
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

35

An Efficient Strategy for Collision Resolution in Hash

Tables

Peter Nimbe

Dept. of Computer Science
K.N.U.S.T – Kumasi, Ghana
Dept. of Computer Science
C.U.C.G, Fiapre-Sunyani

Ghana

Samuel Ofori Frimpong
Faculty of I.C.S.T

Dept. of Computer Science
C.U.C.G, Fiapre-Sunyani

Ghana

Michael Opoku
Dept. of Computer Science
K.N.U.S.T – Kumasi, Ghana
Dept. of Computer Science
C.U.C.G, Fiapre-Sunyani

Ghana

ABSTRACT

This paper presents NFO, a new and innovative technique for

collision resolution based on single dimensional arrays. Hash

collisions are practically unavoidable when hashing a random

subset of a large set of possible keys and should be seen as an

event that can disrupt the normal operations or flow of hash

functions computing an index into an array of buckets or slots.

Hash tables provide efficient table implementations but then

its performance is greatly affected if there are high loads of

collisions. This new approach intends to manage these

collisions effectively and properly although there are some

algorithms for handling collisions currently. NFO

incorporates certain features to resolve some problems of

existing techniques. The performance of our approach is

quantified via analytical modeling and software simulations.

Efficient implementations that are easily realizable and

productive in modern technologies are discussed. The

performance benefits are significant and require machines

with moderate memory and speed specifications. Depending

on observations of the results of implementation of the

proposed approach or technique on a set of real data of several

types, all results are registered and analyzed.

General Terms

Algorithm, Collision, Performance, Implementation

Keywords

Hash Function, Open Addressing, Separate Chaining, Linear

Probing, Quadratic Probing, Double Hashing

1. INTRODUCTION
Hashing is a method for storing and retrieving records from a

database. It lets you insert, delete, and search for records

based on a search key value. When properly implemented,

these operations can be performed in constant time. In fact, a

properly tuned hash system typically looks at only one or two

records for each search, insert, or delete operation. This is far

better than the O(log n) average cost required to do a binary

search on a sorted array of n records, or the O(log n) average

cost required to do an operation on a binary search tree.

However, even though hashing is based on a very simple idea,

it is surprisingly difficult to implement properly. Designers

need to pay careful attention to all of the details involved with

implementing a hash system [1].

A hash table is a data structure for storing a set of items, so

that we can quickly determine whether an item is or is not in

the set. The basic idea is to pick a hash function h that maps

every possible item x to a small integer h(x). Then we store x

in slot h(x) in an array. The array is the hash table. Most hash

table designs assume that hash collisions—different keys that

are assigned by the hash function to the same bucket will

occur and must be accommodated in some way [2].

Alternatively, a hash function is any well-defined procedure

or mathematical function that converts a large, possibly

variable-sized amount of data into a small datum, usually a

single integer that may serve as an index to an array [3].

Hash collisions are practically unavoidable when hashing a

random subset of a large set of possible keys. For example, if

2,500 keys are hashed into a million buckets, even with a

perfectly uniform random distribution, according to the

birthday problem there is a 95% chance of at least two of the

keys being hashed to the same slot [4].

Therefore, most hash table implementations have some

collision resolution strategy to handle such events. Some

common strategies are described below. All these methods

require that the keys (or pointers to them) be stored in the

table, together with the associated values [4].

Some of these strategies include:

 Open Addressing (Linear Probing, Quadratic

Probing, Rehashing/Double Hashing)

 Separate Chaining with linked lists

 Separate Chaining with other structures

 Separate Chaining with list heads [4]

2. RELATED WORK
There are many collision resolution strategies. Open

addressing and separate chaining are considered in this paper.

Focus is placed on these two broad strategies even though

there are other strategies for resolving collisions in hash

tables. They are the 2 broad ways of collision resolution and

play a vital role in the analysis and comparisons [5]. Cache-

Conscious collision resolution strategy used in string hash

tables is also reviewed in this paper.

