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ABSTRACT  
One of the most important rules of interference is resolution. 

Resolution basically works by using the principle of proof by 

contradiction. Propositional Resolution works only on 

expressions in clausal form. Before the rules of resolution can 

be applied, the premises and conclusions must be converted to 

this form. First part of this work consists of basic information 

about resolution like what are literals, clauses, empty clause, 

predicate, facts, rules, conjunctive normal form etc. What is it 

used for, what is their aim. One of the aims of this work is 

differentiating resolution between clauses-when clauses 

containing variables and When clauses containing no 

variables. When clauses containing no variables resolution are 

very easy and simple and then no need to substitution. When 

clauses containing variables resolution becomes complicated 

and then need a proper substitution through the cancellation of 

complementary literals. So substitution is an important role in 

resolution. Unification has been used in my work for 

performing resolution in predicate calculus. The unification 

algorithm tries to find out the Most General Unifier (MGU) 

between a set of atomic formulae. Theorem proving using 

resolution has also been included in my work which helps to 

solve many problems.  

Keywords 
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1. INTRODUCTION  
Resolution works on the principle of identifying 

complementary literals in two clauses and deleting them 

thereby forming a new literal (the resolvent).Propositional 

Resolution is a powerful rule of inference for Propositional 

Logic. Using Propositional Resolution (without axiom 

schemata or other rules of inference), it is possible to build a 

theorem prover that is sound and complete for all of 

Propositional Logic. One can perform Resolution from a 

Knowledge Base. A Knowledge Base is a collection of facts 

or one can even call it a database with all facts. Basically the 

logic process takes in some information called premises and 

produces some out puts called conclusions. Rules of 

resolution can be applied; the premises and conclusions must 

be converted to clausal form i.e. premises to predicate to 

clausal form, then resolution works. In this paper resolution 

works in propositional calculus when clauses containing no 

variables and resolution works in predicate calculus when 

clauses containing variables which are clearly explained with 

some examples.  

 

2. STANDARD LOGIC SYMBOLS  
Throughout this paper used the following standard logic 

symbols: “→” (implication), “↔” (double implication or 

biconditional), “~” (not), “¬” (not), “Λ” (and), “v” (or), “” 

(there exists), “”for all). If x is a variable then “x” is read 

as any one of- for all x, for each x, for every x. Again“x” is 

read as any one of- there exists x, for some x, for at least one 

x. The propositional calculus, from which we take all 

necessary properties of the logical operations Λ, v , ￢, →, 

and ↔, and the (first-order) predicate calculus, which to these 

propositional mechanisms adds compound functional and 

predicate constructions and the two quantifiers universal 

quantifier which is denoted by the symbol “” and existential 

quantifier which is denoted by the symbol “”. 

3. LITERAL  
A literal is either an atomic sentence or a negation of an 

atomic sentence.  

For example, if p is a Logical constant, the following 

sentences are both literals P and ¬ p. Another example: ~p v 

~q v r, where p, q, r are literals.  

4. CLAUSAL FORM  
Propositional Resolution works only on expressions in clausal 

form. A clause is a disjunction of finitely many literals. For 

examples: ~p v ~q v r is a clause form, where p, q, r are 

literals.  

5. EMPTY CLAUSE  
A disjunction of no literals is called an empty clause and is 

denoted by  .An empty clause shows that the negation of the 

conclusion is a complete contradiction, hence the negation of 

the conclusion is invalid or false or the assertion is completely 

valid or true.  

6. UNIT CLAUSE  
A Clause with one literal is known as unit clause. e.g. {~q}. 

7. PROPOSITIONAL LOGIC OR 

PROPOSITIONAL CALCULUS  
Propositional logic has only sentences, which represent facts. 

This is the simplest form of logic. Here all statements made 

are called propositions. A proposition in propositional logic 

takes only two values, either the proposition is true or it is 

false but not both or not partially true or false. The 

propositional calculus provides only the operations Λ, V, ￢, 

→, and ↔ and the two constants ‘true’ and ‘false’,  
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8. PREDICATE LOGIC OR FIRST 

ORDER LOGIC OR PREDICATE 

CALCULUS  
Predicate calculus is a generalization of propositional 

calculus. Some statements are there in real life situation which 

are correct but proposition logic fail to express them. To 

overcome this deficiency predicate logic has been introduced. 

For example: in real life statement- “All mammals suckle 

their young ones. Since elephant is a mammal, it suckles its 

young ones”. In this statement proposition logic fails to 

express it.  The propositional logic is not powerful enough to 

represent all types of assertions that are used in computer 

science and mathematics, or to express certain types of 

relationship between propositions such as equivalence.  

For example, the assertion "x is greater than 1", where x is a 

variable, is not a proposition because you cannot tell whether 

it is true or false unless you know the value of x. Thus the 

propositional logic cannot deal with such sentences. However, 

such assertions appear quite often in mathematics and we 

want to do inference on those assertions.  

9. PREDICATE  
A predicate is defined as a relation that binds two atoms 

together for example: Ram likes aeroplanes. Here like is 

predicate that links two atoms “Ram” and “aeroplanes”. 

Symbolically likes (Ram, aeroplane).This predicate can be 

generalized as like (x, y) where x and y are variables meaning 

x likes y. Generally, predicates are used to describe certain 

properties or relationships between individuals or objects. A 

predicate can take arguments, which are terms.A predicate 

with one argument expresses a property of an object – Student 

(Bob) A predicate with no arguments is a simple proposition, 

as in propositional logic.Another example of an assignment is 

as follows. The domain consists of the four numbers 2, 3, 4. 5 

The predicate “greater” is true if the first argument is greater 

than the second argument. Hence, greater (4, 3) is true and 

greater (3,4) is false. Assignment for the Predicate “greater”:  

 2 3 4 5 

2 0 0 0 0 

3 1 0 0 0 

4 1 1 0 0 

5 1 1 1 0 

Here, 0=false, 1= true. 

In “John and Peter are brothers", the phrase “are brothers” is a 

predicate. The entities connected this way, John and Peter are 

called terms. Terms play an important role in predicate 

calculus. A term is 

1. a constant  

2. a variable   

3. If f is an n-place function, 

   and t_1,.., t_n are terms,  

   then  f(t_1,...,t_n) is a term.  

 

10. FACTS  
Facts must start with a predicate which is an atom and ends 

with a full stop. 

 

11. RULES 
A rule is a predicate expression that uses Logical implication 

(→) to describe a relationship among facts.  

