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ABSTRACT 

This paper presents NFO, a new and innovative technique for 

collision resolution based on single dimensional arrays. Hash 

collisions are practically unavoidable when hashing a random 

subset of a large set of possible keys and should be seen as an 

event that can disrupt the normal operations or flow of hash 

functions computing an index into an array of buckets or slots. 

Hash tables provide efficient table implementations but then 

its performance is greatly affected if there are high loads of 

collisions. This new approach intends to manage these 

collisions effectively and properly although there are some 

algorithms for handling collisions currently. NFO 

incorporates certain features to resolve some problems of 

existing techniques. The performance of our approach is 

quantified via analytical modeling and software simulations. 

Efficient implementations that are easily realizable and 

productive in modern technologies are discussed. The 

performance benefits are significant and require machines 

with moderate memory and speed specifications. Depending 

on observations of the results of implementation of the 

proposed approach or technique on a set of real data of several 

types, all results are registered and analyzed.  
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Keywords 

Hash Function, Open Addressing, Separate Chaining, Linear 

Probing, Quadratic Probing, Double Hashing 

1. INTRODUCTION 
Hashing is a method for storing and retrieving records from a 

database. It lets you insert, delete, and search for records 

based on a search key value. When properly implemented, 

these operations can be performed in constant time. In fact, a 

properly tuned hash system typically looks at only one or two 

records for each search, insert, or delete operation. This is far 

better than the O(log n) average cost required to do a binary 

search on a sorted array of n records, or the O(log n) average 

cost required to do an operation on a binary search tree. 

However, even though hashing is based on a very simple idea, 

it is surprisingly difficult to implement properly. Designers 

need to pay careful attention to all of the details involved with 

implementing a hash system [1].  

A hash table is a data structure for storing a set of items, so 

that we can quickly determine whether an item is or is not in 

the set. The basic idea is to pick a hash function h that maps 

every possible item x to a small integer h(x). Then we store x 

in slot h(x) in an array. The array is the hash table. Most hash 

table designs assume that hash collisions—different keys that 

are assigned by the hash function to the same bucket will 

occur and must be accommodated in some way [2].  

Alternatively, a hash function is any well-defined procedure 

or mathematical function that converts a large, possibly 

variable-sized amount of data into a small datum, usually a 

single integer that may serve as an index to an array [3]. 

Hash collisions are practically unavoidable when hashing a 

random subset of a large set of possible keys. For example, if 

2,500 keys are hashed into a million buckets, even with a 

perfectly uniform random distribution, according to the 

birthday problem there is a 95% chance of at least two of the 

keys being hashed to the same slot [4]. 

Therefore, most hash table implementations have some 

collision resolution strategy to handle such events. Some 

common strategies are described below. All these methods 

require that the keys (or pointers to them) be stored in the 

table, together with the associated values [4]. 

Some of these strategies include: 

 Open Addressing (Linear Probing, Quadratic 

Probing, Rehashing/Double Hashing) 

 Separate Chaining with linked lists 

 Separate Chaining with other structures 

 Separate Chaining with list heads [4] 

2. RELATED WORK 
There are many collision resolution strategies. Open 

addressing and separate chaining are considered in this paper. 

Focus is placed on these two broad strategies even though 

there are other strategies for resolving collisions in hash 

tables. They are the 2 broad ways of collision resolution and 

play a vital role in the analysis and comparisons [5]. Cache-

Conscious collision resolution strategy used in string hash 

tables is also reviewed in this paper.  

2.1 Open Addressing 
This strategy uses array implementation where all items are 

stored in the hash table itself. Each of the cells in the hash 

table or array has three states namely: OCCUPIED, EMPTY, 

DELETED. Alternative cells which are empty are found by 

the hash function when collision occurs [6]. This hash table 

has a probe sequence which is usually in the form: 

hi(key) = [h(key) + c(i) % n, for i=0,1,..,n-1 where h is the 

hash function and n is the size of the hash table. The function 

c(i) is required to have the following two properties: 
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Property 1: c(0) = 0 

Property 2: The set of values {c(0) % n, c(1)%n, c(2)%n, …, 

c(n-1)%n} must be a permutation of {0,1,2,…,n-1}, that is, it 

must contain every integer between 0 and n-1 inclusive [6]. 

The function c(i) is used to resolve collisions. 

