by the concept vector matrix is required. In
this paper we presented a class of multistep spare matrix strategies
for concept decomposition matrix approximation. In this approach,
a series of simple sparse matrices are used to approximate the de-
compositions. Our numerical experiments on both small and large
datasets show the advantage of such an approach in terms of stor-
age costs and query time compared with the least-squares based
approach while maintaining comparable retrieval quality.

General Terms:
Computer Information Retrieval

Keywords:
Term-document matrix, Concept decomposition matrix, Sparsity
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1. INTRODUCTION
The text retrieval method using Latent Semantic Indexing (LSI)
with the low-rank Singular Value Decomposition (SVD) of the
term-document matrix has been intensively studied for years [1,
9, 16]. Although the LSI method has empirical success, it suffers
from the lack of interpretation for the low-rank approximation [6]
and may be less effective for large heterogeneous text collections
[9, 10]. A method introduced by [5] is an improvement in that di-
rection. In this approach, a large amount of dataset is first parti-
tioned into a set of disjoint clusters. The centroids of clusters or
also known as concept decomposition is computed and normalized
as the concept vector of that cluster for lowering the rank of the
term-document matrix [6]. Gao and Zhang [7] have indicated that

retrieval accuracy from the concept decomposition can be compara-
ble to that from LSI. However, the numerical computation based on
the straightforward implementation of the concept matrix decom-
position is expensive, as an inverse of the normal matrix (which is
likely to be a dense matrix) formed by the concept vector matrix is
required during the query procedure. The dense data structure of the
concept decomposition matrix poses a huge challenge for both disk
and memory spaces of conventional computers. Some researchers
[2, 7, 11, 18] have recently applied sparsification techniques to re-
duce computational cost and memory space of concept decompo-
sition method. In [7] it proposed a sparsification strategy by drop-
ping small entries during the concept matrix inverse computation.
They have demonstrated that the sparsified concept decomposition
technique may improve the performance in terms of retrieval ac-
curacy and storage cost for some cases compared with SVD. The
approach used in [11] is quite different from [7]. The LSI input
matrices have been sparsified by identifying and removing some
values from submatrices that are used in LSI methods. Shen and
Williams [18] utilized the knowledge of both preconditioning tech-
niques and the computational theorems to compute a sparse matrix
to approximate the projection matrix directly. The key part in their
approach is the sparsity pattern strategies. Different strategy pat-
terns may result in quite different performance. This method based
on different sparsity pattern strategies greatly reduces memory cost
and query time while maintaining close retrieval accuracy to that of
the straightforward implementation of the concept matrix decom-
position method.
In an effort to improve the retrieval accuracy while maintaining a
sparse query matrix, the authors of this paper developed a class
of multistep sparse matrix approximation strategies to compute the
matrix associated with the concept matrix decomposition. These
computations are related to weighted least squares optimization and
approximate pseudo matrix inversion. In this method, a sequence of
sparse non-square matrices are computed at each step. The sum of
these sparse matrices along with the concept matrix are used to ap-
proximate the original term-document matrix. The more steps that
are used, the more accurate approximate matrix we will have. Our
approach to sparsification is different from the ones in [7, 2, 18].
We utilize the knowledge of sparse inverse technologies developed
in the preconditioning field [4, 17] and apply it to concept matrix
decomposition approximation for non-square sparse matrices. Our
experimental results show that these approaches improve the re-
trieval accuracy compared to the approaches in [18] while using
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less CPU time and memory space required to compute the decom-
position matrix and perform document retrieval.
This paper is organized as follows. Concept decomposition tech-
niques and least squares matrix approximation based retrieval pro-
cedures are discussed in Section 2 and Section 3. These are fol-
lowed by a detailed discussion of the multistep sparse matrix ap-
proximation based strategies in Section 4. Numerical experiments
are presented in Section 5. We summarize this paper in Section 6.

