
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

22

How Does Resolution Works in Propositional Calculus

and Predicate Calculus, Introduction to Unification and

Substitution

Dipanjan kumar Dey
Department of Computer Science & Engineering,
Assistant professor of Prajnanananda Institute of

Technology and Management (PITM)
94/2, Park Street, Dist: Kolkata, Kolkata 700017,

West Bengal (India)

ABSTRACT
One of the most important rules of interference is resolution.

Resolution basically works by using the principle of proof by

contradiction. Propositional Resolution works only on

expressions in clausal form. Before the rules of resolution can

be applied, the premises and conclusions must be converted to

this form. First part of this work consists of basic information

about resolution like what are literals, clauses, empty clause,

predicate, facts, rules, conjunctive normal form etc. What is it

used for, what is their aim. One of the aims of this work is

differentiating resolution between clauses-when clauses

containing variables and When clauses containing no

variables. When clauses containing no variables resolution are

very easy and simple and then no need to substitution. When

clauses containing variables resolution becomes complicated

and then need a proper substitution through the cancellation of

complementary literals. So substitution is an important role in

resolution. Unification has been used in my work for

performing resolution in predicate calculus. The unification

algorithm tries to find out the Most General Unifier (MGU)

between a set of atomic formulae. Theorem proving using

resolution has also been included in my work which helps to

solve many problems.

Keywords
 Resolution principle, Substitution, Unification,

complementary literals Skolemization

1. INTRODUCTION
Resolution works on the principle of identifying

complementary literals in two clauses and deleting them

thereby forming a new literal (the resolvent).Propositional

Resolution is a powerful rule of inference for Propositional

Logic. Using Propositional Resolution (without axiom

schemata or other rules of inference), it is possible to build a

theorem prover that is sound and complete for all of

Propositional Logic. One can perform Resolution from a

Knowledge Base. A Knowledge Base is a collection of facts

or one can even call it a database with all facts. Basically the

logic process takes in some information called premises and

produces some out puts called conclusions. Rules of

resolution can be applied; the premises and conclusions must

be converted to clausal form i.e. premises to predicate to

clausal form, then resolution works. In this paper resolution

works in propositional calculus when clauses containing no

variables and resolution works in predicate calculus when

clauses containing variables which are clearly explained with

some examples.

2. STANDARD LOGIC SYMBOLS
Throughout this paper used the following standard logic

symbols: “→” (implication), “↔” (double implication or

biconditional), “~” (not), “¬” (not), “Λ” (and), “v” (or), “”

(there exists), “”for all). If x is a variable then “x” is read

as any one of- for all x, for each x, for every x. Again“x” is

read as any one of- there exists x, for some x, for at least one

x. The propositional calculus, from which we take all

necessary properties of the logical operations Λ, v , ￢, →,

and ↔, and the (first-order) predicate calculus, which to these

propositional mechanisms adds compound functional and

predicate constructions and the two quantifiers universal

quantifier which is denoted by the symbol “” and existential

quantifier which is denoted by the symbol “”.

3. LITERAL
A literal is either an atomic sentence or a negation of an

atomic sentence.

For example, if p is a Logical constant, the following

sentences are both literals P and ¬ p. Another example: ~p v

~q v r, where p, q, r are literals.

4. CLAUSAL FORM
Propositional Resolution works only on expressions in clausal

form. A clause is a disjunction of finitely many literals. For

examples: ~p v ~q v r is a clause form, where p, q, r are

literals.

5. EMPTY CLAUSE
A disjunction of no literals is called an empty clause and is

denoted by .An empty clause shows that the negation of the

conclusion is a complete contradiction, hence the negation of

the conclusion is invalid or false or the assertion is completely

valid or true.

6. UNIT CLAUSE
A Clause with one literal is known as unit clause. e.g. {~q}.

7. PROPOSITIONAL LOGIC OR

PROPOSITIONAL CALCULUS
Propositional logic has only sentences, which represent facts.

This is the simplest form of logic. Here all statements made

are called propositions. A proposition in propositional logic

takes only two values, either the proposition is true or it is

false but not both or not partially true or false. The

propositional calculus provides only the operations Λ, V, ￢,

→, and ↔ and the two constants ‘true’ and ‘false’,

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

23

8. PREDICATE LOGIC OR FIRST

ORDER LOGIC OR PREDICATE

CALCULUS
Predicate calculus is a generalization of propositional

calculus. Some statements are there in real life situation which

are correct but proposition logic fail to express them. To

overcome this deficiency predicate logic has been introduced.

For example: in real life statement- “All mammals suckle

their young ones. Since elephant is a mammal, it suckles its

young ones”. In this statement proposition logic fails to

express it. The propositional logic is not powerful enough to

represent all types of assertions that are used in computer

science and mathematics, or to express certain types of

relationship between propositions such as equivalence.

For example, the assertion "x is greater than 1", where x is a

variable, is not a proposition because you cannot tell whether

it is true or false unless you know the value of x. Thus the

propositional logic cannot deal with such sentences. However,

such assertions appear quite often in mathematics and we

want to do inference on those assertions.

9. PREDICATE
A predicate is defined as a relation that binds two atoms

together for example: Ram likes aeroplanes. Here like is

predicate that links two atoms “Ram” and “aeroplanes”.

Symbolically likes (Ram, aeroplane).This predicate can be

generalized as like (x, y) where x and y are variables meaning

x likes y. Generally, predicates are used to describe certain

properties or relationships between individuals or objects. A

predicate can take arguments, which are terms.A predicate

with one argument expresses a property of an object – Student

(Bob) A predicate with no arguments is a simple proposition,

as in propositional logic.Another example of an assignment is

as follows. The domain consists of the four numbers 2, 3, 4. 5

The predicate “greater” is true if the first argument is greater

than the second argument. Hence, greater (4, 3) is true and

greater (3,4) is false. Assignment for the Predicate “greater”:

 2 3 4 5

2 0 0 0 0

3 1 0 0 0

4 1 1 0 0

5 1 1 1 0

Here, 0=false, 1= true.