For example (facts & rules)        

A= {Fly(x) ← Bird(x),           
     Bird (Tweety) ←            

     Bird(x) ← Penguin(x),            
    Give _egg(x) ← Bird(x)            
     Penguin (Fred) ←            
    Fly(x) ←Penguin(x),}    

Here basically two facts are there 

1. Bird (Tweety)  

2. Penguin(Fred)   

And four types of rules are there:--  

1. Bird(x) ←Penguin(x)  

2. Gives_egg(x) ← Bird(x)  

3. Fly(x) ← Penguin(x)  

4. Fly(x) ← Bird(x)  

 

12. LIMITATIONS OF PROPOSITIONAL 

LOGIC      
Many kinds of inference cannot be formalized in propositional 

logic. For example, most useful inferences involve applying a 

general rule to a specific case. But general-to-specific 

inferences like the following cannot be formalized in 

propositional logic 

– All men are mortal  

– Socrates is a man 

– Therefore, Socrates is mortal. 

 This inference cannot be formalized in propositional logic 

because it refers to individual men, such as Socrates, and 

make generalizations about all men.  

 

12.1 Normal Form In Propositional Logic  
There are two major normal forms of propositional logic. One 

is conjunctive normal form (CNF) and the other is disjunctive 

normal form (DNF). Here discussing about CNF because in 

my work only CNF is required.  

 

13. STEPS TO CONVERT TO CNF 

(CONJUNCTIVE NORMAL FORM)  
Every sentence in Propositional Logic is logically equivalent 

to a conjunction of disjunctions of literals. A sentence 

expressed as a conjunction of disjunctions of literals is said to 

be in Conjunctive Normal Form (CNF).  

1. Eliminate implications ‘’  

A B = ~A v B  

2. Eliminate biconditionals ‘    
A    (A B) Λ (B A) = (~A v B) Λ (~B v A) 

3. Reduce the not symbol by the formula ~ (~A) = A  

4. DeMorgan’s Law 

 ~ (A Λ B) = ~ Av ~ B …………………….. DeMorgan’s 

Law 

 ~ (A v B) = ~ A Λ ~ B ……………………. DeMorgan’s 

Law 5. Eliminate AND ‘Λ’  

A Λ B splits the entire clause into two separate clauses i.e. A 

and B  

6. Use distributive law  

A Λ (B v C) = (A ΛB) v (AΛC) A v (B Λ C) = (A v B) Λ (A 

v C)  

For Example: convert ((p q)r) into CNF 

The problem is ((p q)r) 

 = ~ (p q) v r, since A B = ~A v B  

=~ (~p v q) v r  

= (p Λ~ q) v r, by DeMorgan’s Law   

= (p v r) Λ (~ q v r), 

Use distributive law Thus (p v r) Λ (~ q v r) 

 


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is the CNF of ((p q) 

14. QUANTIFIERS 
A quantifier is a symbol that permits one to declare or identify 

the  range or scope of the variable  in a logical expression. 

There are two basic quantifiers used in logic one is universal 

quantifier which is denoted by the symbol “” and the other is 

existential quantifier which is denoted by the symbol “”.If x 

is a variable then “x” is read as any one of- for all x, for 

each x, for every x. Again“x” is read as any one of- there 

exists x, for some x, for at least one x. 

For example: x (A(x)x)),This formula states that for all 

x, A(x) implies B(x). In this formula universal quantifier“” 

applies over the entire formula (A(x)x)). Hence 

(A(x)x)) is the scope of the quantifier. 

Note-1x P(x) means “for all x, P of x is true” 

Example: x Happy(x) 

If the universe of discourse is people, then this means that 

everyone is happy. 

Note-2:x P(x) means “there exists at least one x for which P 

of x is true” 

Example: x Happy(x) 

If the universe of discourse is people, then this means there is 

at least one happy person. 

Quantifiers indicate how frequently a certain statement is true. 

Specifically, the universal quantifier is used to indicate that a 

statement is always true, whereas the existential quantifier 

indicates that a statement is sometimes true. [14] Example-1: 

In “All cats have tails", the word “all" indicates that the 

statement “cats have tails" is universally true. Example-2: If 

we say “Tweety is a bird”, we conclude that or common 

people will understand that Tweety flies. Now if we get 

further information about Tweety,it is not necessary that 

Tweety should fly  because of a variety of reasons that 

Tweety is a penguin, Tweety’s wings are broken, Tweety is 

too weak to fly, Tweety is in caged, then we have to withdraw 

our previous conclusion and revise it by saying that Tweety 

doesn’t fly. This is existential quantifier, since existential 

quantifier indicates that a statement is sometimes true.  

14.1 Relationship Between Universal And 

Existential Quantifiers  
x ¬ P(x) <=> ¬x P(x)  

2. ¬x P(x) <=> x ¬P(x)  

x P(x) <=> ¬x ¬ P(x)  

x P(x) <=> ¬x ¬ P(x)  

For examples: 

 ¬y Happy(y) <=> y ¬ Happy(y)  

y ¬Happy(y) <=> ¬ y Happy(y)  

x ¬ Likes(x, John) <=> ¬x Likes(x, John)  

x Likes(x, John) <=> ¬x ¬Likes(x, John)   

 

15. SOME PREDICATE CALCULUS AND 

THEIR ACTUAL MEANINGS  
Calculus Expression Actual Meaning 

1.x(A(x)) A is true for all x. 

2. x(A(x)) A is true for some x. 

3.x(~A(x)) A is false for all x. 

4.x(~A(x)) A is false for some x. 

5.~x(~A(x))) A is true for some x. 

6.~x(~A(x))) A is true for all x. 

 

16. FREE AND BOUND VARIABLES  
Free variables: A variable is free in a formula iff the 

occurrence is outside the scope of the quantifier having the 

variable. A variable is also free in a formula if at least one 

occurrence of it is free. 

 Bound variables: A variable is bound in a formula iff  its 

occurrence is within the scope of the quantifier. A variable is 

also bound in situations where at least one occurrence of it is 

bound. [7] 

Every occurrence of a variable x in a formula of the form xB 

or of the form xB is called bound occurrence, occurrence 

which are not bound are called free.  

Note: Some formulas have no free variables they are called 

sentences.  

For example:x (A(x)x)),This formula states that for all 

x, A(x) implies B(x). In this formula universal quantifier“” 

applies over the entire formula (A(x)x)). Hence 

(A(x)x)) is the scope of the quantifier. Any change in the 

quantifier has an effect on both A(x)and x).So x is bound 

variable. 

 xy (A(x, y, z)) & z(B(y, z)),in this formula z is free 

variable in xy (A(x, y, z)) and z is bound variable in 

z(B(y, z)).  