2. DOCUMENT CLUSTERING AND CONCEPT
VECTORS

In information retrieval, text documents are modeled as a term-
document matrix whose rows are the terms and columns are doc-
ument vectors. Suppose we are given the set of document vectors
Am×n = [a1, a2, . . . , an], where aj , (j = 1, 2, . . . , n) is the jth
document vector of m dimension in the collection. Usually, the
term-document matrices are high dimensional as each data set may
contain thousands of words and are very sparse, with 1-5% or less
terms in each document.
We first partition the documents into k disjoint clusters {πj}kj=1 by
using k-means or other clustering algorithms such that

k⋃
j=1

πj = {a1, a2, . . . , an} and πj ∩ πi = φ if j 6= i.

For each fixed j, 1 ≤ j ≤ k, the centroid vector of each cluster is
defined as

c̃j =
1

nj

∑
ai∈πj

ai,

where nj = |πj | is the number of documents in cluster πj . The
centroid vectors are normalized in following

cj =
c̃j
‖ c̃j ‖

, j = 1, 2, . . . , k.

An intuitive definition of the clusters is that, if ai ∈ πj , then

aTi cj > aTi cl for l = 1, 2, . . . , k, l 6= j,

i.e., documents in πj are closer to its centroid than to the other cen-
troids. If the clustering is not good enough, a new set of centroid
vectors for the new partitioning is computed. Each document will
be reassigned to a new cluster based on the new computed centroid
vector. This process can be repeated a few times to a stopping
threshold value of ne. If each cluster is compact enough, the cen-
troid vector may represent the abstract concept of the cluster. So
they are also called concept vectors [5]. The concept matrix can be
defined as an m× k matrix such that,

C = [c1, c2, . . . , ck].

The concept matrix C that has rank m× k is still a sparse matrix,
as each column cj is sparse. This is because cj is a group of docu-
ments in A with similar key words, i.e. the columns of A that have
similar number of non-zeros at almost the same fill-in positions.
Due to A’s sparsity, cj is sparse too. The degree of sparsity of C is
inversely proportional to the number of clusters generated. If we as-
sume that the concept vectors are linearly independent, the concept
matrix has rank k.
For any partitioning of the document vectors, we can define the cor-
responding concept decomposition Ã of the term-document matrix
A as the least squares approximation of A onto the column space

of the concept matrix C. We write the concept decomposition as an
m× n matrix

Ã = CM̃,

where M̃ is a k × n matrix that is to be determined by solving the
following least squares problem

M̃ = arg min
M
‖A− CM‖2F . (1)

Here the norm ‖ · ‖F is the Frobenius norm of a matrix. It is well-
known that problem (1) has a closed-form solution, i.e.,

M̃ = (CTC)−1CTA. (2)

3. RETRIEVAL PROCEDURE AND
APPROXIMATE LEAST SQUARES BASED
STRATEGIES

As it had been described in [8, 18], given a query vector q, the
retrieval with the concept projection matrix (CPM) Ã can be com-
puted as

rT = qT Ã = qT C(CTC)−1CTA, (3)

