
International Journal of Computer Applications (0975 – 8887)

Volume 99– No.1, August 2014

10

Towards a Modeling approach based on Software

Components

Fadoua Rehioui
Laboratory of Modeling and Computation,

University Sultan Moulay Slimane
B.P. 523, Faculty of Sciences and Technology

Beni Mellal, Morocco

Abdellatif Hair
Laboratory of Modeling and Computation,

University Sultan Moulay Slimane
B.P. 523, Faculty of Sciences and Technology

Beni Mellal, Morocco

ABSTRACT

Software industry is moving towards a component-based

development but more research is still needed for reliable and

efficient software components.

The objective of this work is to propose an approach to

developing software components of the system from use

cases. This approach consists of four stages and is based on

the decomposition of use cases into elementary actions and

the factorization of the past for system software components.

General Terms

Engineering based software components; Software

Components Approach

Keywords

Software components, factorization data, use cases,

subcomponent, actions, approach.

1. INTRODUCTION
The evolution of software engineering has resulted in a

significant interest in the development of software. This

interest is motivated by the reduction of development time of

applications, the requirement of excellent quality, to

constantly adapt to changes and be easily used in other

applications. Therefore, strategy development software

modules must be defined in advance in terms of clarity,

performance, and ease of integration. This type of software

module is called software component, which is an element or

unit of software, implemented as a piece in applications. The

term component is used in several research fields, such as

computer-aided design, software engineering, artificial

intelligence, information systems and databases.

The idea of the component was firstly proposed in 1968

by Douglas McIlroy [6], [12]. This new era of component-

oriented started to grow 30 years later: Sun "EJB" [20], OMG

[15], "CCM" [3], Microsoft ". NET / COM" [13], etc...

The software industry is moving towards a component-

based development, and research is still needed for reliable

and efficient software components. In fact, there is no

standard for modeling a component-based system. Therefore,

it is necessary to try to propose an approach based on use case

to illustrate the functional behavior of a software system and

to identify its components.

Components modeling starting from use cases envisages

the precision of development and identification of specific

components. Use cases are, by their nature, models that ensure

the consistency of development process components and the

connection to the system architecture.

This article aims to present our contribution, which is to

combine a new development of software components from

use cases.

This document is structured as follows:

The following section is devoted to the state of the art of

engineering based software components approaches. Section 3

is devoted to the presentation of the proposed approach and its

different views. Section 4 formalizes the steps of the proposed

approach and its implementation on Account Management as

a case study. Section 5 presents a conclusion and perspectives.

2. ENGINEERING COMPONENT-

BASED
The field of engineering methods deals with the definition of

new engineering modeling methods, conception and

adaptation of techniques and tools for the development of

information systems [20].

For good quality software improvement, several analysis and

design methods have been developed such as Merise [19],

which was used in 1980 for project management

organizations, and currently limited to a specific area,

especially its inefficiency in the modeling of software

components. Later, several object-oriented analysis and

conception methods have been developed, namely Rumbaugh

OMT [21] BOOCH [1] and OOSE Jacobson [8]. In 1994,

Rumbaugh, Booch and Jacobson decided to unite in the

development of a new method called UP (Unified Process) [9]

which defines a generic framework for developing object with

UML (Unified modeling language) [22] as a modeling

language, and which is centered on the architecture and

guided by use cases .

Despite the strength of these methods, they do not exploit the

principle of consistency of conceptual modeling object until

the obtaining of system code. To fill this lack, methods based

components intend to improve the cost and development time

by code fragments and assemble them to form a new

application. Among these methods it can cite:

Catalysis is a method of design systems based on components

originally developed by Desmond D'Souza and Alan Cameron

Wills in 1998 [4]. Catalysis improves and extends UML by

extensions in order to represent the logical level of

components that the physical level of component on UML.

The components of the Catalysis method are abstract, and

defined as a 'Type', each 'Type' is a stereotyped class. One

type has a behavior in a domain, which the external behavior

of each 'Type' is defined by its interfaces.

J. Cheesman and J. Daniels proposed the method UML

Component [2] . This method is inspired by several methods,

such as Catalysis and RUP [10]. The method focuses on the

specification of components by enriching the UML notation

with stereotypes, in order to describe the specification of

components. The identification of the components is made

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.1, August 2014

11

from trade concepts, described and grouped by the notion of

"types". The proposed method is limited to the conception

level. Indeed, it does not explain how to interpret the

specification of the component in the implementation, or how

to check the specifications at the compilation level.