In “John and Peter are brothers", the phrase “are brothers” is a

predicate. The entities connected this way, John and Peter are

called terms. Terms play an important role in predicate

calculus. A term is

1. a constant

2. a variable

3. If f is an n-place function,

 and t_1,.., t_n are terms,

 then f(t_1,...,t_n) is a term.

10. FACTS
Facts must start with a predicate which is an atom and ends

with a full stop.

11. RULES
A rule is a predicate expression that uses Logical implication

(→) to describe a relationship among facts.

For example (facts & rules)

A= {Fly(x) ← Bird(x),
 Bird (Tweety) ←

 Bird(x) ← Penguin(x),
 Give _egg(x) ← Bird(x)
 Penguin (Fred) ←
 Fly(x) ←Penguin(x),}

Here basically two facts are there

1. Bird (Tweety)

2. Penguin(Fred)

And four types of rules are there:--

1. Bird(x) ←Penguin(x)

2. Gives_egg(x) ← Bird(x)

3. Fly(x) ← Penguin(x)

4. Fly(x) ← Bird(x)

12. LIMITATIONS OF PROPOSITIONAL

LOGIC
Many kinds of inference cannot be formalized in propositional

logic. For example, most useful inferences involve applying a

general rule to a specific case. But general-to-specific

inferences like the following cannot be formalized in

propositional logic

– All men are mortal

– Socrates is a man

– Therefore, Socrates is mortal.

 This inference cannot be formalized in propositional logic

because it refers to individual men, such as Socrates, and

make generalizations about all men.

12.1 Normal Form In Propositional Logic
There are two major normal forms of propositional logic. One

is conjunctive normal form (CNF) and the other is disjunctive

normal form (DNF). Here discussing about CNF because in

my work only CNF is required.

13. STEPS TO CONVERT TO CNF

(CONJUNCTIVE NORMAL FORM)
Every sentence in Propositional Logic is logically equivalent

to a conjunction of disjunctions of literals. A sentence

expressed as a conjunction of disjunctions of literals is said to

be in Conjunctive Normal Form (CNF).

1. Eliminate implications ‘’

A B = ~A v B

2. Eliminate biconditionals ‘
A (A B) Λ (B A) = (~A v B) Λ (~B v A)

3. Reduce the not symbol by the formula ~ (~A) = A

4. DeMorgan’s Law

 ~ (A Λ B) = ~ Av ~ B …………………….. DeMorgan’s

Law

 ~ (A v B) = ~ A Λ ~ B ……………………. DeMorgan’s

Law 5. Eliminate AND ‘Λ’

A Λ B splits the entire clause into two separate clauses i.e. A

and B

6. Use distributive law

A Λ (B v C) = (A ΛB) v (AΛC) A v (B Λ C) = (A v B) Λ (A

v C)

For Example: convert ((p q)r) into CNF

The problem is ((p q)r)

 = ~ (p q) v r, since A B = ~A v B

=~ (~p v q) v r

= (p Λ~ q) v r, by DeMorgan’s Law

= (p v r) Λ (~ q v r),

Use distributive law Thus (p v r) Λ (~ q v r)



International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

24

is the CNF of ((p q)

14. QUANTIFIERS
A quantifier is a symbol that permits one to declare or identify

the range or scope of the variable in a logical expression.

There are two basic quantifiers used in logic one is universal

quantifier which is denoted by the symbol “” and the other is

existential quantifier which is denoted by the symbol “”.If x

is a variable then “x” is read as any one of- for all x, for

each x, for every x. Again“x” is read as any one of- there

exists x, for some x, for at least one x.

For example: x (A(x)x)),This formula states that for all

x, A(x) implies B(x). In this formula universal quantifier“”

applies over the entire formula (A(x)x)). Hence

(A(x)x)) is the scope of the quantifier.

Note-1x P(x) means “for all x, P of x is true”

Example: x Happy(x)

If the universe of discourse is people, then this means that

everyone is happy.

Note-2:x P(x) means “there exists at least one x for which P

of x is true”

Example: x Happy(x)

If the universe of discourse is people, then this means there is

at least one happy person.

Quantifiers indicate how frequently a certain statement is true.

Specifically, the universal quantifier is used to indicate that a

statement is always true, whereas the existential quantifier

indicates that a statement is sometimes true. [14] Example-1:

In “All cats have tails", the word “all" indicates that the

statement “cats have tails" is universally true. Example-2: If

we say “Tweety is a bird”, we conclude that or common

people will understand that Tweety flies. Now if we get

further information about Tweety,it is not necessary that

Tweety should fly because of a variety of reasons that

Tweety is a penguin, Tweety’s wings are broken, Tweety is

too weak to fly, Tweety is in caged, then we have to withdraw

our previous conclusion and revise it by saying that Tweety

doesn’t fly. This is existential quantifier, since existential

quantifier indicates that a statement is sometimes true.

14.1 Relationship Between Universal And

Existential Quantifiers
x ¬ P(x) <=> ¬x P(x)

2. ¬x P(x) <=> x ¬P(x)

x P(x) <=> ¬x ¬ P(x)

x P(x) <=> ¬x ¬ P(x)

For examples:

 ¬y Happy(y) <=> y ¬ Happy(y)

y ¬Happy(y) <=> ¬ y Happy(y)

x ¬ Likes(x, John) <=> ¬x Likes(x, John)

x Likes(x, John) <=> ¬x ¬Likes(x, John)

15. SOME PREDICATE CALCULUS AND

THEIR ACTUAL MEANINGS
Calculus Expression Actual Meaning

1.x(A(x)) A is true for all x.

2. x(A(x)) A is true for some x.

3.x(~A(x)) A is false for all x.

4.x(~A(x)) A is false for some x.

5.~x(~A(x))) A is true for some x.

6.~x(~A(x))) A is true for all x.

16. FREE AND BOUND VARIABLES
Free variables: A variable is free in a formula iff the

occurrence is outside the scope of the quantifier having the

variable. A variable is also free in a formula if at least one

occurrence of it is free.

 Bound variables: A variable is bound in a formula iff its

occurrence is within the scope of the quantifier. A variable is

also bound in situations where at least one occurrence of it is

bound. [7]

Every occurrence of a variable x in a formula of the form xB

or of the form xB is called bound occurrence, occurrence

which are not bound are called free.