where rT is the ranking vector. After sorting the entries of rT in
a descending order, we have a ranking list of documents which are
related to the query (listed from the most relevant to the least rel-
evant). The retrieval procedure in Eq. (3) is not efficient in terms
of numerical computation and storage when the number of cluster
k is large as it needs to compute (CTC)−1, which is likely to be a
dense matrix.
To make the numerical computation procedure and storage cost
more competitive, a sparse matrix approximation technique based
on the static and dynamic sparsity pattern strategies has been stud-
ied in [18]. In this method, a sparse matrix M is computed to solve
the least squares problem (1) approximately. That is to find a sparse
matrix M such that the functional f(M) = ‖A− CM‖2F is min-
imized, or more precisely, approximately minimized. In [18], static
and dynamic sparsity pattern strategies had been discussed. In their
numerical experiments, both of the approaches greatly reduced the
computational costs and storage costs. Compared to the straight-
forward implementation of concept matrix decomposition method
CPM, both strategies use less than 5% memory storage of the CPM
approach while achieving comparable retrieval accuracy.
Obviously there is much room to improve the sparsity pattern
strategies. To have more accurate sparse approximate matrix, it is
natural to think of increasing the sparsity ratio for M. However,
the CPU time used for matrix M construction increases as well.
Dynamic sparsity pattern strategies can compute better sparse ap-
proximate matrix, given a certain sparsity ratio for M . However,
they are usually expensive. In this paper we propose a multistep
matrix approximation strategy based on static sparsity pattern ap-
proach. At each step, we compute a series of sparse, or cheap matrix
Mi, i = 1, 2, . . . at each step. Then the sum of these sparse matri-
ces is used to approximate the matrix M . This method takes the
advantage of cheaper construction at each step and a denser matrix
we will obtain at last.

4. MULTISTEP STATIC SPARSITY PATTERN
APPROACH (MSSP)

In our problem in information retrieval, all we want is to find a
sparse matrix M such that
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f(M) = min
M∈G
‖A− CM‖2F , (4)

is minimized with certain constraints on M . This problem is simi-
lar to that in the equation in preconditioning field:

f(M) = min
M∈G
‖I −AM‖2F , (5)

Several sparse approximate inverse methods for solving above
equation have been developed in [4, 17]. We will use these tech-
nologies for our problem.

4.1 Computational procedure
For a moment, we suppose that a sparsity pattern set G for M is
given somehow, the minimization problem (4) is decoupled into n
independent subproblems as

‖A−CM‖2F =

n∑
j=1

‖(A−CM)ej‖22 =

n∑
j=1

‖aj−Cmj‖22, (6)

where aj and mj are the jth column of the matrices A and M ,
respectively. (ej is the jth unit vector.) It follows that the min-
imization problem (6) is equivalent to minimizing the individual
functions

‖Cmj − aj‖2, j = 1, 2, . . . , n, (7)

with certain restrictions placed on the sparsity pattern of mj . In
other words, each column of M can be computed independently.
This certainly opens the possibility for parallel implementation.
Since we assume the sparsity pattern of mj (and M ) is given, i.e.,
a few, say n2, entries of mj at certain locations are allowed to be
nonzero, the rest of the entries of mj are forced to be zero. De-
note the n2 nonzero entries of mj by m̄j and the n2 columns of C
corresponding to m̄j by Cj . Since C is sparse, the submatrix Cj
has many rows that are identically zero [4, 17]. After removing the
zero rows of Cj , we have a reduced matrix C̄j with n1 rows. The
individual minimization problem (7) is reduced to a much smaller
least squares problem of order n1 × n2

‖C̄jm̄j − āj‖2, j = 1, 2, . . . , n, (8)

in which āj consists of the entries of aj corresponding to the re-
maining columns of Cj . We note that the matrix C̄j is now a very
small rectangular matrix. It has full rank if the matrix C does.
There are a variety of methods available to solve the small least
squares problem (8). Assume that C̄j has full rank. Since C̄j is
small, the easiest way is probably to perform a QR factorization on
C̄j as

C̄j = Qj

(
Rj
0

)
, (9)

where Rj is a nonsingular upper triangular n2 × n2 matrix. Qj is
an n1 × n1 orthogonal matrix, such that Q−1j = QTj . The least
squares problem (8) is solved by first computing c̄j = QTj āj and
then obtaining the solution as m̄j = R−1j c̄j(1 : n2). In this way,
m̄j can be computed for each j = 1, 2, . . . , n, independently. This
yields an approximate decomposition matrix M , which minimizes
‖CM −A‖F for the given sparsity pattern.