 

17. NORMAL FORM IN PREDICATE 

LOGIC  
Prenex normal form is the normal form in predicate logic. A 

formula “A” in predicate logic is said to be prenex normal 

form if it has the form  

 (Q1x1) (Q2x2) (Q3x3)……….. (Qnxn) B, Where (Qixi) is either 

a or and B is formula without any quantifiers. B is called 

the matrix of the formula and (Q1x1) (Q2x2) (Q3x3)……….. 

(Qnxn) is called the prefix. i.e. Q1, Q2, Q3……..Qn maybe 

either a universal quantifier “”or a existential quantifier” 

”.  

 

18. CONVERTING TO PRENEX 

NORMAL FORM  
Step-1: Involves bringing all quantifiers to the beginning of 

the formula (Qi xi) (M), i=1, 2..., n Where, Qi is either  

(Universal Quantifier) or Ǝ (Existential Quanitifier) and is 

called the prefix, M contains no Quantifiers and is called the 

matrix.  

For example: x y (~A(x) v B(x, y) is a prenex normal form.  

x y z ((A(x, y, z) v B(y, z))C(x, z)) is another prenex 

normal form.  

Example-1: Convert the formula x (A(x)yx, 

yintoprenex normal form. [7]  

Solution: The given formula is x (A(x)yx, y

 =x (~A(x)vyx, y since A B = ~A v B    

= xy(~A(x)vx, yis the prenex normal form of 

x(A(x)yx,y  

Example-2 Convert the formula ~ ((x) p(x) y )(z) 

q(y, z)) intoprenex normal form.   

Solution: The given formula is  

~ ((x) p(x) y )(z) q(y, z)).  

= ~ (~ ((x) p(x))v (y )(z) q(y, z))), since A B = ~A 

v B   

= ((x) p(x))Λ~ (y )(z) q(y, z)), since~ (A v B) = ~ A Λ 

~ B and applying ~ (~A) = A  

= ((x) p(x))Λ (y ) ~ ((z) q(y, z))),since ~ (x (A(x))) = 

x (~A(x)). 



International Journal of Computer Applications (0975 – 8887) 

Volume 99– No.10, August 2014 

25 

 = (x) p(x)Λ (y ) (z) ~ q(y, z), since ~ (x (A(x))) = x 
(~A(x)) 

 .= (x) (y) (z) p(x)Λ ~ q(y, z),is the required prenex 

normal form.  

Step-2: In the required prenex normal form remove all 

‘      ‘’ though  (Universal Quantifier) or Ǝ 

(Existential Quantifier) to the beginning of the formula.  

For example: (x) (y) (z) ((p(x, y) v~q(x, z))r(x, t, z)) is 

not the prenex normal form though  (Universal Quantifier) 

or Ǝ (Existential Quantifier) to the beginning of the formula. 

Convert the formula (x) (y) (z) ((p(x, y) v~ q(x, 

z))r(x, y, z)) intoprenex normal form. [7]  

Solution: The given formula is (x) (y) (z) ((p(x, y) v~ 

q(x, z))r(x, y, z)).                                             

 = (x) (y) (z) (~ (p(x, y) v~ q(x, z))v r(x, y, z)), since A 

B = ~A v B. 

  = (x) (y) (z) ((~ p(x, y) Λ q(x, z))v r(x, y, z)), since~ (A 

v B) = ~ A Λ ~ B and applying ~ (~A) = A.    

= (x) (y) (z) ((~ p(x, y) v r(x, y, z)) Λ (q(x, z) v r(x, y, 

z))), Using distributive law,      

This is the required prenex normal form.  

 

19. SKOLEMIZATION  
Skolemization 
Remove existentially quantified variables. Replace any 

existentially quantified variable x that is in the scope of 

universally quantified variables y1…yn with a new 

function F(y1,…,yn) (a Skolem function) Replace any 

existentially quantified variable x that is not in the scope of 

any universally quantified variables with a new constant c (a 

Skolem term). [7] 

 Otherwise a formula P in the prenex normal form has a 

Skolem form PS which is obtained when all are removed by 

replacing the variables as functions of variables preceding it. 

If there is no  before a constant symbol is used. Davis and 

Putnam method is widely is widely used now-a-day.  

The steps involved in this methodology are:  

1. A formula of the first order logic can be transformed into 

prenex normal form where the matrix contains no quantifiers 

and the prefix is a sequence of quantifiers.  

2. The matrix since it does not contain quantifiers can be 

transformed into a CNF.  

3. Without affecting the inconsistency property, the existential 

quantifiers in the prefix can be eliminated by using Skolem 

functions.  

The effect of Skolemization:  

Convert the formula x y w z Q(x, y, w, z, G (w, x)) 

into its Skolem form.[7]   

Solution: The Skolem form for the given problem is x y 

z Q(x, y, P(x, y), z, G (P(x, y), x)) Where P is the Skolem 

function for w.  

NB: the Skolem function is a function, so this is not decidable 

anymore.  

The effect of Skolemization:  

Convert the formula P= q r s t (A (q, r)(s, 

t)) into its Skolem form  
Solution: In this formula q is not preceded by any  

quantifier.s is preceded by an  quantifier and so is t. 

Hence replace q by a constant say ‘a’, s and t by function of r. 

Therefore the Skolem form for the given problem is PS = 

r(A(a, r)(f(r), g(r)),where f and g are skolem functions 

for ‘r’.  

The effect of Skolemization:  

Convert the formula P= (x) (y) (z ) (u) (v) (w) P(x, 

y ,z, u, v, w) into its Skolem form.  

Solution: In this formula (x) is preceded by no universal 

quantifiers, Therefore we replace the existential variable x by 

‘a’. (u) is preceded by (y) and (z ), Therefore we replace 

the existential variable u by a two- place function f(y, z). (w) 

is preceded by (y) , (z )and (v). Therefore we replace the 

existential variable w by a three- place function g(y, z, v). 

Therefore the Skolem form (standard form) for the given 

problem is PS = (y) (z) (v) P (a, y, z, f(y, z), v, g(y, z, v)), 

where f and g are skolem functions for(y, z) and(y, z, v) 

respectively.  