Note: Some formulas have no free variables they are called

sentences.

For example:x (A(x)x)),This formula states that for all

x, A(x) implies B(x). In this formula universal quantifier“”

applies over the entire formula (A(x)x)). Hence

(A(x)x)) is the scope of the quantifier. Any change in the

quantifier has an effect on both A(x)and x).So x is bound

variable.

 xy (A(x, y, z)) & z(B(y, z)),in this formula z is free

variable in xy (A(x, y, z)) and z is bound variable in

z(B(y, z)).

17. NORMAL FORM IN PREDICATE

LOGIC
Prenex normal form is the normal form in predicate logic. A

formula “A” in predicate logic is said to be prenex normal

form if it has the form

 (Q1x1) (Q2x2) (Q3x3)……….. (Qnxn) B, Where (Qixi) is either

a or and B is formula without any quantifiers. B is called

the matrix of the formula and (Q1x1) (Q2x2) (Q3x3)………..

(Qnxn) is called the prefix. i.e. Q1, Q2, Q3……..Qn maybe

either a universal quantifier “”or a existential quantifier”

”.

18. CONVERTING TO PRENEX

NORMAL FORM
Step-1: Involves bringing all quantifiers to the beginning of

the formula (Qi xi) (M), i=1, 2..., n Where, Qi is either 

(Universal Quantifier) or Ǝ (Existential Quanitifier) and is

called the prefix, M contains no Quantifiers and is called the

matrix.

For example: x y (~A(x) v B(x, y) is a prenex normal form.

x y z ((A(x, y, z) v B(y, z))C(x, z)) is another prenex

normal form.

Example-1: Convert the formula x (A(x)yx,

yintoprenex normal form. [7]

Solution: The given formula is x (A(x)yx, y

 =x (~A(x)vyx, y since A B = ~A v B

= xy(~A(x)vx, yis the prenex normal form of

x(A(x)yx,y

Example-2 Convert the formula ~ ((x) p(x) y)(z)

q(y, z)) intoprenex normal form.

Solution: The given formula is

~ ((x) p(x) y)(z) q(y, z)).

= ~ (~ ((x) p(x))v (y)(z) q(y, z))), since A B = ~A

v B

= ((x) p(x))Λ~ (y)(z) q(y, z)), since~ (A v B) = ~ A Λ

~ B and applying ~ (~A) = A

= ((x) p(x))Λ (y) ~ ((z) q(y, z))),since ~ (x (A(x))) =

x (~A(x)).

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

25

 = (x) p(x)Λ (y) (z) ~ q(y, z), since ~ (x (A(x))) = x
(~A(x))

 .= (x) (y) (z) p(x)Λ ~ q(y, z),is the required prenex

normal form.

Step-2: In the required prenex normal form remove all

‘ ‘’ though  (Universal Quantifier) or Ǝ

(Existential Quantifier) to the beginning of the formula.

For example: (x) (y) (z) ((p(x, y) v~q(x, z))r(x, t, z)) is

not the prenex normal form though  (Universal Quantifier)

or Ǝ (Existential Quantifier) to the beginning of the formula.

Convert the formula (x) (y) (z) ((p(x, y) v~ q(x,

z))r(x, y, z)) intoprenex normal form. [7]

Solution: The given formula is (x) (y) (z) ((p(x, y) v~

q(x, z))r(x, y, z)).

 = (x) (y) (z) (~ (p(x, y) v~ q(x, z))v r(x, y, z)), since A

B = ~A v B.

 = (x) (y) (z) ((~ p(x, y) Λ q(x, z))v r(x, y, z)), since~ (A

v B) = ~ A Λ ~ B and applying ~ (~A) = A.

= (x) (y) (z) ((~ p(x, y) v r(x, y, z)) Λ (q(x, z) v r(x, y,

z))), Using distributive law,

This is the required prenex normal form.

19. SKOLEMIZATION
Skolemization
Remove existentially quantified variables. Replace any

existentially quantified variable x that is in the scope of

universally quantified variables y1…yn with a new

function F(y1,…,yn) (a Skolem function) Replace any

existentially quantified variable x that is not in the scope of

any universally quantified variables with a new constant c (a

Skolem term). [7]

 Otherwise a formula P in the prenex normal form has a

Skolem form PS which is obtained when all are removed by

replacing the variables as functions of variables preceding it.

If there is no  before a constant symbol is used. Davis and

Putnam method is widely is widely used now-a-day.

The steps involved in this methodology are:

1. A formula of the first order logic can be transformed into

prenex normal form where the matrix contains no quantifiers

and the prefix is a sequence of quantifiers.

2. The matrix since it does not contain quantifiers can be

transformed into a CNF.

3. Without affecting the inconsistency property, the existential

quantifiers in the prefix can be eliminated by using Skolem

functions.

The effect of Skolemization:

Convert the formula x y w z Q(x, y, w, z, G (w, x))

into its Skolem form.[7]

Solution: The Skolem form for the given problem is x y

z Q(x, y, P(x, y), z, G (P(x, y), x)) Where P is the Skolem

function for w.

NB: the Skolem function is a function, so this is not decidable

anymore.

The effect of Skolemization:

Convert the formula P= q r s t (A (q, r)(s,

t)) into its Skolem form
Solution: In this formula q is not preceded by any 

quantifier.s is preceded by an  quantifier and so is t.

Hence replace q by a constant say ‘a’, s and t by function of r.

Therefore the Skolem form for the given problem is PS =

r(A(a, r)(f(r), g(r)),where f and g are skolem functions

for ‘r’.

The effect of Skolemization:

Convert the formula P= (x) (y) (z) (u) (v) (w) P(x,

y ,z, u, v, w) into its Skolem form.

Solution: In this formula (x) is preceded by no universal

quantifiers, Therefore we replace the existential variable x by

‘a’. (u) is preceded by (y) and (z), Therefore we replace

the existential variable u by a two- place function f(y, z). (w)

is preceded by (y) , (z)and (v). Therefore we replace the

existential variable w by a three- place function g(y, z, v).