To insert item r, we examine array location h0(r) = h(r). If 

there is a collision, array locations h1(r), h2(r),..., hn-1(r) are 

examined until an empty slot is found [6]. 

Similarly, to find item r, we examine the same sequence of 

locations in the same order. 

For a given hash function h(key), the only difference in the 

open addressing collision resolution techniques (linear 

probing, quadratic probing and double hashing) is in the 

definition of the function c(i). Common definitions of c(i) are: 

Table 1. Definitions of collision resolution techniques 

Collision Resolution Strategy c(i) 

Linear Probing i 

Quadratic Probing +=i2 

Double Hashing i*hp(key) 

where hp(key) is another hash function 

Open Addressing come with some merits like: 

 No need of a new data structure 

 Efficient storage-wise 

And its demerits include: 

 Requires the use of 3 state flag in each cell 

 The keys of objects to be hashed must be distinct 

 Proper table size must be chosen  

Usually in order to determine an appropriate table size, the 

following formula is of essence: 

                          
                        

                   
  

In linear probing, when collision occurs, the table is searched 

sequentially for an empty slot. This is accomplished using two 

values - one as an initial value and one as an interval between 

successive values in modular arithmetic. The second value, 

which is the same for all keys and known as the increment, is 

repeatedly added to the initial value until a free space is 

found, or the entire table is traversed [7]. The algorithm for 

this technique is  

nextLocation = (initialValue + increment) % tableSize 

 The increment takes the following value: 1, 2, 3, 4, and so on. 

Given an ordinary hash function h(x), a linear probing 

function would be:    

H(x, i) = (h(x) + i) (mod n)    for i = 0, 1, 2,. . . n-1   [7] 

Linear probing has some disadvantages which include: 

 Primary clustering 

 Large clusters lead to long probe sequence  

 Large clusters lead to deterioration in hash table 

efficiency [6] 

 In quadratic probing, original hash value is taken and 

successive values of an arbitrary quadratic polynomial are 

added to the starting value. The idea here is to skip regions in 

the table with possible clusters [7]. It uses the hash function of 

the form: 

H(k, i) = (h(k) + i2) mod n    for i = 0, 1, 2, . . . , n-1   [7] 

In double hashing, a second hash function h2(key) is applied 

to the key when collision takes place. The result of the second 

hash function will be the number of positions from the point 

of collision to insert. There are some requirements for the 

second function. These requirements include: 

 It must never evaluate to zero  

 Must make sure that all cells can be probed [7].  

The probing sequence is then computed as follows: 

Hi(x) = (h(x) + ih2(x)) mod n  [7] 

Where h(x) is the original function, h2(x) the second function, 

i the number of collisions and n the table size. So the table is 

searched as follows: 

H0 = (h(x) + 0*h2(x)) mod n  

H1 = (h(x) + 1*h2(x)) mod n  

H2 = (h(x) + 2*h2(x)) mod n  

And so on  [7]. 

2.2 Separate Chaining 
This strategy uses an array of linked list implementation. It 

could also use other data structures other than linked lists. 

Here, many linked lists are connected or chained to various 

cells of the hash table. This tends to cause some problems 

especially tracking these linked lists. For example, if a hash 

table has 2500 cells, it implies there will also be a maximum 

of 2500 linked lists (if collisions occur in all the cells) which 

are obviously very difficult to track [6]. The separate chaining 

comes with some advantages like: 

 Efficient collision resolution 

 Deletion is easy 

 Table size need not be a prime number [6]. 

It also has some disadvantages like: 

 Separate data structure for chains required and code 

to manage it. 

 Extra space required for linked lists. 

 Creating new nodes is expensive and slows down 

the machine for some languages [6]. 

The separate chaining is depicted in Figure 1. 

Loading the keys 23, 13, 21, 14, 7, 8, and 15, in a hash table 

of size 7 using the separate chaining using linked lists, the 

following hash values emerge. 

h(23) = 23%7 = 2 

h(13) = 13%7 = 6 

h(21) = 21%7 = 0 

h(14) = 14%7 = 0     collision 

h(7) = 7%7 = 0    collision 

h(8) = 8%7 = 1 

h(15) = 15%7 = 1 

The hash table representation is depicted in Figure. 2.  
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2.3 Cache-Conscious Collision Resolution 
In this strategy, two alternatives to the standard representation 

were explored. They included: 

 The simple expedient of including the string in its 

node 

 And the more drastic step of replacing each list of 

nodes by a contiguous array of characters 

The Cache-Conscious Collision Resolution Strategy is 

significant for large set of strings and the new structure gives 

substantial savings in space at no cost in time. In the best case, 

the overhead space required for pointers is reduced by a factor 

of around 50 to less than two bits per string (with total space 

required, including 5.68 megabytes of strings, falling from 

20.42 megabytes to 5.81 megabytes), while access times are 

also reduced [8].  