The effect of Skolemization:  

Convert the formula P= (x) (y) (z) ((~P(x, y) ΛQ(x, z)) 

v R(x, y, z)) into its Skolem form. [7]  

Solution:  First the matrix is transformed into a CNF. (x) 

(y) (z) ((~P(x, y) v R(x, y, z)) Λ (Q(x, z) v R(x, y, z))) Now 

since (y) and (z) are both is preceded by (x), the 

existential variables y and z are replaced respectively by one –

place functions f(x) and g(x), Therefore the Skolem form 

(standard form) for the given problem is PS = (x) ((~P(x, 

f(x)) v R(x, f(x), g(x))) Λ (Q(x, g(x)) v R(x, f(x), g(x)))).  

 

20. STEPS TO CONVERT PREDICATE 

LOGIC FORMULA INTO PRENEX 

NORMAL FORM 
1. Eliminate implications ‘’  

A B = ~A v B  

2. Eliminate biconditionals ‘   A    (A B) Λ (B 

A) = (~A v B) Λ (~B v A)  

3. Reduce the not symbol by the formula ~ (~A) = A  

4. DeMorgan’s Law 

 ~ (A Λ B) = ~ Av ~ B …………………….. DeMorgan’s 

Law ~ (A v B) = ~ A Λ ~ B …………………….. 

DeMorgan’s Law  

5. Eliminate AND ‘Λ’  

A Λ B splits the entire clause into two separate clauses i.e. A 

and B .  

6. Use distributive law 

  A Λ (B v C) = (A ΛB) v (AΛC) A v (B Λ C) = (A v B) Λ (A 

v C)  

7. Eliminate Existential Quantifier ‘’  

To eliminate an independent Existential Quantifier, replace 

the variable by a Skolem constant. This process is called as 

Skolemization.  

For example: y: President (y)  

Here ‘y’ is an independent quantifier so we can replace ‘y’ by 

any name (say –George Bush). So, y: President (y) becomes 

President (George Bush).  

To eliminate a dependent Existential Quantifier we replace its 

variable by Skolem Function that accepts the value of ‘x’ and 

returns the corresponding value of ‘y.’  

For example: x: y: father of (x, y) Here ‘y’ is dependent 

on ‘x’, so we replace ‘y’ by S(x). So, x: y: father_of (x, y) 

becomes x: y: father_of (x, S(x)). [13] 

 8. Eliminate Universal Quantifier ‘’  

To eliminate the Universal Quantifier, drop the prefix in 

prenex 

becomes in prenex normal form. [13]  

9. Use the formula  

~ (x (A(x))) = x (~A(x)) ~ (x (A(x))) = x (~A(x)) Here 

negative signs bring before the atom.  
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21. STEPS FOR RESOLUTION 
Convert the given statements in Predicate/Propositional 

Logic Convert these statements into Conjunctive Normal 

Form Negate the Conclusion (Proof by Contradiction)  

Resolve using a Resolution Tree (Unification)  

 

21.1 Resolution Principle  
The resolution Principle is  

“Given any two clauses A and B, if there is a literal P1 in A 

which has a complementary literal P2 in B,  delete P1 and P2 

from A and B and construct a disjunction of the remaining 

clauses. The clause so constructed is called the resolvent of A 

and B.” where A and B are parent clauses.[12]  

 

21.2 Resolution on Propositional 

Calculus Resolution on propositional 

calculus 
This type of problem clauses contains no variables. So 

resolution is very easy and simple. Resolution on 

propositional calculus works fine in situation where the result 

is either true or false but not both. Propositional Resolution 

works only on expressions in clausal form.  Some statements 

are there in real life situation which are correct but proposition 

logic fail to express them. To overcome this deficiency 

predicate logic has been introduced.  

For example in real life statement- “All mammals suckle their 

young ones. Since elephant is a mammal, it suckles its young 

ones”. In this statement proposition logic fails to express it.  

The idea of Propositional Resolution is simple. Suppose we 

have the clause {p, q}. In other words, we know that p is true 

or q is true. Suppose we also have the clause {¬q, r}. In other 

words, we know that q is false or r is true. One clause 

contains q, and the other contains ¬q. If q is false, then by the 

first clause p must be true. If q is true, then, by the second 

clause, r must be true. Since q must be either true or false, 

then it must be the case that either p is true or r is true. So we 

should be able to derive the clause {p, r}. 

 The case we just discussed is an example. If we have the 

clause {p, q} and we also have the clause {¬q, r}, then we can 

derive the clause {p, r} in a single step.  

{p, q}  
 {¬q, r} 

 {p, r}   

21.3 Steps for Resolution On Propositional 

Calculus  
Step-1: convert the entire proposition to clause form.  

Step-2: negate p and convert the result to clause form.  

Step-3: select two clauses say A&B call these the parent 

clauses.  

Step-4: If there is a literal P1 in A which has a complimentary 

literal P2 in B delete P1&P2 from A&B and      construct a 

disjunction of the remaining clauses. The clauses so 

constructed are called the resolvent of A & B. 

Step-5: If the resolvent is empty clause then a contradiction 

has been found. If it is not, then add it to the set of clauses 

available to the procedure.  

 

21.4 For Example (RESOLUTION FOR 

PROPOSITIONAL CALCULUS)  
Consider the following clauses [10]  

A :  P  V  Q  V  R   

B :  ~P  V  Q  V  R   

C :  ~Q  V  R  

Clauses A have the literal P which is complementary to ~P in 

B. Hence both of them are deleted and a resolvent( disjunction 

of A and B after the complementary clauses are removed) is 

generated. That resolvent has again a literal Q whose negation 

is available in C. Hence resolving those two, one has the final 

resolvent.  

A :  P  V  Q  V  R (given in the problem)  

B :  ~P  V  Q  V  R (given in the problem)  

D :  Q  V  R (resolvent of A and B)  

C :  ~Q  V  R (given in the problem)  

E :  R  (resolvent of C and D)  

It is possible to pectoris the path of the problem using a 

deduction tree. 

 

 
P V Q V R                                                         ~P V Q V R 

 

 

     

     Q  V R                                                   ~Q V R 

 

 

                                         R 

 

 

.21.5 Resolution In Propositional Logic When 

Clauses Containing No Variables, So Resolution Are 

Very Easy And Simple. 

 Let us consider the following clauses 
 1. a← b Λ c  

2. b 
 3. c← d Λ e  
4. e V f  
5. d Λ~f  

Convert the above predicates to clauses form 

 1.~ (b Λ c) V a = a V~ (b Λ c) = a V ~b V ~c , since A B = ~A 

v B, ~ (A Λ B) = ~ Av ~ B  

2.b 

 3. ~ (d Λ e) V c = c V~ (d Λ e) = c V ~d V ~e , since A B = 

~A      v B, ~ (A Λ B) = ~ Av ~ B 

 4. e V f 

 5. d 
 6. ~f, since  A Λ B splits the entire clause into two separate 

clauses i.e. A and B . 