Therefore the Skolem form (standard form) for the given

problem is PS = (y) (z) (v) P (a, y, z, f(y, z), v, g(y, z, v)),

where f and g are skolem functions for(y, z) and(y, z, v)

respectively.

The effect of Skolemization:

Convert the formula P= (x) (y) (z) ((~P(x, y) ΛQ(x, z))

v R(x, y, z)) into its Skolem form. [7]

Solution: First the matrix is transformed into a CNF. (x)

(y) (z) ((~P(x, y) v R(x, y, z)) Λ (Q(x, z) v R(x, y, z))) Now

since (y) and (z) are both is preceded by (x), the

existential variables y and z are replaced respectively by one –

place functions f(x) and g(x), Therefore the Skolem form

(standard form) for the given problem is PS = (x) ((~P(x,

f(x)) v R(x, f(x), g(x))) Λ (Q(x, g(x)) v R(x, f(x), g(x)))).

20. STEPS TO CONVERT PREDICATE

LOGIC FORMULA INTO PRENEX

NORMAL FORM
1. Eliminate implications ‘’

A B = ~A v B

2. Eliminate biconditionals ‘ A (A B) Λ (B

A) = (~A v B) Λ (~B v A)

3. Reduce the not symbol by the formula ~ (~A) = A

4. DeMorgan’s Law

 ~ (A Λ B) = ~ Av ~ B …………………….. DeMorgan’s

Law ~ (A v B) = ~ A Λ ~ B ……………………..

DeMorgan’s Law

5. Eliminate AND ‘Λ’

A Λ B splits the entire clause into two separate clauses i.e. A

and B .

6. Use distributive law

 A Λ (B v C) = (A ΛB) v (AΛC) A v (B Λ C) = (A v B) Λ (A

v C)

7. Eliminate Existential Quantifier ‘’

To eliminate an independent Existential Quantifier, replace

the variable by a Skolem constant. This process is called as

Skolemization.

For example: y: President (y)

Here ‘y’ is an independent quantifier so we can replace ‘y’ by

any name (say –George Bush). So, y: President (y) becomes

President (George Bush).

To eliminate a dependent Existential Quantifier we replace its

variable by Skolem Function that accepts the value of ‘x’ and

returns the corresponding value of ‘y.’

For example: x: y: father of (x, y) Here ‘y’ is dependent

on ‘x’, so we replace ‘y’ by S(x). So, x: y: father_of (x, y)

becomes x: y: father_of (x, S(x)). [13]

 8. Eliminate Universal Quantifier ‘’

To eliminate the Universal Quantifier, drop the prefix in

prenex

becomes in prenex normal form. [13]

9. Use the formula

~ (x (A(x))) = x (~A(x)) ~ (x (A(x))) = x (~A(x)) Here

negative signs bring before the atom.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

26

21. STEPS FOR RESOLUTION
Convert the given statements in Predicate/Propositional

Logic Convert these statements into Conjunctive Normal

Form Negate the Conclusion (Proof by Contradiction)

Resolve using a Resolution Tree (Unification)

21.1 Resolution Principle
The resolution Principle is

“Given any two clauses A and B, if there is a literal P1 in A

which has a complementary literal P2 in B, delete P1 and P2

from A and B and construct a disjunction of the remaining

clauses. The clause so constructed is called the resolvent of A

and B.” where A and B are parent clauses.[12]

21.2 Resolution on Propositional

Calculus Resolution on propositional

calculus
This type of problem clauses contains no variables. So

resolution is very easy and simple. Resolution on

propositional calculus works fine in situation where the result

is either true or false but not both. Propositional Resolution

works only on expressions in clausal form. Some statements

are there in real life situation which are correct but proposition

logic fail to express them. To overcome this deficiency

predicate logic has been introduced.

For example in real life statement- “All mammals suckle their

young ones. Since elephant is a mammal, it suckles its young

ones”. In this statement proposition logic fails to express it.

The idea of Propositional Resolution is simple. Suppose we

have the clause {p, q}. In other words, we know that p is true

or q is true. Suppose we also have the clause {¬q, r}. In other

words, we know that q is false or r is true. One clause

contains q, and the other contains ¬q. If q is false, then by the

first clause p must be true. If q is true, then, by the second

clause, r must be true. Since q must be either true or false,

then it must be the case that either p is true or r is true. So we

should be able to derive the clause {p, r}.

 The case we just discussed is an example. If we have the

clause {p, q} and we also have the clause {¬q, r}, then we can

derive the clause {p, r} in a single step.

{p, q}
 {¬q, r}

 {p, r}

21.3 Steps for Resolution On Propositional

Calculus
Step-1: convert the entire proposition to clause form.

Step-2: negate p and convert the result to clause form.

Step-3: select two clauses say A&B call these the parent

clauses.

Step-4: If there is a literal P1 in A which has a complimentary

literal P2 in B delete P1&P2 from A&B and construct a

disjunction of the remaining clauses. The clauses so

constructed are called the resolvent of A & B.

Step-5: If the resolvent is empty clause then a contradiction

has been found. If it is not, then add it to the set of clauses

available to the procedure.

21.4 For Example (RESOLUTION FOR

PROPOSITIONAL CALCULUS)
Consider the following clauses [10]

A : P V Q V R

B : ~P V Q V R

C : ~Q V R

Clauses A have the literal P which is complementary to ~P in

B. Hence both of them are deleted and a resolvent(disjunction

of A and B after the complementary clauses are removed) is

generated. That resolvent has again a literal Q whose negation

is available in C. Hence resolving those two, one has the final

resolvent.

A : P V Q V R (given in the problem)

B : ~P V Q V R (given in the problem)

D : Q V R (resolvent of A and B)

C : ~Q V R (given in the problem)

E : R (resolvent of C and D)

It is possible to pectoris the path of the problem using a

deduction tree.

P V Q V R ~P V Q V R

 Q V R ~Q V R

 R

.21.5 Resolution In Propositional Logic When

Clauses Containing No Variables, So Resolution Are

Very Easy And Simple.