Proposed by Emmanuel Renaux [18] CUP method is an

adaptation of the Unified Process (UP) oriented to systems

based on components. The method aims to provide a

structured approach to develop software based components. It

uses more the UML notation to express the concept of

components during the life cycle of software development and

not to the deployment phase and provides early the

identification of components (logical components).

The VUML (View based Unified Modeling Language)

method is an extension of UML but oriented viewpoint

developed by Mahmoud Nassar [14]. It is based on the

principle that a software system is a combination of objects,

views and perspectives. The main addition to the UML is the

concept of multiviews class that combines the concept of

flexibility via the notion of viewpoint. This multiview class is

composed of a base entity (part shared by all actors) having

entities-view (extensions of the base entity). Multiview

component concept was introduced in VUML in component

diagrams so that entities-view becomes internal sub-

components of the base component from the base entity

(multiview class) [14].

The construction of a method should be based on the principle

of agreement of this method with the various projects. That is

to say, the engineering of methods in its turn poses a problem

in the construction of a flexible approach and easily adapted

to the situation of each project [20].

Most of these proposed methods based on the software

components except the CUP, do not have neither early and

clear identification of components from use cases, nor good

identification and consistency of internal and external

elements of the component for the rest of development cycle

of the system, which makes these methods non-stringent and

inappropriate methods.

3. PROPOSED COMPONENT-BASED

APPROACH
A software architecture which is undertaken and directed by

the use cases during development would require work from

different views.

The system architecture based on the use of views identifies

the description of the design addressing different issues. This

description consists of four views: the use case view allows to

formalize the user requirements and their interpretations in the

system specification.

The component design view allows the visualization of the

organization of the components in the development

environment. The interface view describes the set of

interfaces of achieved components.

And the components assembly view stands for the system in

the environment of its components and their interactions.

The proposed approach is described by these four system

views, each of which includes a set of steps developed in

order to meet all the needs of system users. Each of these

views describes dependencies with other views and ensures

overall consistency and a direct correspondence of the system

during the execution of the process.

3.1 View of the use case
All the specifications of an information system are described

in view of the use case. Having fully described the use cases,

the use case view represents the needs of the system in the

form of components, bringing together all the use cases with

the actor concerned for the use case view, which identifies

from the outset all product components.

Then, use cases are decomposed into a set of actions from the

scenarios of the system, and then the actions discoveries are

factored to parts which will be then sub-components. Part is

defined informally as a "concept data" corresponding to a list

of actions of use case or to a result of an interaction of group

actions of use cases. This leads to develop a number of actions

(elementary activities of a user) [7] integrated into a table

decomposition of use cases.

3.2 View component design
A component is a self-contained module having an internal

structure and a set of ports that structure the points of

interaction with the external environment with a set of

interfaces provided and / or required [24].

The view component design describes the structure of the

elements of architecture of component and its relationships. It

represents the internal structure of the component, and its

subcomponents. The model component design is the element

of the architecture that will be deployed and executed (see

Figure 1).

3.3 Components provided/required

interfaces View
An interface is a relationship of dependency "use / provide"

between the component and its environment, but the behavior

of the services offered via this interface will change according

to the use case in question. These interfaces are characterized

by the signatures of the methods they define and make sense

of communication (provided; incoming / required; outgoing).

The interface view represents the component specification,

through its ports required / provided which express the

interaction between components.

The method given in the interface identification is to use the

suitable and the various actions identified above for use case

view concerned.

3.4 Assembly view
The assembly view shows the overall system by giving a

representation [17] of software components and their

interactions. The interaction between components via a port is

made through connectors that connect component ports [5].

Indeed, a component must first activate, dynamically, a

subcomponent before interacting with another component via

a corresponding connector.

A connector connects two or more connectable elements

(port, component). Each end of the connector plays a different

role in the communication between connectable elements. It

can be delegated or assembly. A delegation connector

connects a component to its internal sub-components [5].

An assembly connector connects two elements (component or

port), one requesting services provided by the other.

A connector assembly is all the hardware and software to

specify and implement the interaction between components.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.1, August 2014

12

Fig 1: Seen of the proposed approach

4. PRESENTATION AND CASE STUDY
The purpose of this work is to propose a new method which

allows to describe the needs of users of the system, using use

cases to elaborate system software components. The proposed

method models a system according to its different users

(actors). The presentation of the method is illustrated by the

case study of an ATM of a bank that allows withdrawing

money (take out), depositing money and checking the balance

of a customer. A main scenario is presented below to show an

example of system operations.