It is possible to pectoris the path of the problem using a 

deduction tree.  

First, the goal to be proved, a, is negated and added to the 

clause set. 

 

¬a                                        a V ¬b V ¬c 

 

 

 

 

        ¬b V ¬c                              b 

 

 

                  

           ¬c                           c V ¬d V ¬e 
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             ¬d V ¬e                   e V f             

  

 

 

                       d                                   f V ¬d 

 

                                f                       ¬ f 

 

 

 

The derivation of                     indicates that the database of 

clauses is inconsistent.  

22. SUBSTITUTIONS  
Substitutions are an essential part of interference process. 

When properly applied, they permit simplifications or the 
reduction of expressions through the cancellation of 

complementary literals. We says that two literals are 

complementary if they are identical but opposite in sign; i.e. P 

and        complementary literals. When clauses containing 

variables resolution becomes complicated and then need a 

proper substitution through the cancellation of complementary 

literals. So substitution is an important role in resolution. If A 

is a formula of predicate calculus, then (x/t)A denotes the 

formula that results when every occurrence of x in A is 

substituted by t.[12]. A substitution is defined as a set of pairs 

ti and vi where vi are distinct variables and ti are terms not 

containing the vi .The ti replace or are substituted for the 

corresponding vi in any expression for which the substitution 

is applied. A set of substitutions { t1 / v1 , t2 / v2, ……… tn / vn 

} where n≥1 applied to an expression will be denoted by 

Greek letters α, β and δ. For example, If β={a/x ,g(b)/y }, then 

applying β to the clause C=P(x, y) V Q(x, f(y)) We obtain C׳ 

=C β = P(a, g(b)) V Q(a, f(g(b))). [12]  

There are three major types of substitutions,[10,7] viz,  

 1. Substitution of a variable by a constant.  

 2. Substitution of a variable by another variable.  

3. Substitution of a variable by a function that does not 

contain the same variable.  
For example:  C1= ¬ dog (x) ν animal (x)  C2= ¬ animal (y) ν 

die (y) Resolvent: ¬dog(y) ν die (y) {y/x} Here x is 

substituted by y.  

 

23. UNIFICATION  
A substitution that makes two clauses resolvable is called a 

unifier and the process of identifying such unifiers is carried 

out by the unification algorithm. The unification algorithm 

tries to find out the Most General Unifier (MGU) between a 

set of atomic formulae. Given two expressions that are 

unifiable, such as expressions C1 and C2 with a unifer β with 

C1β = C2, we say that β is a Most General Unifier (MGU) [12] 

if any other unifier α is an instance of β. For example two 

unifier for literals P (u, b, v) and P (a, x, y) are α = {a/u, b/x, 

v/y} and   = {a/u, b/x, c/v, c/v}.The former is a Most General 

Unifier (MGU) whereas the latter is not since it is an instance 

of the former.  

To attempt to unify two literals, we first check if their initial 

predicate symbols are the same. If so, we can proceed, 

otherwise there is no way that they can be unified, regardless 

of their arguments.  
For example, two literals – P(x, y) P(y, z)   can be unified, 

since their initial predicate symbols P are the same.  

Next we compare x and y, and decide that if we substitute y 

for x, they could match. We will write that substitution as y/x. 

What we need to do after finding the first substitution y/x is to 

make that substitution throughout the literals, giving P(y, y) 

P(y, z) Now we can attempt to unify arguments y and z, which 

succeeds with the substitution z/y. The entire unification 

process has now succeeded with a substitution that is the 

composition of the two substitutions we found. We write the 

composition as (z/y)(y/x) Note that the Most General Unifier 

(MGU) is [(z/y)(y/x)].  

For example, Ram likes aeroplanes. Here like is predicate and 

two atoms Ram and aeroplanes. Symbolically like (Ram, 

aeroplane). John hates aeroplanes. Here hate is predicate and 

two atoms John and aeroplanes. Symbolically hate (John, 

aeroplane). Thus two literals – like (Ram, aeroplane) hate 

(John, aeroplane) cannot be unified, since their predicate 

symbols (like , hate) are not equal. So we can say two literals 

cannot be unified, so there is no chance for substitution.  

Note-1: Unification can sometimes be applied to literals with 

the same single clause. When a Most General Unifier (MGU) 

exists such that two or more literals within a clause are 

unified, the clause remaining after deletion of all but one of 

the unified literals is called a factor of the original clause. 

Thus ,given a clause C =P(x) V Q(x, y) V P(f(z)) the factor C׳ 

=C β =P(f(z)) V Q(f(z), y) is obtained where β={ f(z)/x}.  

Note-2: The basic idea of Unification is very simple. Any 

substitution that makes two or more expressions equal is 

called a unifier for the expressions.  
Note-3:The substitution (a1/a2,a3/a4, 

………)(b1/b2,b3/b4,…….)means to apply all the 

substitutions of the right-most list, then take the result and 

apply all the ones of the next list, and so forth, until all 

substitutions have been applied.  
Note-4: The literals   

 hate (x, y)  

hate (John, z )  

could be unified with any of the following substitutions:  

(John/x, z/y) 

 (John/x, y/z) 
(John/x, Peter/y, Peter/z).   
Example: Find the Most General Unifier (MGU) of  

C (x, f (g(x)), a) and C (b, y, z)   

Solution:   
C (x, f (g(x)), a) and C (b, y, z)                             SUBST = [   

]                                                            
C (x, f (g(x)), a) and C (b, y, z)                           SUBST = 

[(x/b)]   

↑                                
C (b, y, a) and C (b, y, z)                 SUBST = [(y/ f (g(x)), 

(x/b)]                          ↑                         
C (b, y, z) and C (b, y, z)        SUBST = [(z/a), (y/ f (g(x)), 

(x/b)]  

↑                       ↑  
The SUBST    started with an empty substitution and has 

made some   substitutions that unifies both the clauses. Hence 

the Most General Unifier (MGU) is [(z/a), (y/ f (g(x)), (x/b)] .  

 

24. RESOLUTION ON THE PREDICATE 

CALCULUS   
Substitution and unification are used for performing 

resolution in predicate calculus.  
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A literal and its negation in parent clauses produce a resolvent 

only if they unify under some substitution σ. Σ is then applied 

to the resolvent before adding it to the clause set. 