2.1 Open Addressing
This strategy uses array implementation where all items are

stored in the hash table itself. Each of the cells in the hash

table or array has three states namely: OCCUPIED, EMPTY,

DELETED. Alternative cells which are empty are found by

the hash function when collision occurs [6]. This hash table

has a probe sequence which is usually in the form:

hi(key) = [h(key) + c(i) % n, for i=0,1,..,n-1 where h is the

hash function and n is the size of the hash table. The function

c(i) is required to have the following two properties:

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

36

Property 1: c(0) = 0

Property 2: The set of values {c(0) % n, c(1)%n, c(2)%n, …,

c(n-1)%n} must be a permutation of {0,1,2,…,n-1}, that is, it

must contain every integer between 0 and n-1 inclusive [6].

The function c(i) is used to resolve collisions.

To insert item r, we examine array location h0(r) = h(r). If

there is a collision, array locations h1(r), h2(r),..., hn-1(r) are

examined until an empty slot is found [6].

Similarly, to find item r, we examine the same sequence of

locations in the same order.

For a given hash function h(key), the only difference in the

open addressing collision resolution techniques (linear

probing, quadratic probing and double hashing) is in the

definition of the function c(i). Common definitions of c(i) are:

Table 1. Definitions of collision resolution techniques

Collision Resolution Strategy c(i)

Linear Probing i

Quadratic Probing +=i2

Double Hashing i*hp(key)

where hp(key) is another hash function

Open Addressing come with some merits like:

 No need of a new data structure

 Efficient storage-wise

And its demerits include:

 Requires the use of 3 state flag in each cell

 The keys of objects to be hashed must be distinct

 Proper table size must be chosen

Usually in order to determine an appropriate table size, the

following formula is of essence:

In linear probing, when collision occurs, the table is searched

sequentially for an empty slot. This is accomplished using two

values - one as an initial value and one as an interval between

successive values in modular arithmetic. The second value,

which is the same for all keys and known as the increment, is

repeatedly added to the initial value until a free space is

found, or the entire table is traversed [7]. The algorithm for

this technique is

nextLocation = (initialValue + increment) % tableSize

 The increment takes the following value: 1, 2, 3, 4, and so on.

Given an ordinary hash function h(x), a linear probing

function would be:

H(x, i) = (h(x) + i) (mod n) for i = 0, 1, 2,. . . n-1 [7]

Linear probing has some disadvantages which include:

 Primary clustering

 Large clusters lead to long probe sequence

 Large clusters lead to deterioration in hash table

efficiency [6]

 In quadratic probing, original hash value is taken and

successive values of an arbitrary quadratic polynomial are

added to the starting value. The idea here is to skip regions in

the table with possible clusters [7]. It uses the hash function of

the form:

H(k, i) = (h(k) + i2) mod n for i = 0, 1, 2, . . . , n-1 [7]

In double hashing, a second hash function h2(key) is applied

to the key when collision takes place. The result of the second

hash function will be the number of positions from the point

of collision to insert. There are some requirements for the

second function. These requirements include:

 It must never evaluate to zero

 Must make sure that all cells can be probed [7].

The probing sequence is then computed as follows:

Hi(x) = (h(x) + ih2(x)) mod n [7]

Where h(x) is the original function, h2(x) the second function,

i the number of collisions and n the table size. So the table is

searched as follows:

H0 = (h(x) + 0*h2(x)) mod n

H1 = (h(x) + 1*h2(x)) mod n

H2 = (h(x) + 2*h2(x)) mod n

And so on [7].

2.2 Separate Chaining
This strategy uses an array of linked list implementation. It

could also use other data structures other than linked lists.

Here, many linked lists are connected or chained to various

cells of the hash table. This tends to cause some problems

especially tracking these linked lists. For example, if a hash

table has 2500 cells, it implies there will also be a maximum

of 2500 linked lists (if collisions occur in all the cells) which

are obviously very difficult to track [6]. The separate chaining

comes with some advantages like:

 Efficient collision resolution

 Deletion is easy

 Table size need not be a prime number [6].

It also has some disadvantages like:

 Separate data structure for chains required and code

to manage it.

 Extra space required for linked lists.

 Creating new nodes is expensive and slows down

the machine for some languages [6].

The separate chaining is depicted in Figure 1.