Askitis et al suggested cache-conscious strategy as oppose to 

a standard-chain hash table which uses two pointer traversals, 

one to reach the node and one to reach the string. In the cache-

conscious strategy, strings are assumed to have sequences of 

8-bit bytes, and a character such as null is available as a 

terminator. This strategy eliminates the chain altogether, and 

store the strings in a contiguous array [8].  

The cache-conscious strategy is highly effective with array-

based structures use for storing strings. Each array element is 

represented as a contiguous list of items which in effect depict 

the array as a resizable bucket. The cost of access is a single 

pointer traversal, to fetch a bucket, which is then processed 

linearly [8]. Although there seem to be an improvement in this 

strategy, it is best suited for string values. Askitis et al 

experiment did not reveal how numeric values would perform 

with their proposed scheme. Their prime focus was on cache 

(space) utilization, and memory management [8]. The cache-

conscious collision resolution strategy is depicted in Figure 3.

 

Fig.1: Separate chaining using linked lists 

 

 

Fig.2: Hash table representation for separate chaining 



International Journal of Computer Applications (0975 – 8887) 

Volume 99– No.10, August 2014 

38 

 

Fig.3: The standard-chain (left), compact-chain (right) and array (below) hash tables 

3. NFO STRATEGY 
The algorithm for the NFO strategy is expressed as a 

pseudocode. It is then implemented using C++ programming 

language. Further illustration is given with respect to how the 

algorithm functions.  

3.1 Pseudocode 
Declare variables: key, size, chk, val 

Prompt user to enter size 

Get size 

FOR i=0 to size 

 Prompt user to enter keys 

 Get key 

 Assign key to val 

Assign key to chk 

WHILE chk is greater than zero 

 Calculate chk as chk/10 

 Calculate val as val*0.1 

END WHILE 

Calculate hi as (key%size)*1.0+val 

END FOR 

FOR i=0 to size 

 Display i, hi 

END FOR 

. 

3.2 C++ Implementation 
#include<iostream> 

#include<iomanip> 

using namespace std; 

int main() 

{ 

 int key, size, chk; 

  

 cout<<"Please specify the size of hash table:"; 

 cin>>size; 

 double h[size],  val=0.0; 

  

 for(int i=0;i<size;i++) 

 { 

          cout<<"Please enter the keys to be   hashed:"; 

           cin>>key; 

           chk = val = key; 

           while(chk>0) 

           { 

  chk/=10; 

  val*=0.1; 

            } 

  h[i]=(key%size)*1.0+val; 

 } 

  

 for (int i=0;i<size;i++) 

  cout<<i<<setw(7)<<h[i]<<"\n"; 

 return 0; 

} 

 

3.3 Illustration 
Step by step operations are outlined using linear probe, 

separate chaining and NFO (algorithm being proposed). The 

elements to be hashed are 23, 13, 8, 15, 45, 88, and 67. 

3.3.1 Linear Probing 
The hash function is given by h(x) = x%7 

For the 1st Element (x=23) 

h(23) = 23%7 = 2 

This implies the 1st element will be stored in slot 2 of the 

bucket array. 

For the 2nd Element (x=13) 

h(13) = 13%7 = 6  

This implies the 2nd element will be stored in slot 6 of the 

bucket array. 

For the 3rd Element (x=8) 
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h(8) = 8%7 = 1 

This implies the 3rd element will be stored in slot 1 of the 

bucket array. 

For the 4th Element (x=15) 

h(15) = 15%7 = 1 

This implies the 4th element will be stored in slot 1 of the 

bucket array 

For the 5th Element (x=45) 

h(45) = 45%7 = 3 

This implies the 5th element will be stored in slot 3 of the 

bucket array 

For the 6th Element (x=88) 

h(88) = 88%7 = 4 

This implies the 6th element will be stored in slot 4 of the 

bucket array 

For the 7th Element (x=67) 

h(67) = 67%7 = 4 

This implies the 7th element will be stored in slot 4 of the 

bucket array. The hash table representation is shown in Table 

2 below. 