C1= ¬ dog (x) ν animal (x)  

C2= ¬ animal (y) ν die (y)  

Resolvent :¬dog(y) ν die (y) {y/x}  

Here x is substituted by y.  

 

25. STEPS FOR RESOLUTION ON 

PREDICATE CALCULUS 
Step-1: convert all the statements to clause form. 

Step-2: negate p and convert the result to clause form.  

Step-3: select two clauses say A&B call these the parent 

clauses 

.Step-4: Resolve them together The resolvent will be the 

disjunction of all the literals of both the parent clauses with 

appropriate substitutions performed and with the following 

exceptions .If there is one pair of literals L1 and ¬L2 such that 

one of the parent clauses contain L2 and the other contains L1 

and if L1 and L2 are unifiable then neither L1 nor L2 should 

appear in the resolvent.If there is more than one pair of 

complimentary literals, only one pair should be omitted from 

the resolvent.  

Step-5: If the resolvent is empty clause then a contradiction 

has been found. If it is not, then add it to the set of clauses 

available to the procedure.  

 

26. THEOREM PROVING USING 

RESOLUTION  
There are mostly two basic methods of theorem proving. [10]  

Method-1: start with the given axioms, use the rules of 

interference and then prove the theorem.  

Method-2: prove the negation of the result cannot be true.  

Note: The second method is commonly known as theorem 

proving using resolution.  

The following steps are the solving problem using theorem 

proving using resolution:  

Step-1: Find the negation of the result to be proved.  

Step-2: Add it as a valid statement to the given set of 

statements.  

Step-3: Perform resolution on these statements until a 

contradiction is encountered.  

Step-4: Conclude that the contradiction is due to the assumed 

negation of the result.  

Step-5: So the negated assumption that is made is false or the 

result to be proved is true.  

 

27. SOLVING REAL LIFE EXAMPLE OF 

THEOREM PROVING USING 

RESOLUTION: 
Illustration- 1: Let us consider the following statements— 

“Tom is a dog” “All dogs are animal” And “animals will 

die” Prove that “Tom will die”.  

Solution: Here the premises are “Tom is a dog” “All dogs are 

animal” And “animals will die”  

Convert the premises to predicate –  

The predicate forms are  

x)  (dog(x) → animal(x))  

2. dog (Tom)  

3. y) (animal (y) → die(y))  

In this problem basically one fact which is dog (Tom) and two 

rules are there in this problem they are  

1. dog(x) → animal(x)  

2. animal (y) → die(y)  

Now convert the predicates to clause form by applying a → b 

= ¬a ν b  
1.¬ dog(x) ν animal(x)  

2. dog (Tom)  

3. ¬ animal (y) ν die(y)  

By applying theorem proving using resolution, of method-2 as 

in above,  

First let us assume negation of the result   

¬die (Tom)                                                                   (1) 
The given axioms are-  

dog (Tom)                                                                     (2) x)  

(dog(x) → animal(x))                                            (3) y) 

(animal (y) → die(y))                                             (4) 

Equations (3) & (4) can be written as  

¬ dog(x) ν animal(x)                                                      (5) 

 ¬ animal (y) ν die(y)                                                    (6)                                                  
In equations (5) & (6), substitute x= Tom, y= Tom, gives, 

¬ dog(Tom) ν animal(Tom)                                              
(7)                                                    
¬ animal (Tom) ν die(Tom)                                                 (8)                                                    
Resolving equations (7) & (8), gives,  
¬ dog(Tom) ν die(Tom)                                                         

(9)                                                           Resolving 

equations (1) & (9), gives,  
 ¬ dog(Tom)                                                                  
(10)          Resolving equations (2) & (10), have a 

contradiction. 
This contradiction was due to the assumption that was made, 

i.e. the negation of the result. Hence the negation of the result 

is false or the result is true.Hence proved that is Tom will die. 

By tree diagram-- 

 

.¬ dog(x) ν animal(x) ¬ animal (y) ν die(y)  

  

       {y/x}  

           

dog (Tom) ¬ dog(y) ν die(y) 

 

  {Tom /y}    

 

 die(Tom)  ¬ die(Tom) 

 

    

  

 

 

 
Hence we see that the negation of the conclusion has been 

proved as a complete contradiction with the given set of facts. 

Hence the negation is completely invalid or false or the 

assertion is completely valid or true. Hence Tom will die 

(Proved). 

 

 Illustration- 2: Let the given theory be 

 A= {Fly(x) ← Bird(x),  

 Bird (Tweety) ←    

Bird(x) ← Penguin(x),   

Give _egg(x) ← Bird(x)  

Penguin (Fred) ←  

Fly(x) ←Penguin(x),}   

Can Tweety fly? Write the success set.  

Solution: ---- Negate the conclusion gives, ~Fly(Tweety)  

From the given problem, gives, 

 ~ Bird(x) ν Fly(x)  

NIL 
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~ Penguin(x) ν Bird(x)  

~ Bird(x) ν Gives_egg(x)  

~ Penguin(x) ν Fly(x)  

Bird ( Tweety ) 

 Penguin (Fred)  

The ground atoms are   

{Bird ( Tweety )  

Fly (Tweety)  

Penguin (Tweety)  

Gives_egg(Tweety)  

~ Fly (Tweety)  

Penguin (Fred)  

Bird (Fred)  

Gives_egg(Fred)  

~Fly (Fred)  

Fly (Fred)}  

Using resolution principle and using a deduction tree we have,  
                ~Fly(x)                                ~Bird(x) ν Fly(x) 

 

          {x/Tweety} 
                  

         

                      ~Bird (Tweety) Bird (Tweety)  

 

 
 
 
 
                                                               
Hence we see that the negation of the conclusion has been 

proved as a complete contradiction with the given set of facts. 

Hence the negation is completely invalid or false or the 

assertion is completely valid or true. Therefore Tweety can 

fly. 

 Success set: - {Bird(x), Fly(x), ~ Fly(x) }  

Note: Success Set is a subset of ground atom.  

Constant function - Tweety, Fred.  

 

Illustration – 3:  

Now let us see another example which uses theorem 

proving using resolution.  

Problem Statement are:  

1. John likes all kind of food.  

2. Apples and chicken are food.  

3. Anything anyone eats and is not killed by is food.  

4. Peter eats peanuts and is still alive.  

5. Robin eats everything that Peter eats.  

Translate these sentences into formulas in predicate logic.  

Convert the formulas into clause form.  