Loading the keys 23, 13, 21, 14, 7, 8, and 15, in a hash table

of size 7 using the separate chaining using linked lists, the

following hash values emerge.

h(23) = 23%7 = 2

h(13) = 13%7 = 6

h(21) = 21%7 = 0

h(14) = 14%7 = 0 collision

h(7) = 7%7 = 0 collision

h(8) = 8%7 = 1

h(15) = 15%7 = 1

The hash table representation is depicted in Figure. 2.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

37

2.3 Cache-Conscious Collision Resolution
In this strategy, two alternatives to the standard representation

were explored. They included:

 The simple expedient of including the string in its

node

 And the more drastic step of replacing each list of

nodes by a contiguous array of characters

The Cache-Conscious Collision Resolution Strategy is

significant for large set of strings and the new structure gives

substantial savings in space at no cost in time. In the best case,

the overhead space required for pointers is reduced by a factor

of around 50 to less than two bits per string (with total space

required, including 5.68 megabytes of strings, falling from

20.42 megabytes to 5.81 megabytes), while access times are

also reduced [8].

Askitis et al suggested cache-conscious strategy as oppose to

a standard-chain hash table which uses two pointer traversals,

one to reach the node and one to reach the string. In the cache-

conscious strategy, strings are assumed to have sequences of

8-bit bytes, and a character such as null is available as a

terminator. This strategy eliminates the chain altogether, and

store the strings in a contiguous array [8].

The cache-conscious strategy is highly effective with array-

based structures use for storing strings. Each array element is

represented as a contiguous list of items which in effect depict

the array as a resizable bucket. The cost of access is a single

pointer traversal, to fetch a bucket, which is then processed

linearly [8]. Although there seem to be an improvement in this

strategy, it is best suited for string values. Askitis et al

experiment did not reveal how numeric values would perform

with their proposed scheme. Their prime focus was on cache

(space) utilization, and memory management [8]. The cache-

conscious collision resolution strategy is depicted in Figure 3.

Fig.1: Separate chaining using linked lists

Fig.2: Hash table representation for separate chaining

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

38

Fig.3: The standard-chain (left), compact-chain (right) and array (below) hash tables

3. NFO STRATEGY
The algorithm for the NFO strategy is expressed as a

pseudocode. It is then implemented using C++ programming

language. Further illustration is given with respect to how the

algorithm functions.

3.1 Pseudocode
Declare variables: key, size, chk, val

Prompt user to enter size

Get size

FOR i=0 to size

 Prompt user to enter keys

 Get key

 Assign key to val

Assign key to chk

WHILE chk is greater than zero

 Calculate chk as chk/10

 Calculate val as val*0.1

END WHILE

Calculate hi as (key%size)*1.0+val

END FOR

FOR i=0 to size

 Display i, hi

END FOR

.

3.2 C++ Implementation
#include<iostream>

#include<iomanip>

using namespace std;

int main()

{

 int key, size, chk;

 cout<<"Please specify the size of hash table:";

 cin>>size;

 double h[size], val=0.0;

 for(int i=0;i<size;i++)

 {

 cout<<"Please enter the keys to be hashed:";

 cin>>key;

 chk = val = key;

 while(chk>0)

 {

 chk/=10;

 val*=0.1;

 }

 h[i]=(key%size)*1.0+val;

 }

 for (int i=0;i<size;i++)

 cout<<i<<setw(7)<<h[i]<<"\n";

 return 0;

}

3.3 Illustration
Step by step operations are outlined using linear probe,

separate chaining and NFO (algorithm being proposed). The

elements to be hashed are 23, 13, 8, 15, 45, 88, and 67.

3.3.1 Linear Probing
The hash function is given by h(x) = x%7

For the 1st Element (x=23)

h(23) = 23%7 = 2

This implies the 1st element will be stored in slot 2 of the

bucket array.

For the 2nd Element (x=13)

h(13) = 13%7 = 6

This implies the 2nd element will be stored in slot 6 of the

bucket array.

For the 3rd Element (x=8)

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

39

h(8) = 8%7 = 1

This implies the 3rd element will be stored in slot 1 of the

bucket array.