Table 2: Hash table representation for linear probing 

0   

1 8 - 3rd Element 

2 23 - 1st Element 

3 15 - 4th Element here due to collision at slot 1 

4 45 - 5th Element here due to collision at slot 3 

5 88 - 6th Element here due to collision at slot 4 

6 13 - 2nd Element 

 

Analysis 

 The 4th Element (15) should have gone to slot 1 but 

there is a collision since the element 8 is already 

occupying that slot. The next available slot which is slot 

2 is also occupied by the element 23. The 3rd available 

slot was empty hence element 15 was placed there. 

 Again the 5th Element (45) which should have been 

stored in slot 3 is moved to slot 4 which is the next 

available slot which is not occupied. 

 The 6th Element (88) should have gone to slot 4 but then 

it is occupied by element 45. The next available slot is 

slot 5 which is empty. Hence it’s placed there. 

Limitations 

 The hash table is not full to capacity yet not all the 

elements can be stored in the hash table due to the 

incremental approach adopted by the linear probe.  

For instance element 67 had to be stored in slot 4 

but then that slot is occupied. So the next available 

slots which could have stored the element were not 

available. Hence there is a dead end. 

 

 The hash function should have placed elements in 

specific slots but because of collision they have 

been displaced or moved elsewhere. Hence relating 

some of the elements to their corresponding slots is 

complex. 

3.3.2 Separate Chaining 
Using the same function h(x) = x%7 and the elements (23, 13, 

8, 15, 45, 88, and 67), separate chaining using linked list is 

represented in Table 3 below. 

Table 3: Hash representation for separate chaining 

0   

1   

2   

3   

4   

5   

6   

 

Limitations 

 The hash table is not optimally used because there 

are empty slots at 0 and 5. 

 Keeping track of the multiple linked lists becomes 

extremely difficult. 

 

3.3.3 NFO 
Using the same function h(x) = x%7 and the elements 23, 13, 

8, 15, 45, 88, and 67, the values returned are 2, 6, 1, 1, 3, 4, 

and 4. The values returned are then joined or concatenated to 

the elements hashed by using a dot (.)  and then placed in the 

next available cell or slot starting from the first slot (slot 0). 

The hash table is represented below in Table 4. 

Table 4: Hash representation for NFO 

0 2.23 

1 6.13 

2 1.8 

3 1.15 

4 3.45 

8  15  

23  

13  

45  

88  67  
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5 4.88 

6 4.67 

 

From the hash table above, the elements 8 and 15 are found in 

slots 2 and 3 whereas the elements 88 and 67 are found in 

slots 5 and 6. Elements 23, 13 and 45 are found in slots 0, 1 

and 4 respectively. The preceding numbers before the dot (.) 

in each slot indicates the value returned by the hash function. 

There is a value of 1 preceding the elements in slots 2 and 3 

likewise there is a value of 4 preceding the elements in slots 5 

and 6. This indicates that had it not being the adoption of 

NFO, the elements 8 and 15 would have collided in the same 

bucket slot (slot 1). The same applies to elements 88 and 67 

which would have also collided in the same bucket (slot 4). 

4. RESULT ANALYSIS 
The Big-O-Notation and the Number of Primitive Operations 

are used to characterize the running times of the algorithms. 

The characterization is done in terms of n, of the running time 

of the algorithm.  

4.1 Big O Notation 
The outer loop iterates 'n' times. The inner loop also iterates 

‘n’ times. In computing the big O, the number of iterations of 

each of the loop must be multiplied together. The running 

time of the algorithm (T(n)) is computed as follows: 

 

T(n) = O(n)[O(1) + O(n)[O(1) + O(1)] + O(1)] + O(n) 

T(n) = O(n) [O(1) + O(n)+ O(n)] + O(1)] + O(n) 

T(n) = O(n) + O(n2) + O(n2) + O(n) + O(n) 

T(n) = O(2n2) + O(3n).  