1. The customer identifies himself by inserting a bank card

into the distributor

2. The distributor checks the validity of the card

3. The customer enters his PIN

4. The distributor checks the code

5. The customer chooses the operation " Cash withdrawal"

6. The customer specifies the amount to withdraw

7. The distributor checks and request the computer system to

debit the account

8. The customer takes money

9. The distributor asks the customer to continue or not

10. The customer chooses the operation " Cash deposit "

11. The customer deposits money

12. The distributor account money

13. The distributor request confirmation of the amount

14. The customer confirms the amount deposited

15. The distributor delivers a deposit slip (receipt)

16 . The customer takes the deposit slip

17 . The customer withdraws his card

Alternative: incorrect PIN
In step 4 of the main scenario, the PIN is incorrect.

The distributor asks again the secret PIN

The customer enters his PIN

The distributor checks the PIN

Precondition

The customer must have a credit card

Post- condition for success

The customer has the card and Cash money

4.1 Identification of constituents

This step consists of identifying the various components of

the case treated by identifying the needs of the system. This

identification of needs includes identification of actors

(participants) use cases of the system. An "actor" is typically a

person or may even be another computer system, as is the case

with "ATM".

The use case diagram is developed to express the interactions

between the system and the actors of the system.

Two main actors in our system are identified (see Figure 2):

• The actor Customer-Bank identifies for "Withdraw Money

", for "Deposit Money" or / and for "View the Balance."

• The actor Cash-register that supports the operations

performed by the customer.

The identification of components is realized as a cluster of

partial use cases of a set of scenarios in use cases view. This

grouping of use cases is based on the decomposition of use

cases in actions of an actor. This allows early identification of

all software components of our system from use cases.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.1, August 2014

13

Fig 2: Diagram Use Case

Fig 3: View of use case "ACCOUNT MANAGEMENT" of the CUSTOMER actor

Fig 4: Use Case View "DISTRIBUTOR" actor CASH-REGISTER

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.1, August 2014

14

4.2 Elaboration of actions
This step consists of cutting and designing use cases in

various elementary actions of actors in the system (Table 1)

where action is an effect produced by an actor to achieve an

objective. Here, the inclusion relation ("includes", Figure 2)

expresses the fact that a use case includes a consecutive

sequence of actions and it is possible to factor (i.e. find what

is common in actions and group) with other cases of use.

Table 1. Description of use case views of the system BANK

Actor Use Case Decomposition action

Customer-

Bank

Withdraw

money

a1: customer identifies itself

by his card

a2: customer enters his PIN

a3: customer chooses "Cash

withdrawal" operation

a4: customer specifies the

amount to withdraw

a5: customer takes money

a6: customer takes the card

View

(Ckeck)

balance

a1: customer identifies itself

by his card

a2: customer enters his PIN

a7: customer chooses

operation "View balance"

a6: customer takes the card

Deposit

money

a1: customer identifies itself

by his card

a2: customer enters his PIN

a8: customer chooses the

operation "Cash deposit"

a9: customer deposits money

a10: customer validate or not

the amount deposited

a11: customer takes the

deposit slip

a6: customer takes the card

Cash-

register

Withdraw

money

a12: the Cash-register checks

the validity of the card

a13: the Cash-register checks

the code

a14: the Cash-register checks

the balance

a15: the Cash-register debit

the account by the amount

requested

View

balance

a12: the Cash-register checks

the validity of the card

a13: the Cash-register checks

the code

a14: the Cash-register control

the balance

a16: the Cash-register displays

information

Cash-

register

Deposit

money

a12: the Cash-register checks

the validity of the card

a13: the Cash-register checks

the code

a17: the Cash-register counts

the money

a18: the Cash-register request

confirmation of the amount

a19: the Cash-register issue a

deposit slip (receipt) of the

amount paid

Identification

Customers

a1: customer identifies card

a12: the Cash-register checks

the validity of the card

a2: customer enters his PIN

a13: the Cash-register checks

the code

Update a20: Save operations

a21: Update Account

After decomposing use cases in a series of actions, the actions

found are factored in parts which will be then sub-components

[11].

This factorization of actions use cases concerning

CUSTOMER-BANK and the CASH-REGISTER actors of

system leads to constitute parts from a list of actions (a1 to

a20). The parts produced are:

The customer is the operator, ie d. operations are performed

by the customer.

P1: WITHDRAWAL  a3, a4, a5

P2: DEPOSIT  a8, a9, a10, a11

P3: BALANCE INQUIRY  a7

The operator is the cash-register; it supports the execution of

operations.

P4: IDENTIFICATION  a1, a12, a2, a13

P5: WITHDRAWAL  a14, a15

P6: DEPOSIT  a17; a18; a19
P7: BALANCE INQUIRY  a14, a16

And P8: UPDATE  a20; a21

According to this decomposition, it see that P1, P2 and P3

refer to shared parts P5, P6 and P7 whose functionality

depends on the actor of the system.