Prove that John likes peanuts using resolution. [11]  

Solution:  

Step 1: Converting the given statements into 

Predicate/Propositional Logic  

x: food(x) likes (John, x)   

2. food (apple) Λ food (chicken) 

a: b: eats (a, b) Λ killed (a) food (b)   

4. eats (Peter, Peanuts) Λ alive (Peter) 

c: eats (Peter, c) eats (Robin, c)  

d: alive (d) ~killed (d)   

7. e: ~killed (e) alive (e)  

Conclusion: likes (John, Peanuts)  

Step 2: Convert into CNF 

 i. ~food(x) v likes (John, x)  

ii. Food (apple)  

iii. Food (chicken)  

iv. ~ eats (a, b) v killed (a) v food (b)  

v. Eats  (Peter, Peanuts)  

vi. Alive (Peter)  

vii. ~eats (Peter, c) V eats (Robin, c)  

viii. ~alive (d) v ~ killed (d)  

ix. Killed (e) v alive (e)  

Conclusion: likes (John, Peanuts)  

Step 3: Negate the conclusion ~ likes (John, Peanuts)  

Step 4: Resolve using a resolution tree 

  

~ likes (John, Peanuts)       ~food(x) v likes (John, x) 

 

                                        {x / peanuts} 

 
   ~food (peanuts)       ~ eats (a, b) v killed (a) v food 

(b) 

 

                                                  { b / peanuts} 

 
   ~eats (a, peanuts) v killed (a)       eats (Peter, 

peanuts) 

 

                                               {a / Peter } 

 

          Killed (Peter)                 ~alive (d) v ~killed (d) 

 

                                                {d / Peter } 

 

             ~alive (Peter)                     alive (Peter) 

 

 

 

 

 
Hence we see that the negation of the conclusion has been 

proved as a complete contradiction with the given set of facts. 

Hence the negation is completely invalid or false or the 

assertion is completely valid or true. Hence Proved.  

 

Now the following simple example will show clearly how 

two methods (explained above) help in theorem proving.   

Let us consider the following statements—  

Given that  

1)x) [physician(x) → knows_surgery(x)]                   

2) Physician (John)   

Prove that knows_surgery(John)  

Proof:  

By using Method-1 of theorem proving:  

Using Modus ponens- Modus ponens states that if there is an 

axiom of the form P→Q and another of the form P, then Q 

logically follows. Here in the given problem, assuming 

Physician (John) as P and [physician(x) → knows_surgery(x)] 

as Q. Substitute x= John, the result knows_surgery(John) 

logically follows.  

By using Method-2 of theorem proving:  

Let us assume the negation of the result 

¬ knows_surgery(John)                                           (1) 

The given axioms are   

Physician (John)                                                  (2) 

x) [physician(x) → knows_surgery(x)]               (3)  
Equation (3) can be written as  

NIL 
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¬ Physician(x) ν knows_surgery(x)                         (4)  
[The quantifier is universal. If it had been existential, then 

skolem function has to be used]   
Substitute x= John, equation (4) becoms,  
¬ Physician (John) ν knows_surgery(John)              (5) 
Resolving equations (1) & (5), gives,  

¬ Physician (John)                                                      (6) 
Resolving equations (2) & (6), have a contradiction. This 

contradiction was due to the assumption that was made, i.e. 
the negation of the result. Hence the negation of the result is 

false or the result is true.  

Thus knows_surgery(John) (proved).  
 

28. DEFICIENCIES OF PREDICATE 

LOGIC AND RESOLUTION:  
Since logic base system and theorem proving techniques are 

monotonic in nature, i.e. if a proposition is made which is true 

, it remain true under all circumstances. This is monotonic 

reasoning system. Monotonic reasoning system cannot work 

in real life environment. All the theorems are proved by this 

methodology only, but in real life or real world are never 

monotonic since (1) situation changes time to time (2) 

information available is always incomplete. This is called 

nonmonotonic reasoning system. So logic base system and 

theorem proving techniques cannot work efficiently in 

nonmonotonic reasoning system.  Some difficulty with the use 

of theorem proving in AI systems is that there are some kinds 

of information that are not easily represented in predicate 

logic, like some example [11] “It is very hot today.” How can 

relative degrees of heat be represented? “Blond haired people 

often have blue eyes.”How can the amount of certainty be 

represented?   Since logic base system does not provide 

facilities for handling uncertainty. Every information logic 

deals have to either true or false but never both or partially 

true or false. For example-If we say Tweety is a bird, we 

conclude that or common people will understand that Tweety 

flies. Now if we get further information about Tweety,it is not 

necessary that Tweety should fly  because of a variety of 

reasons that Tweety is a penguin, Tweety’s wings are broken, 

Tweety is too weak to fly, Tweety is in caged, then we have to 

withdraw our previous conclusion and revise it by saying that 

Tweety doesn’t fly. In this situation predicate logic and 

resolution doesn’t work.  

 

29. RESOLUTION EXAMPLE (REAL 

LIFE)  
Anyone passing his science exams and winning the lottery is 

happy. But anyone who studies or is lucky can pass all his 

exams. John did not study but John is lucky. Anyone who is 

lucky wins the lottery. Is John happy? Translate these 

sentences into formulas in predicate logic. Convert the 

formulas into clause form.  

Solution: Here the premises are- 

1.   Anyone passing his history exams and winning the lottery 

is    happy.  

2.   But anyone who studies or is lucky can pass all his exams.  

3.    John did not study, but John is lucky   

4.   Anyone who is lucky wins the lottery.   

Convert to predicate logic  

1.   Anyone passing his history exams and winning the lottery 

is happy. 

x Pass(x, science)Win(x, Lottery)→Happy(x)  

2.   But anyone who studies or is lucky can pass all his exams. 

x y Study(x)Lucky(x)→Pass(x,y)  

3.    John did not study, but John is lucky 

Study (John) Lucky (John)  

4.   Anyone who is lucky wins the lottery. 

x Lucky(x) →Win(x, Lottery)  

Convert to CNF  

Eliminate implications:   

1. x (Pass(x, science) Win(x, Lottery))Happy(x)  

2. x y (Study(x)Lucky(x) Pass(x,y)  

3. Study (John) Lucky (John)   

4. x Lucky(x)Win(x, Lottery)  

Move inward   

1. x Pass(x, science)Win(x, Lottery))Happy(x)   

2. x y (Study(x) Lucky(x) Pass(x,y)   

3. Study (John) Lucky (John)  

4. x Lucky(x)Win(x, Lottery)  

 Standardize variables: no action needed.  