4.2 Multistep approach
From the above discussion, we can see that our computational pro-
cedure is quite similar to that in [4, 17]. However it is much more

difficult than that in the preconditioning field. This is because of the
fact that A is a m× n matrix, not a square matrix. The dimensions
of the matrix C and those of M do not match. That is C is a m× k
matrix andM is a k×nmatrix. This multistep knowledge from the
preconditioning field can not be directly applied to our application.
We approach the problem for non-square matrix minimization in
another way.
Suppose a simple and cheap sparsity pattern is chosen for M1. M1

is computed approximately for the equation

CM = A (10)

by using our modified sparse approximate inverse techniques de-
veloped in [18]. If CM1 is not close enough to A, we can compute
another approximate sparse matrix M2 for the equation

CM = A− CM1 (11)

Based on Eq.( 11), CM2 ≈ A − CM1, we sum the two matrices
M1 andM2, such thatC(M1+M2) ≈ A. Generally,C(M1+M2)
should be closer to A than CM1 does. If C(M1 +M2) is not good
enough for the matrix A, we can compute the third sparse matrix
M3 for the equation

CM = A− C(M1 +M2) (12)

such that C(M1 + M2 + M3) ≈ A. This procedure can be re-
peated for a few times to obtain a sequence of sparse matrices
M1,M2, ...,Ml such that C(M1 + M2 + ... + Ml) ≈ A. As
[17] pointed out a few sparse matrices MlMl−1 . . .M1 for matrix
approximate inverse may be capable of holding more information
than a single matrix M can. In our application, if each Mi is good
in some sense, we expect that

lim
l−>∞

C(M1 +M2 + ...+Ml) = A

In general, the more accurate is matrix M , the more dense it is.
Hence the computational cost may also increase. In our approach,
since we sum the matrices at each step, it shouldn’t have many new
fill-ins. For example, if the number of nonzeros of the matrixM1 is
n1, and the number of nonzeros of the matrixM2 is n2, the number
of nonzeros of the matrix M1 + M2 would be less than n1 + n2.
If M1 and M2 have the same sparsity patterns, there would be no
new fill-ins. To avoid too few new fill-ins at each step, we choose
different sparsity patterns for M1 and M2.
We first define the sparsity pattern for M1. Note that the concept
matrix C describes the relationship between the term vectors and
the concept vectors. If a term is related to a concept vector, this
relationship may be maintained in the approximate decomposition
matrix in some sense. The strategy based on the sparsity pattern of
C and entry values of both C and A is described below.
From the equation CM1 = A, we know that cim

(1)
j = aij , where

ci is the ith row of C, m(1)
j is the jth column of M1. The sparsity

pattern of m(1)
j is given in this way: If aij is the largest entry in the

jth column of A, the sparsity pattern of m(1)
j is the same as that of

ci. Here we use small matrices to illustrate our ideas. Suppose the
three matrices are C4×3, M13×5 and A4×5. The pattern of CM1 =
A is depicted by the Eq (13). x 0 x

0 x 0
x x 0
0 x 0


4×3

(
− − − − −
− − − − −
− − − − −

)
3×5
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=

 0 x 0 x 0
0 0 0 x x
x x 0 0 0
x 0 x 0 0


4×5

(13)

Here, ”x” denotes nonzero entry, ”-” denotes undefined pattern.
We determine the sparsity pattern of M1 column by column. First,
find the largest entry in each column of A, suppose they are a31,
a12, a43, a14, and a25 in Eq (13). Then the sparsity pattern of
m

(1)
1 , is the same as that of c3 and the sparsity pattern of m(1)

2 is
the same as that of c1, m(1)

3 has same sparsity pattern of c4 and
m

(1)
4 is the same as that of c1. Finally we have the sparsity pattern

of M1 like this:

(
x x 0 x 0
x 0 x 0 x
0 x 0 x 0

)
.