 Let us consider the following clauses
 1. a← b Λ c

2. b
 3. c← d Λ e
4. e V f
5. d Λ~f

Convert the above predicates to clauses form

 1.~ (b Λ c) V a = a V~ (b Λ c) = a V ~b V ~c , since A B = ~A

v B, ~ (A Λ B) = ~ Av ~ B

2.b

 3. ~ (d Λ e) V c = c V~ (d Λ e) = c V ~d V ~e , since A B =

~A v B, ~ (A Λ B) = ~ Av ~ B

 4. e V f

 5. d
 6. ~f, since A Λ B splits the entire clause into two separate

clauses i.e. A and B .

It is possible to pectoris the path of the problem using a

deduction tree.

First, the goal to be proved, a, is negated and added to the

clause set.

¬a a V ¬b V ¬c

 ¬b V ¬c b

 ¬c c V ¬d V ¬e

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

27

 ¬d V ¬e e V f

 d f V ¬d

 f ¬ f

The derivation of indicates that the database of

clauses is inconsistent.

22. SUBSTITUTIONS
Substitutions are an essential part of interference process.

When properly applied, they permit simplifications or the
reduction of expressions through the cancellation of

complementary literals. We says that two literals are

complementary if they are identical but opposite in sign; i.e. P

and complementary literals. When clauses containing

variables resolution becomes complicated and then need a

proper substitution through the cancellation of complementary

literals. So substitution is an important role in resolution. If A

is a formula of predicate calculus, then (x/t)A denotes the

formula that results when every occurrence of x in A is

substituted by t.[12]. A substitution is defined as a set of pairs

ti and vi where vi are distinct variables and ti are terms not

containing the vi .The ti replace or are substituted for the

corresponding vi in any expression for which the substitution

is applied. A set of substitutions { t1 / v1 , t2 / v2, ……… tn / vn

} where n≥1 applied to an expression will be denoted by

Greek letters α, β and δ. For example, If β={a/x ,g(b)/y }, then

applying β to the clause C=P(x, y) V Q(x, f(y)) We obtain C׳

=C β = P(a, g(b)) V Q(a, f(g(b))). [12]

There are three major types of substitutions,[10,7] viz,

 1. Substitution of a variable by a constant.

 2. Substitution of a variable by another variable.

3. Substitution of a variable by a function that does not

contain the same variable.
For example: C1= ¬ dog (x) ν animal (x) C2= ¬ animal (y) ν

die (y) Resolvent: ¬dog(y) ν die (y) {y/x} Here x is

substituted by y.

23. UNIFICATION
A substitution that makes two clauses resolvable is called a

unifier and the process of identifying such unifiers is carried

out by the unification algorithm. The unification algorithm

tries to find out the Most General Unifier (MGU) between a

set of atomic formulae. Given two expressions that are

unifiable, such as expressions C1 and C2 with a unifer β with

C1β = C2, we say that β is a Most General Unifier (MGU) [12]

if any other unifier α is an instance of β. For example two

unifier for literals P (u, b, v) and P (a, x, y) are α = {a/u, b/x,

v/y} and = {a/u, b/x, c/v, c/v}.The former is a Most General

Unifier (MGU) whereas the latter is not since it is an instance

of the former.

To attempt to unify two literals, we first check if their initial

predicate symbols are the same. If so, we can proceed,

otherwise there is no way that they can be unified, regardless

of their arguments.
For example, two literals – P(x, y) P(y, z) can be unified,

since their initial predicate symbols P are the same.

Next we compare x and y, and decide that if we substitute y

for x, they could match. We will write that substitution as y/x.

What we need to do after finding the first substitution y/x is to

make that substitution throughout the literals, giving P(y, y)

P(y, z) Now we can attempt to unify arguments y and z, which

succeeds with the substitution z/y. The entire unification

process has now succeeded with a substitution that is the

composition of the two substitutions we found. We write the

composition as (z/y)(y/x) Note that the Most General Unifier

(MGU) is [(z/y)(y/x)].

For example, Ram likes aeroplanes. Here like is predicate and

two atoms Ram and aeroplanes. Symbolically like (Ram,

aeroplane). John hates aeroplanes. Here hate is predicate and

two atoms John and aeroplanes. Symbolically hate (John,

aeroplane). Thus two literals – like (Ram, aeroplane) hate

(John, aeroplane) cannot be unified, since their predicate

symbols (like , hate) are not equal. So we can say two literals

cannot be unified, so there is no chance for substitution.

Note-1: Unification can sometimes be applied to literals with

the same single clause. When a Most General Unifier (MGU)

exists such that two or more literals within a clause are

unified, the clause remaining after deletion of all but one of

the unified literals is called a factor of the original clause.

Thus ,given a clause C =P(x) V Q(x, y) V P(f(z)) the factor C׳

=C β =P(f(z)) V Q(f(z), y) is obtained where β={ f(z)/x}.

Note-2: The basic idea of Unification is very simple. Any

substitution that makes two or more expressions equal is

called a unifier for the expressions.
Note-3:The substitution (a1/a2,a3/a4,

………)(b1/b2,b3/b4,…….)means to apply all the

substitutions of the right-most list, then take the result and

apply all the ones of the next list, and so forth, until all

substitutions have been applied.
Note-4: The literals

 hate (x, y)

hate (John, z)

could be unified with any of the following substitutions:

(John/x, z/y)

 (John/x, y/z)
(John/x, Peter/y, Peter/z).
Example: Find the Most General Unifier (MGU) of

C (x, f (g(x)), a) and C (b, y, z)

Solution:
C (x, f (g(x)), a) and C (b, y, z) SUBST = [

]
C (x, f (g(x)), a) and C (b, y, z) SUBST =

[(x/b)]

↑
C (b, y, a) and C (b, y, z) SUBST = [(y/ f (g(x)),

(x/b)] ↑
C (b, y, z) and C (b, y, z) SUBST = [(z/a), (y/ f (g(x)),

(x/b)]

↑ ↑
The SUBST started with an empty substitution and has

made some substitutions that unifies both the clauses. Hence

the Most General Unifier (MGU) is [(z/a), (y/ f (g(x)), (x/b)] .