Move quantifiers left: no action needed except drop 

quantifiers  Skolemize: no action needed. 

  Distribute over

1. Pass(x, science) Win(x, Lottery))Happy(x)  

2. (Study(x) Pass(x,y)) (Lucky(x)Pass(x,y))  

3. Study (John) Lucky (John)   

4. Lucky(x)Win(x, Lottery)   

Flatten nested conjunctions and disjunctions     

no action necessary.  

State as a set of disjunction of literals  

1. Pass(x, science)Win(x, LotteryHappy(x)  

2. a. Study(x)Pass(x,y)  

2. b. Lucky(x)Pass(x,y)  

3. a. Study (John) 

3.b. Lucky (John)   

4. Lucky (xWin(x, Lottery)   

Standardize variables apart  

1. Pass(x1, science)Win(x1, Lottery)Happy(x1) 

2. a. Study(x2)Pass(x2,y1)  

2. b. Lucky(x3)Pass(x3,y2)   

3. a. Study (John)  

3.   b. Lucky (John)  

4. Lucky(x4) Win(x4,  ottery)   

Now In Conjunctive Normal Form (CNF) Resolution Proof 

Procedure  • Assert negation of goal – In this case the goal is 

to prove 

Happy (John)  – Add the clause Happy (John) to the KB  • 

Resolve clauses together until FALSE is derived.   

Resolution Proof Tree 

 

Happy (John)          1. Pass(x1, science)

Win(x1, 

Lottery)Happy(x1)  

          {x/John) 

Pass (John, science) 4. Lucky(x4)

Win(John, Lottery)            Win(x4, Lottery) 

  
          {x/John} 

                                     

Pass (John, science) 3b. Lucky (John)

Lucky (John)      



Pass (John, science)             

2b.Lucky(x)Pass(x,y)

                              
{x/John, y/ science}                           


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



Lucky (John)                             3b. Lucky (John) 

 

 

 

 

 
Hence the negation of the conclusion has been proved as a 

complete contradiction with the given set of facts. Hence the 

negation is completely invalid or false or the assertion is 

completely valid or true. Hence Proved, i.e. Happy (John)  

 

30.  CONCLUSION AND FUTURE WORK  
Resolution using refutation is much simpler than the method 

using the rules of interference. Proving theorems is considered 

to require high intelligence. If knowledge is represented by 

logic, theorem proving is reasoning. Once the theorem prover 

shows that the negated goal is inconsistent with the given set 

of axioms, it follows that the original goal must be consistent. 
Propositional Resolution can be used in a proof procedure that 

always terminates without losing completeness. I have shown 

in my work how does unification and substitution are related 

to each other. I have also shown in my work clearly when two 

literals are unifiable. Two literals unify if there predicate 

symbols are same, otherwise there is no way they can be 

unified. When two literals are not unified then substitution 

cannot apply. The main significant of substitution that makes 

two literals are identical. When two literals are identical and 

complimentary then they resolvent and resolution principle 

works finely. Predicate calculus is increasingly used for 

specifying the requirements of computer applications. In the 

area of proving program correctness, predicate calculus allows 

one to precisely state under which conditions a program gives 

the correct output.  

 

31. ACKNOWLEDGEMENTS  
Author of this paper sincerely thank to Prof. Kumar Sankar 

Ray, Dept of Electronics & Communication Science Unit, 

Indian Statistical Institute, Kolkata- 700108. India, for his 

constant support and encouragement.   
 

32. REFERENCES  
[1] [Pastre2002] D. Pastre, Strong and weak points of the 

MUSCADET theorem prover, AI Communications, 

15(2-            3):147-160, 2002, 

http://www.cs.miami.edu/_tptp.  

[2] [Pastre1993] D. Pastre, Automated Theorem Proving in    

Mathematics, Annals on Artificial Intelligence and        

Mathematics,8(3-4):425–447, 1993.  

[3] [Robinson1965] J.A. Robinson, A machine oriented logic 

based on the resolution principle, J.ACM12:23-41, 1965.  

[4] [Bledsoe1977] W. W. Bledsoe, Non-Resolution Theorem 

Proving, Journal of Artificial Intelligence,9:1–35, 1977.  

[5] Artificial Intelligence: A Modern Approach by Stuart 

Russell and Peter Norvig, Secong Edition, Published 

2003 Prentice Hall .  

[6] [Jec97] Jech, T.J.: Set Theory, 2nd edn. Perspectives in 

Mathematical Logic. Springer, Berlin (1997).  

[7] Chang C and Lee R, Symbolic Logic Mechanical 

Theorem proving, Academic press, New York, 1973. 

[8] Nilsson N Principal of Artificial Intelligence, Tioga 

Publishing Company, 1980.  

[9] Winston P H Artificial Intelligence, 2nd edition, 

Addison-Wesley, Menlo-Park, California, 1984.   

[10] Foundation of artificial intelligence and expert system by 

Janakiraman. 

[11] Artificial intelligence,3rd edn, by Elaine Rich ,Kevin 

Knight, Shivashankar B Nair.  

[12] Introduction to ‘Artificial intelligence and expert system’ 

by Dan W. Patterson, PHI  

[13] Resolution By Ankit Shah, Professor Harper Langston 

Discrete Mathematics Summer 2007 

[14] Artificial intelligence notes- reasoning methods, lecturer: 

Coşkun  Sönmez 

33. AUTHOR’S PROFILE 
Dipanjan Kumar Dey, graduated from Calcutta University, 

India. M.sc (Mathematics) and M.Tech (Computer Science 

&Engineering) from M.C.K.V Institute of Engineering (under 

West Bengal University & Technology, India). He is currently 

Assistant Professor of Mathematics & Computer Science in 

Prajnanananda Institute of Technology & Management, West 

Bengal, India. He is also Faculty member of Institute of 

Chartered financial Analysis of India (ICFAI) and Academic 

Counselor, Assistant Coordinator of Indira Gandhi National 

Open University (IGNOU) study center 2804, Kolkata, India. 

He is a Science Journalist having Post Graduate certificate 

course on journalism and media practice from National 

Council for the Science and Technology Communication, 

GOVT. OF INDIA, New Delhi. Mr. Dey has to his credit a 

significant number of research papers published in 

international journals of repute. His research interests in 

Genetic Algorithms, Soft Computing, Fuzzy Set, Artificial 

intelligence, Mobile computing. 

 

 

 

 

 

IJCATM : www.ijcaonline.org 