For the sparsity pattern of matrix M2 at the second step, we con-
sider the equationCM2 = A−CM1. We first sort non-zero entries
in each column of A − CM1. Then we go through all the entries
from the largest to the smallest. Then the first ne number of largest
entries will be used as new fill-ins for M2. If the positions of these
selected entries have been used in matrix M1, these entries will
continue to be used in the sparsity pattern in M2, but they are not
counted as new fill-ins. So other larger entries will be selected to
reach the total ne number of new fill-ins. A parameter ne is used to
control the number of new fill-ins for each column of Mi at the ith
step. So in general the matrixMi is denser thanMi−1. We had con-
ducted some numerical tests for this strategy. With a few new fill-
ins for the matrixM2, the 2-norm residual of ‖A−C(M1+M2)‖2
reduces much more than that of ‖A−C(M1+M2)‖2 with no more
new fill-ins in M2. That means the denser matrix M1 + M2 may
hold more information. This multistep procedure may be repeated
for a few times as needed.

5. NUMERICAL EXPERIMENTS
In this section, we conducted some experiments to compare the per-
formance of our proposed algorithms MSSP and the single-step ap-
proximate sparse approach SSP and CPM method that is based on
the straightforward implementation by solving Eq.( 2). Three small
text databases: CRAN,MED and CISI and two large databases:
LISA and NPL are used to validate our approach. The information
about the five databases are given in Table 1.
Precision-recall curves are often used to evaluate the performance
of the algorithms in information retrieval [15]. In the following ex-
periments, we first test the precision-recall curves for different ap-
proaches. We average the precision of all queries at fixed recall val-
ues as 10%, 20%, . . . , 90%. Then we compare their storage costs
by listing the number of nonzeros of the approximate matrixM ob-
tained in Eq. (2). The CPU time required for the approximate ma-
trix computation and query procedure is also reported for the tests
over small datasets. The sparse matrix multistep computations are
based on ParaSails developed in [4] by using C. This computation
procedure and matrix inverse for concept project matrix method
(CPM) were carried out in IBM Power/Intel(Xeon) hybrid system
at University of Kentucky. The computations for query procedure
were carried out in a SunOS system by using matlab.
In all the following tests, “nstep” denotes the number of steps used
in sparse matrixM construction; “k” is the number of clusters used
in k-mean algorithm; “nnz” represents the number of nonzeros for
the matrixM constructed with different methods. “ne”, a threshold
value, is the number of new fill-ins in each column of M at each
step. As it was discussed in Section 4, the sparsity pattern of each
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Fig. 1. Precision-Recall Results for CRAN with k = 256

column of matrix M depends on the number of the largest entries
selected in the corresponding column of A. The parameter “ne”
means the first ne number of largest entries in each column of A
that have not been used in the previous step will be selected . The
larger the number of ne, the more dense is the matrix of M . This
usually leads to more accurate matrix M , and more computational
and memory costs. This is because the storage space for the MSSP
is primarily determined by the number of largest entries considered
at each step. To balance the accuracy and the costs, in our tests
we choose ne = 2 for multistep approach. In order to compare
our multistep approach with the single-step SSP more precisely,
we increase the density of SSP by setting ne = 4. We denote it as
“SSP 4”.
We first test the precision-recall curves for the CRAN database with
k = 256. As expected in Fig. 1, CPM has best query results. This is
because CPM matrix is constructed by directly solving the Eq. (2).
The resulting matrix is very dense(we will show this in the later
tests) and hence more accurate than that of the other approximate
approaches. From the Fig. 1 we can see the multistep algorithm
MSSP with nstep = 2, 3 which does outperform the single-step
approach SSP. This is partially because of more dense matrix con-
structed in multistep approach. However more dense matrix doesn’t
always generate more accurate matrix. Table 2 lists the numbers of
nonzeros ofM constructed with different approaches. Looking into
our two-step approach MSSP that utilizes 2 largest entries for each
column at each level and the single-step SSP that using 4 largest en-
tries from the Table 2, we find that the SSP 4 constructs more dense
matrix than MSSP. But in Fig. 1 we observe that 2-step MSSP has
better retrieval accuracy than that of single-step SSP 4. That means
with the same amount of memory cost, multistep approach usually
construct more accurate matrix. This encouraging finding is what
allowed us to intensify our efforts in developing multistep methods.
We also make comparison of a 3-step MSSP and CPM. In Fig. 1
and Table 2 we found that the precision-recall curve for MSSP with
nstep = 3 is very close to that of the CPM approach while 3-step
MSSP uses much less memory than CPM. MSSP uses only 24%
of CPM memory while achieving 90% of accuracy that CPM has.
However the computational cost will increase as well. We could see
this in the following test for CRAN database with k = 500.
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Table 1. The information of databases
Database Matrix size Number of queries