24. RESOLUTION ON THE PREDICATE

CALCULUS
Substitution and unification are used for performing

resolution in predicate calculus.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

28

A literal and its negation in parent clauses produce a resolvent

only if they unify under some substitution σ. Σ is then applied

to the resolvent before adding it to the clause set.

C1= ¬ dog (x) ν animal (x)

C2= ¬ animal (y) ν die (y)

Resolvent :¬dog(y) ν die (y) {y/x}

Here x is substituted by y.

25. STEPS FOR RESOLUTION ON

PREDICATE CALCULUS
Step-1: convert all the statements to clause form.

Step-2: negate p and convert the result to clause form.

Step-3: select two clauses say A&B call these the parent

clauses

.Step-4: Resolve them together The resolvent will be the

disjunction of all the literals of both the parent clauses with

appropriate substitutions performed and with the following

exceptions .If there is one pair of literals L1 and ¬L2 such that

one of the parent clauses contain L2 and the other contains L1

and if L1 and L2 are unifiable then neither L1 nor L2 should

appear in the resolvent.If there is more than one pair of

complimentary literals, only one pair should be omitted from

the resolvent.

Step-5: If the resolvent is empty clause then a contradiction

has been found. If it is not, then add it to the set of clauses

available to the procedure.

26. THEOREM PROVING USING

RESOLUTION
There are mostly two basic methods of theorem proving. [10]

Method-1: start with the given axioms, use the rules of

interference and then prove the theorem.

Method-2: prove the negation of the result cannot be true.

Note: The second method is commonly known as theorem

proving using resolution.

The following steps are the solving problem using theorem

proving using resolution:

Step-1: Find the negation of the result to be proved.

Step-2: Add it as a valid statement to the given set of

statements.

Step-3: Perform resolution on these statements until a

contradiction is encountered.

Step-4: Conclude that the contradiction is due to the assumed

negation of the result.

Step-5: So the negated assumption that is made is false or the

result to be proved is true.

27. SOLVING REAL LIFE EXAMPLE OF

THEOREM PROVING USING

RESOLUTION:
Illustration- 1: Let us consider the following statements—

“Tom is a dog” “All dogs are animal” And “animals will

die” Prove that “Tom will die”.

Solution: Here the premises are “Tom is a dog” “All dogs are

animal” And “animals will die”

Convert the premises to predicate –

The predicate forms are

x) (dog(x) → animal(x))

2. dog (Tom)

3. y) (animal (y) → die(y))

In this problem basically one fact which is dog (Tom) and two

rules are there in this problem they are

1. dog(x) → animal(x)

2. animal (y) → die(y)

Now convert the predicates to clause form by applying a → b

= ¬a ν b
1.¬ dog(x) ν animal(x)

2. dog (Tom)

3. ¬ animal (y) ν die(y)

By applying theorem proving using resolution, of method-2 as

in above,

First let us assume negation of the result

¬die (Tom) (1)
The given axioms are-

dog (Tom) (2) x)

(dog(x) → animal(x)) (3) y)

(animal (y) → die(y)) (4)

Equations (3) & (4) can be written as

¬ dog(x) ν animal(x) (5)

 ¬ animal (y) ν die(y) (6)
In equations (5) & (6), substitute x= Tom, y= Tom, gives,

¬ dog(Tom) ν animal(Tom)
(7)
¬ animal (Tom) ν die(Tom) (8)
Resolving equations (7) & (8), gives,
¬ dog(Tom) ν die(Tom)

(9) Resolving

equations (1) & (9), gives,
 ¬ dog(Tom)
(10) Resolving equations (2) & (10), have a

contradiction.
This contradiction was due to the assumption that was made,

i.e. the negation of the result. Hence the negation of the result

is false or the result is true.Hence proved that is Tom will die.

By tree diagram--

.¬ dog(x) ν animal(x) ¬ animal (y) ν die(y)

 {y/x}

dog (Tom) ¬ dog(y) ν die(y)

 {Tom /y}

 die(Tom) ¬ die(Tom)

Hence we see that the negation of the conclusion has been

proved as a complete contradiction with the given set of facts.

Hence the negation is completely invalid or false or the

assertion is completely valid or true. Hence Tom will die

(Proved).

 Illustration- 2: Let the given theory be

 A= {Fly(x) ← Bird(x),

 Bird (Tweety) ←

Bird(x) ← Penguin(x),

Give _egg(x) ← Bird(x)

Penguin (Fred) ←

Fly(x) ←Penguin(x),}

Can Tweety fly? Write the success set.

Solution: ---- Negate the conclusion gives, ~Fly(Tweety)

From the given problem, gives,

 ~ Bird(x) ν Fly(x)

NIL

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

29

~ Penguin(x) ν Bird(x)

~ Bird(x) ν Gives_egg(x)

~ Penguin(x) ν Fly(x)

Bird (Tweety)

 Penguin (Fred)

The ground atoms are

{Bird (Tweety)

Fly (Tweety)

Penguin (Tweety)

Gives_egg(Tweety)

~ Fly (Tweety)

Penguin (Fred)

Bird (Fred)

Gives_egg(Fred)

~Fly (Fred)

Fly (Fred)}

Using resolution principle and using a deduction tree we have,
 ~Fly(x) ~Bird(x) ν Fly(x)

 {x/Tweety}

 ~Bird (Tweety) Bird (Tweety)

Hence we see that the negation of the conclusion has been

proved as a complete contradiction with the given set of facts.

Hence the negation is completely invalid or false or the

assertion is completely valid or true. Therefore Tweety can

fly.

 Success set: - {Bird(x), Fly(x), ~ Fly(x) }

Note: Success Set is a subset of ground atom.

Constant function - Tweety, Fred.

Illustration – 3:

Now let us see another example which uses theorem

proving using resolution.

Problem Statement are:

1. John likes all kind of food.

2. Apples and chicken are food.

3. Anything anyone eats and is not killed by is food.

4. Peter eats peanuts and is still alive.

5. Robin eats everything that Peter eats.

Translate these sentences into formulas in predicate logic.