For the 4th Element (x=15)

h(15) = 15%7 = 1

This implies the 4th element will be stored in slot 1 of the

bucket array

For the 5th Element (x=45)

h(45) = 45%7 = 3

This implies the 5th element will be stored in slot 3 of the

bucket array

For the 6th Element (x=88)

h(88) = 88%7 = 4

This implies the 6th element will be stored in slot 4 of the

bucket array

For the 7th Element (x=67)

h(67) = 67%7 = 4

This implies the 7th element will be stored in slot 4 of the

bucket array. The hash table representation is shown in Table

2 below.

Table 2: Hash table representation for linear probing

0

1 8 - 3rd Element

2 23 - 1st Element

3 15 - 4th Element here due to collision at slot 1

4 45 - 5th Element here due to collision at slot 3

5 88 - 6th Element here due to collision at slot 4

6 13 - 2nd Element

Analysis

 The 4th Element (15) should have gone to slot 1 but

there is a collision since the element 8 is already

occupying that slot. The next available slot which is slot

2 is also occupied by the element 23. The 3rd available

slot was empty hence element 15 was placed there.

 Again the 5th Element (45) which should have been

stored in slot 3 is moved to slot 4 which is the next

available slot which is not occupied.

 The 6th Element (88) should have gone to slot 4 but then

it is occupied by element 45. The next available slot is

slot 5 which is empty. Hence it’s placed there.

Limitations

 The hash table is not full to capacity yet not all the

elements can be stored in the hash table due to the

incremental approach adopted by the linear probe.

For instance element 67 had to be stored in slot 4

but then that slot is occupied. So the next available

slots which could have stored the element were not

available. Hence there is a dead end.

 The hash function should have placed elements in

specific slots but because of collision they have

been displaced or moved elsewhere. Hence relating

some of the elements to their corresponding slots is

complex.

3.3.2 Separate Chaining
Using the same function h(x) = x%7 and the elements (23, 13,

8, 15, 45, 88, and 67), separate chaining using linked list is

represented in Table 3 below.

Table 3: Hash representation for separate chaining

0

1

2

3

4

5

6

Limitations

 The hash table is not optimally used because there

are empty slots at 0 and 5.

 Keeping track of the multiple linked lists becomes

extremely difficult.

3.3.3 NFO
Using the same function h(x) = x%7 and the elements 23, 13,

8, 15, 45, 88, and 67, the values returned are 2, 6, 1, 1, 3, 4,

and 4. The values returned are then joined or concatenated to

the elements hashed by using a dot (.) and then placed in the

next available cell or slot starting from the first slot (slot 0).

The hash table is represented below in Table 4.

Table 4: Hash representation for NFO

0 2.23

1 6.13

2 1.8

3 1.15

4 3.45

8 15

23

13

45

88 67

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

40

5 4.88

6 4.67

From the hash table above, the elements 8 and 15 are found in

slots 2 and 3 whereas the elements 88 and 67 are found in

slots 5 and 6. Elements 23, 13 and 45 are found in slots 0, 1

and 4 respectively. The preceding numbers before the dot (.)

in each slot indicates the value returned by the hash function.

There is a value of 1 preceding the elements in slots 2 and 3

likewise there is a value of 4 preceding the elements in slots 5

and 6. This indicates that had it not being the adoption of

NFO, the elements 8 and 15 would have collided in the same

bucket slot (slot 1). The same applies to elements 88 and 67

which would have also collided in the same bucket (slot 4).

4. RESULT ANALYSIS
The Big-O-Notation and the Number of Primitive Operations

are used to characterize the running times of the algorithms.

The characterization is done in terms of n, of the running time

of the algorithm.

4.1 Big O Notation
The outer loop iterates 'n' times. The inner loop also iterates

‘n’ times. In computing the big O, the number of iterations of

each of the loop must be multiplied together. The running

time of the algorithm (T(n)) is computed as follows:

T(n) = O(n)[O(1) + O(n)[O(1) + O(1)] + O(1)] + O(n)

T(n) = O(n) [O(1) + O(n)+ O(n)] + O(1)] + O(n)

T(n) = O(n) + O(n2) + O(n2) + O(n) + O(n)

T(n) = O(2n2) + O(3n).