CISI 5, 609× 1, 460 112
CRAN 4, 612× 1, 398 225
MED 5, 831× 1, 033 30
LISA 17, 482× 6, 004 35
NPL 11, 380× 11, 429 93

Table 2. Storage costs for CRAN
database, k = 256

Methods ne nstep nnz

SSP 2 1 45,719
MSSP 2 2 75,986
SSP 4 4 1 93,878
MSSP 2 3 86,761
CPM - - 357,888

The test results listed in Table 3 are from testing the same database
with the number of clusters: k = 500. Table 3 shows that the 2-step
MSSP has better query results while using less memory space than
SSP 4 approach. The data listed in the last two rows of Table 3 are
the query results and nonzeros for the matrix M of 3-step MSSP
and CPM. In this case, 3-step MSSP approach uses only 18% of
CPM storages to achieve 93% retrieval accuracy of CPM. From
this experiment, we also observe that the computational cost and
query time have been greatly reduced.
Fig. 2 gives both query results and storage costs for testing the
database MED with k = 200. From the left panel of Fig. 2, MSSP
with nstep = 3 has really close query accuracy to that of CPM
approach. From the right panel of Fig. 2, we see that 3-step MSSP
consumes only 8% of storage space of CPM. This is because the
dense matrix of CPM may have many noise entries. Our sparsifi-
cation algorithm is designed to drop those unnecessary entries and
keep very few entries that may hold more important information
in the matrix. However it is difficult to predetermine those nonzero
entries or sparsity pattern before solving the problem. This is still
a challenging work in scientific field. We have tried to drop some
small entries from CPM matrix. We found out that the query pre-
cisions are also degraded and it still uses more than 10 times of
storage than the 2-step MSSP matrix with comparable query accu-
racy. This experiment again assures that a larger number of steps
leads to better performance in terms of memory costs and compet-
itive query precision.
We give the test for the dataset CISI. The query results, memory
costs are given in Fig. 3. In this test, the multistep approach MSSP
has slightly better performance than single step approach SSP and
SSP 4 in terms of query precisions, query time and memory costs.
Again, the higher values of nstep, or ne lead to more work, more
fill-in in M matrix , and usually more accurate matrix. From the
case reported in previous tests, we think that 2 or 3 steps MSSP
is a good compromise between reasonable computational cost and
comparable performance in terms of query precision.
Below are the tests over two large datasets LISA and NPL. We
first test the precision-recall curves and storage costs for the LISA
database with k = 250.
Fig. 4 shows that our multistep algorithms have very close precision
results to the one of CPM algorithm. However from the Fig. 5, we
see the multistep algorithms that use much less memory spaces,
about 50%, than that of CPM.