Convert the formulas into clause form.

Prove that John likes peanuts using resolution. [11]

Solution:

Step 1: Converting the given statements into

Predicate/Propositional Logic

x: food(x) likes (John, x)

2. food (apple) Λ food (chicken) 

a: b: eats (a, b) Λ killed (a) food (b)

4. eats (Peter, Peanuts) Λ alive (Peter)

c: eats (Peter, c) eats (Robin, c)

d: alive (d) ~killed (d)

7. e: ~killed (e) alive (e)

Conclusion: likes (John, Peanuts)

Step 2: Convert into CNF

 i. ~food(x) v likes (John, x)

ii. Food (apple)

iii. Food (chicken)

iv. ~ eats (a, b) v killed (a) v food (b)

v. Eats (Peter, Peanuts)

vi. Alive (Peter)

vii. ~eats (Peter, c) V eats (Robin, c)

viii. ~alive (d) v ~ killed (d)

ix. Killed (e) v alive (e)

Conclusion: likes (John, Peanuts)

Step 3: Negate the conclusion ~ likes (John, Peanuts)

Step 4: Resolve using a resolution tree

~ likes (John, Peanuts) ~food(x) v likes (John, x)

 {x / peanuts}

 ~food (peanuts) ~ eats (a, b) v killed (a) v food

(b)

 { b / peanuts}

 ~eats (a, peanuts) v killed (a) eats (Peter,

peanuts)

 {a / Peter }

 Killed (Peter) ~alive (d) v ~killed (d)

 {d / Peter }

 ~alive (Peter) alive (Peter)

Hence we see that the negation of the conclusion has been

proved as a complete contradiction with the given set of facts.

Hence the negation is completely invalid or false or the

assertion is completely valid or true. Hence Proved.

Now the following simple example will show clearly how

two methods (explained above) help in theorem proving.

Let us consider the following statements—

Given that

1)x) [physician(x) → knows_surgery(x)]

2) Physician (John)

Prove that knows_surgery(John)

Proof:

By using Method-1 of theorem proving:

Using Modus ponens- Modus ponens states that if there is an

axiom of the form P→Q and another of the form P, then Q

logically follows. Here in the given problem, assuming

Physician (John) as P and [physician(x) → knows_surgery(x)]

as Q. Substitute x= John, the result knows_surgery(John)

logically follows.

By using Method-2 of theorem proving:

Let us assume the negation of the result

¬ knows_surgery(John) (1)

The given axioms are

Physician (John) (2)

x) [physician(x) → knows_surgery(x)] (3)
Equation (3) can be written as

NIL

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

30

¬ Physician(x) ν knows_surgery(x) (4)
[The quantifier is universal. If it had been existential, then

skolem function has to be used]
Substitute x= John, equation (4) becoms,
¬ Physician (John) ν knows_surgery(John) (5)
Resolving equations (1) & (5), gives,

¬ Physician (John) (6)
Resolving equations (2) & (6), have a contradiction. This

contradiction was due to the assumption that was made, i.e.
the negation of the result. Hence the negation of the result is

false or the result is true.

Thus knows_surgery(John) (proved).

28. DEFICIENCIES OF PREDICATE

LOGIC AND RESOLUTION:
Since logic base system and theorem proving techniques are

monotonic in nature, i.e. if a proposition is made which is true

, it remain true under all circumstances. This is monotonic

reasoning system. Monotonic reasoning system cannot work

in real life environment. All the theorems are proved by this

methodology only, but in real life or real world are never

monotonic since (1) situation changes time to time (2)

information available is always incomplete. This is called

nonmonotonic reasoning system. So logic base system and

theorem proving techniques cannot work efficiently in

nonmonotonic reasoning system. Some difficulty with the use

of theorem proving in AI systems is that there are some kinds

of information that are not easily represented in predicate

logic, like some example [11] “It is very hot today.” How can

relative degrees of heat be represented? “Blond haired people

often have blue eyes.”How can the amount of certainty be

represented? Since logic base system does not provide

facilities for handling uncertainty. Every information logic

deals have to either true or false but never both or partially

true or false. For example-If we say Tweety is a bird, we

conclude that or common people will understand that Tweety

flies. Now if we get further information about Tweety,it is not

necessary that Tweety should fly because of a variety of

reasons that Tweety is a penguin, Tweety’s wings are broken,

Tweety is too weak to fly, Tweety is in caged, then we have to

withdraw our previous conclusion and revise it by saying that

Tweety doesn’t fly. In this situation predicate logic and

resolution doesn’t work.

29. RESOLUTION EXAMPLE (REAL

LIFE)
Anyone passing his science exams and winning the lottery is

happy. But anyone who studies or is lucky can pass all his

exams. John did not study but John is lucky. Anyone who is

lucky wins the lottery. Is John happy? Translate these

sentences into formulas in predicate logic. Convert the

formulas into clause form.

Solution: Here the premises are-

1. Anyone passing his history exams and winning the lottery

is happy.

2. But anyone who studies or is lucky can pass all his exams.

3. John did not study, but John is lucky

4. Anyone who is lucky wins the lottery.

Convert to predicate logic

1. Anyone passing his history exams and winning the lottery

is happy. 

x Pass(x, science)Win(x, Lottery)→Happy(x)

2. But anyone who studies or is lucky can pass all his exams.

x y Study(x)Lucky(x)→Pass(x,y)

3. John did not study, but John is lucky 

Study (John) Lucky (John)

4. Anyone who is lucky wins the lottery. 

x Lucky(x) →Win(x, Lottery)

Convert to CNF

Eliminate implications:

1. x (Pass(x, science) Win(x, Lottery))Happy(x)

2. x y (Study(x)Lucky(x) Pass(x,y)

3. Study (John) Lucky (John)

4. x Lucky(x)Win(x, Lottery)

Move inward

1. x Pass(x, science)Win(x, Lottery))Happy(x)

2. x y (Study(x) Lucky(x) Pass(x,y)

3. Study (John) Lucky (John)

4. x Lucky(x)Win(x, Lottery)

 Standardize variables: no action needed.