In this case as N becomes very large, O(n2) is considered the

most significant factor of the Big O-Notation obtained from

the above T(N) deductions. Hence in the worst case scenario

NFO algorithm’s time efficiency complexity can be measured

by T(n) = O(n2)

4.2 Number of Primitive Operations
#include<iostream>

#include<iomanip>

using namespace std;

int main()

{

 int key, size, chk;

 cout<<"Please specify the size of hash table:";

 cin>>size; //1 primitive operation

 double h[size], val=0.0; //2 primitive operations

 for(int i=0;i<size;i++) //1+ n*1 primitive operations

 {

 cout<<"Please enter the keys to be hashed:";

 cin>>key; //n*1 primitive operation

 chk = val = key; //n*2 primitive operation

 while(chk>0) //n*n primitive operations

 {

 chk/=10; //(n*n*2) primitive operations

 val*=0.1; //(n*n*2) primitive operations

 }

 //n*5 primitive operations

 h[i]=(key%size)*1.0+val;

 }

 for (int i=0;i<size;i++) //1+ n*1 primitive operations

 //2 primitive operation

cout<<i<<setw(7)<<h[i]<<"\n";

 return 0;

}

At least: t(n) = 3

As n →3, 3→ => O(n2)

At most: t(n) = 1 + 2 + 1+ n*1 + n*1 +n*2 + n*n + n*n*2 +

n*n*2 +n* 5 + 1+n*1+2 = 7+10n+4n2 As n , (4n2 + 10n + 7)

=> O(n2).

4.3 Merits and Demerits of NFO
The merits of NFO strategy include:

 Efficient storage-wise

 Does not require use of 3 state flag in cells

 Table size is known (size of table = number of

values to be hashed)

 No primary clustering

 No long probe sequence

 No deterioration in hash table efficiency

 Collision resolution is efficient

 Easy to search and track an element and its slot or

bucket number.

 Table size need not be a prime number

 The keys of the objects to be hashed need not be

unique.

 No need to use another data structure

The demerits of NFO strategy include:

 Extra computation is required

 Extra feature is required i.e. dot (.)

5. CONCLUSION

NFO (an abbreviation for Nimbe-Frimpong-Opoku) is an

efficient collision resolution strategy experimented on

numeric values. NFO is being proposed and is earnestly hoped

it will go a long way to add to the body of knowledge due to

the numerous merits it has, including but not limited to

efficient storage-wise, no primary clustering and no

deterioration in hash table efficiency. It is also known as the

dot (.) strategy. Future works to resolve collisions in hash

tables will be conducted with a multidimensional array and

other data structures. A variant of NFO will be designed to

resolve collision in string hash tables. This will require some

modifications to the original NFO, thus making it more

efficient, reliable and adoptable to values of different data

types.

6. ACKNOWLEDGMENTS
It has been God‘s grace and revelation that this paper has been

completed. All praises and gratitude is given unto God.

Amen! Families and Friends are acknowledged for their

encouragement and unyielding support. Reviewers and

experts are also shown gratitude for their assessments,

contributions and comments towards this paper.

7. REFERENCES
[1] Clifford, A. Shaffer., 2007. Hashing Tutorial.

[2] Erickson, J., 2009. Hash Tables

[3] Bruno, D.G., 1999. Data structures and algorithm with

object oriented design in C++ (1* Ed). Addison Wesley

Publishing Company-America. PP. 225-248

[4] Archaya, A., 2012. Input Segmented Universal Hashing

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

41

[5] D.E. Knuth., 1998. The Art of Computer Programming:

Sorting and Searching, volume3. Addison- Wesley

Longman, second edition.

[6] Jauhar, A., 2008. Hashing: Collision Resolution Schemes

[7] Bello, S.A., Liman, A.M., Gezawa, A.S., Garba, A., Ado,

A., “Comparative Analysis of Linear Probing, Quadratic

Probing and Double Hashing Techniques for Resolving

Collusion in a Hash Table”, International Journal of

Scientific & Engineering Research, 2014

[8] Askitis, N, Zobel, J., 2005. Cache-Conscious Collision

Resolution in String Hash Tables

IJCATM : www.ijcaonline.org