 

In this case as N becomes very large, O(n2) is considered the 

most significant factor of the Big O-Notation obtained from 

the above T(N) deductions. Hence in the worst case scenario 

NFO algorithm’s time efficiency complexity can be measured 

by T(n) = O(n2) 

 

4.2 Number of Primitive Operations 
#include<iostream> 

#include<iomanip> 

using namespace std; 

int main() 

{ 

 int key, size, chk; 

  

 cout<<"Please specify the size of hash table:"; 

 cin>>size; //1 primitive operation 

 double h[size],  val=0.0; //2 primitive operations 

  

 for(int i=0;i<size;i++) //1+ n*1 primitive operations 

 { 

          cout<<"Please enter the keys to be   hashed:"; 

           cin>>key;       //n*1 primitive operation 

           chk = val = key;     //n*2 primitive operation 

           while(chk>0)       //n*n primitive operations 

           { 

  chk/=10;    //(n*n*2) primitive operations 

  val*=0.1;    //(n*n*2) primitive operations 

            } 

  //n*5 primitive operations 

  h[i]=(key%size)*1.0+val; 

 } 

  

 for (int i=0;i<size;i++) //1+ n*1 primitive operations 

  //2 primitive operation 

cout<<i<<setw(7)<<h[i]<<"\n"; 

 return 0; 

} 

 

At least: t(n) = 3  

As n →3, 3→    => O(n2)  

At most: t(n) = 1 + 2 + 1+ n*1 + n*1 +n*2 + n*n + n*n*2 + 

n*n*2 +n* 5 + 1+n*1+2 = 7+10n+4n2 As n , (4n2 + 10n + 7)   

=> O(n2). 

4.3 Merits and Demerits of NFO 
The merits of NFO strategy include: 

 Efficient storage-wise 

 Does not require use of 3 state flag in cells 

 Table size is known (size of table = number of 

values to be hashed) 

 No primary clustering 

 No long probe sequence 

 No deterioration in hash table efficiency 

 Collision resolution is efficient 

 Easy to search and track an element and its slot or 

bucket number. 

 Table size need not be a prime number 

 The keys of the objects to be hashed need not be 

unique. 

 No need to use another data structure 

The demerits of NFO strategy include: 

 Extra computation is required 

 Extra feature is required i.e. dot (.) 

5. CONCLUSION 

NFO (an abbreviation for Nimbe-Frimpong-Opoku) is an 

efficient collision resolution strategy experimented on 

numeric values. NFO is being proposed and is earnestly hoped 

it will go a long way to add to the body of knowledge due to 

the numerous merits it has, including but not limited to 

efficient storage-wise, no primary clustering and no 

deterioration in hash table efficiency. It is also known as the 

dot (.) strategy. Future works to resolve collisions in hash 

tables will be conducted with a multidimensional array and 

other data structures. A variant of NFO will be designed to 

resolve collision in string hash tables. This will require some 

modifications to the original NFO, thus making it more 

efficient, reliable and adoptable to values of different data 

types. 

6. ACKNOWLEDGMENTS 
It has been God‘s grace and revelation that this paper has been 

completed. All praises and gratitude is given unto God. 

Amen! Families and Friends are acknowledged for their 

encouragement and unyielding support. Reviewers and 

experts are also shown gratitude for their assessments, 

contributions and comments towards this paper. 

7. REFERENCES 
[1] Clifford, A. Shaffer., 2007. Hashing Tutorial.  

[2] Erickson, J., 2009. Hash Tables 

[3] Bruno, D.G., 1999. Data structures and algorithm with 

object oriented design in C++ (1* Ed). Addison Wesley 

Publishing Company-America. PP. 225-248 

[4] Archaya, A., 2012. Input Segmented Universal Hashing  



International Journal of Computer Applications (0975 – 8887) 

Volume 99– No.10, August 2014 

41 

[5] D.E. Knuth., 1998. The Art of Computer Programming: 

Sorting and Searching, volume3. Addison- Wesley 

Longman, second edition. 

[6] Jauhar, A., 2008. Hashing: Collision Resolution Schemes  

[7] Bello, S.A., Liman, A.M., Gezawa, A.S., Garba, A., Ado, 

A., “Comparative Analysis of Linear Probing, Quadratic 

Probing and Double Hashing Techniques for Resolving 

Collusion in a Hash Table”, International Journal of 

Scientific & Engineering Research, 2014 

[8] Askitis, N, Zobel, J., 2005. Cache-Conscious Collision 

Resolution in String Hash Tables  

 

 

 

IJCATM : www.ijcaonline.org 