Move quantifiers left: no action needed except drop

quantifiers Skolemize: no action needed.

 Distribute over

1. Pass(x, science) Win(x, Lottery))Happy(x)

2. (Study(x) Pass(x,y)) (Lucky(x)Pass(x,y))

3. Study (John) Lucky (John)

4. Lucky(x)Win(x, Lottery)

Flatten nested conjunctions and disjunctions

no action necessary.

State as a set of disjunction of literals

1. Pass(x, science)Win(x, LotteryHappy(x)

2. a. Study(x)Pass(x,y)

2. b. Lucky(x)Pass(x,y)

3. a. Study (John)

3.b. Lucky (John)

4. Lucky (xWin(x, Lottery)

Standardize variables apart

1. Pass(x1, science)Win(x1, Lottery)Happy(x1)

2. a. Study(x2)Pass(x2,y1)

2. b. Lucky(x3)Pass(x3,y2)

3. a. Study (John)

3. b. Lucky (John)

4. Lucky(x4) Win(x4, ottery)

Now In Conjunctive Normal Form (CNF) Resolution Proof

Procedure • Assert negation of goal – In this case the goal is

to prove

Happy (John) – Add the clause Happy (John) to the KB •

Resolve clauses together until FALSE is derived.

Resolution Proof Tree

Happy (John) 1. Pass(x1, science)

Win(x1,

Lottery)Happy(x1)

 {x/John)

Pass (John, science) 4. Lucky(x4)

Win(John, Lottery) Win(x4, Lottery)

 
 {x/John}

 

Pass (John, science) 3b. Lucky (John)

Lucky (John) 



Pass (John, science)

2b.Lucky(x)Pass(x,y)

 
{x/John, y/ science}



International Journal of Computer Applications (0975 – 8887)

Volume 99– No.10, August 2014

31





Lucky (John) 3b. Lucky (John)

Hence the negation of the conclusion has been proved as a

complete contradiction with the given set of facts. Hence the

negation is completely invalid or false or the assertion is

completely valid or true. Hence Proved, i.e. Happy (John)

30. CONCLUSION AND FUTURE WORK
Resolution using refutation is much simpler than the method

using the rules of interference. Proving theorems is considered

to require high intelligence. If knowledge is represented by

logic, theorem proving is reasoning. Once the theorem prover

shows that the negated goal is inconsistent with the given set

of axioms, it follows that the original goal must be consistent.
Propositional Resolution can be used in a proof procedure that

always terminates without losing completeness. I have shown

in my work how does unification and substitution are related

to each other. I have also shown in my work clearly when two

literals are unifiable. Two literals unify if there predicate

symbols are same, otherwise there is no way they can be

unified. When two literals are not unified then substitution

cannot apply. The main significant of substitution that makes

two literals are identical. When two literals are identical and

complimentary then they resolvent and resolution principle

works finely. Predicate calculus is increasingly used for

specifying the requirements of computer applications. In the

area of proving program correctness, predicate calculus allows

one to precisely state under which conditions a program gives

the correct output.

31. ACKNOWLEDGEMENTS
Author of this paper sincerely thank to Prof. Kumar Sankar

Ray, Dept of Electronics & Communication Science Unit,

Indian Statistical Institute, Kolkata- 700108. India, for his

constant support and encouragement.

32. REFERENCES
[1] [Pastre2002] D. Pastre, Strong and weak points of the

MUSCADET theorem prover, AI Communications,

15(2- 3):147-160, 2002,

http://www.cs.miami.edu/_tptp.

[2] [Pastre1993] D. Pastre, Automated Theorem Proving in

Mathematics, Annals on Artificial Intelligence and

Mathematics,8(3-4):425–447, 1993.

[3] [Robinson1965] J.A. Robinson, A machine oriented logic

based on the resolution principle, J.ACM12:23-41, 1965.

[4] [Bledsoe1977] W. W. Bledsoe, Non-Resolution Theorem

Proving, Journal of Artificial Intelligence,9:1–35, 1977.

[5] Artificial Intelligence: A Modern Approach by Stuart

Russell and Peter Norvig, Secong Edition, Published

2003 Prentice Hall .

[6] [Jec97] Jech, T.J.: Set Theory, 2nd edn. Perspectives in

Mathematical Logic. Springer, Berlin (1997).

[7] Chang C and Lee R, Symbolic Logic Mechanical

Theorem proving, Academic press, New York, 1973.

[8] Nilsson N Principal of Artificial Intelligence, Tioga

Publishing Company, 1980.

[9] Winston P H Artificial Intelligence, 2nd edition,

Addison-Wesley, Menlo-Park, California, 1984.

[10] Foundation of artificial intelligence and expert system by

Janakiraman.

[11] Artificial intelligence,3rd edn, by Elaine Rich ,Kevin

Knight, Shivashankar B Nair.

[12] Introduction to ‘Artificial intelligence and expert system’

by Dan W. Patterson, PHI

[13] Resolution By Ankit Shah, Professor Harper Langston

Discrete Mathematics Summer 2007

[14] Artificial intelligence notes- reasoning methods, lecturer:

Coşkun Sönmez

33. AUTHOR’S PROFILE
Dipanjan Kumar Dey, graduated from Calcutta University,

India. M.sc (Mathematics) and M.Tech (Computer Science

&Engineering) from M.C.K.V Institute of Engineering (under

West Bengal University & Technology, India). He is currently

Assistant Professor of Mathematics & Computer Science in

Prajnanananda Institute of Technology & Management, West

Bengal, India. He is also Faculty member of Institute of

Chartered financial Analysis of India (ICFAI) and Academic

Counselor, Assistant Coordinator of Indira Gandhi National

Open University (IGNOU) study center 2804, Kolkata, India.

He is a Science Journalist having Post Graduate certificate

course on journalism and media practice from National

Council for the Science and Technology Communication,

GOVT. OF INDIA, New Delhi. Mr. Dey has to his credit a

significant number of research papers published in

international journals of repute. His research interests in

Genetic Algorithms, Soft Computing, Fuzzy Set, Artificial

intelligence, Mobile computing.

IJCATM : www.ijcaonline.org