0 

200000 

400000 

600000 

800000 

1000000 

1200000 

1400000 

1600000 

CPM SSP MSSP, nstep 

n
u

m
b

e
r
 o

f
 n

o
n

z
e

r
o

s
 

algorithms 

Storage for LISA with k = 250 

Fig. 5. Storage costs for LISA with k = 250

From above results, we also observe that compared with the single-
step strategy, the multistep strategy can produce higher precision
result. This is because the matrix constructed by MSSP may hold
more information than the one constructed by SSP. However, as we
stated earlier, denser approximate matrix may not always lead to
better performance. Besides, the threshold value of ne is very es-
sential during the construction of theM , so we use different thresh-
old values to adjust the information held in M .
The test on LISA dataset has shown the advantages of the multi-
step algorithms over CPM method. When we performed the NPL
dataset, the results were mixed.
The above two figures in Fig. 6 are the precision-recall curves of
NPL when it has been grouped into 500 clusters. A close observa-
tion of the two curves shows a much better result in left panel over
right panel of Fig. 6 in spite of its higher nonzero entries. See the
storage costs in Fig. 5. Therefore, from this example, we can fur-
ther conclude that in MSSP the denser approximate matrix M may
not achieve better performance due to potential noisy data that are
captured in the denser matrix.
However, for NPL dataset, MSSP is not as robust as for LISA for
different numbers of clusters. We tested NPL with k = 800 in
Fig. 8 and it shows that our MSSP is not comparable with CPM.
Compared with the methods used in [13, 12, 14, 3], the size of
NPL preprocessed in our way is much larger and the data matrix
has the feature of m < n, i.e. the document’s number is more than
the term’s number. We think that MSSP does not work well due to
some specific features of NPL.

6. CONCLUSION
This study has explored an issue of multistep approximate ma-
trix computation methods for the concept matrix decomposition.
In many respects, the 3 step MSSP and CPM produced very sim-
ilar query results except for the storage costs which are less for

5



International Journal of Computer Applications (0975 8887)
Volume 99 - No. 10, August 2014

Table 3. Precision-Recall Results for CRAN database, k = 500
Methods ne nstep nnz recall 10% 40% 80%

SSP 2 1 49,974 0.3377 0.1897 0.0603
MSSP 2 2 91,044 0.3629 0.2181 0.0702
SSP 4 4 1 107,480 0.3580 0.2007 0.0649
MSSP 2 3 124,559 0.3831 0.2202 0.0724
CPM – – 699,000 0.4086 0.2390 0.0759
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Fig. 2. Left panel: Query results for MED with k=200. Right panel: Storage costs for MED with k = 200.
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Fig. 7. Storage costs for NPL with k = 500

MSSP than CPM method. To compare our multistep MSSP with the
single-step approach SSP under the constraint of the same amount
of memory cost, we allow more nonzero entries (this can be con-
trolled by adjusting the parameter ne) at the first step of the SSP
sparse matrix construction phase. Our numerical experiments have
demonstrated that SSP can compute more dense matrix, but may
not be more accurate compared with the multistep approach. Addi-
tionally, MSSP is cheaper in its matrix computation phase as evi-

denced at each step of MSSP which resulted in a more sparse ma-
trix. As was indicated in [17], computing a series of small memory
cost (sparse) matrices usually cheaper than computing a high mem-
ory cost (dense) matrix.
Although in our study, the performance of MSSP on NPL is not as
good as it is on LISA and other small datasets, the advantages of
MSSP in saving CPU memory space and computational costs have
still been demonstrated. The best precision result of MSSP on NPL
can be comparable with that in [14].
The multistep matrix approximation approach developed in this
paper has provided a new avenue to approximate the concept de-
composition matrix more cheaply and fast. If the storage cost and
query time are the bottle-necks during the query procedure, this
approach looks more attractive. There is much room for improve-
ment. In our next step, the algorithm parallelism will be our first
target. Due to the nature of the algorithm described in the paper,
it will certainly open the door for the parallelism during the ma-
trix approximation process. We then test it on some real larger cor-
pora, like OHSUMED and some collections from TREC to better
understand the performance of this approach. We also hope this
multistep sparse matrix approximation approach may be applied to
the general nonsquare sparse matrix approximation techniques for
functional minimization f(M) = min ‖A− CM‖2F .
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