Relationship "include" is a relationship in which a use case

(base use case) includes another use case features (inclusion

use case). It supports the reuse of functionality in a use case.

In Figure 2, "Withdraw money", "View Balance" and

"Deposit money" of CUSTOMER-BANK, are base use cases

of inclusion use case "Identification" of CASH-REGISTER,

according to the "includes" relationship.

"Update Account" of actor CASH-REGISTER is a base use

case with respect to inclusion use cases "Withdraw Money",

"View Balance" and " Deposit Money" of the CUSTOMER-

BANK actor.

And thereafter, the actions corresponding to base use cases are

a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a20, and a21.

Similarly, the actions corresponding to the inclusion use case

are a12, a13, a14, a15, a16, a17, a18, and a19.

Therefore, these actions of base use cases represent a source

of information in relation to other actions in the inclusion use

case.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.1, August 2014

15

Therefore, the parties WITHDRAWAL, CONSULTATION

and DEPOSIT of the view use case ACCOUNT are sources of

information to the view use case DISTRIBUTOR.

The approach is to associate with each actor (i.e. a use case

view) a part or group of parts that meets the needs of the actor

(see Figure 5).

Figure 5: Cutting of use case view in parts

4.3 Identification components
This is a step that aims to associate combinations of parts

obtained at the end of the previous step in order to develop the

various components and sub-components of the system.

Generation model of component design view is carried from

the stage "Elaboration of activities “ of the components of the

system, so that the parts (WITHDRAWAL, BALANCE

INQUIRY, DEPOSIT, IDENTIFICATION, AND

REGISTRATION/UPDATE) become sub-components of

DISTRIBUTOR component and parts (WITHDRAWAL,

BALANCE INQUIRY, DEPOSIT) become subcomponents of

ACCOUNT component (see Figure 6).

The communication between the sub-components is via ports

input / output interconnected to ensure the proper functioning

of the system.

Figure 6: Diagram of component of use case view CASH-REGISTER

Identification of interfaces provided / required is based on the

actions defined in the step of identifying the components

(Table 1), so it is necessary to know first the sub-components,

which are sources of information and have strong values.

To identify the interfaces provided / required, the procedure is

as follows:

Firstly, it must know the source sub-components of

information and strong values that will provide the interfaces

provided.

According to the previous phase, it was found that the parts

WITHDRAWAL, CONSULTATION and DEPOSIT of the

view use case ACCOUNT, are sources of information to the

view use case DISTRIBUTOR. Therefore, these parts become

sub-components and provide interfaces provided.

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.1, August 2014

16

Figure 7: Diagram of component of use case view CASH-REGISTER

As for the "REGISTRATION AND UPDATE" part of the

view use case DISTRIBUTOR, it becomes a sub-component

to having a provided interface for the sub-components of

ACCOUNT component.

The sub-component WITHDRAWAL of ACCOUNT

component provides an interface provided called "Make a

Withdrawal" derived from actions a3 and a14 describing more

the role of the interface to WITHDRAWAL sub-component

of DISTRIBUTOR component.

For BALANCE INQUIRY sub-components of ACCOUNT

component, it offers a provided interface called "View

Balance" from action a7 and a15 to BALANCE INQUIRY

sub-component of DISTRIBUTOR component. The

REGISTRATION AND UPDATE sub-component of

DISTRIBUTOR component offers provided interface to the

three sub- component of ACCOUNT component as name

"Update Account" from actions a19 and a20.

In summary, the "View Balance", "Make a Deposit" and

"Make a Withdrawal" are interfaces provided of the

ACCOUNT component towards the DISTRIBOTOR

component and are interfaces required of the DISTRIBOTOR

component towards the ACCOUNT component. As for the

interface "Update the account", it is a required interface of the

ACCOUNT component towards the DISTRIBUTOR

component and is a provided interface of the DISTRIBUTOR

component towards the ACCOUNT component.

In Figure 7, it represents the interfaces provided by a gray

disk, and required interfaces are symbolized by a black half

circle.

4.4 Assembly components
In the assembly of system components, the ACCOUNT

component interacts with the DISTRIBUTOR component,

hence the assembly of system components through ports

(Figure 8). Figure 8 shows the simplified diagram of

components. This diagram shows two components

(DISTRIBUTOR and ACCOUNT) that interact with each

other via ports and shows assembly connectors and delegation

connectors for ACCOUNT component. It can differentiate a

delegation connector connecting the three sub-components

WITHDRAWAL, BALANCE INQUIRY and DEPOSIT with

the sub-component CUSTOMER IDENTIFICATION. For the

assembly connectors, there are four connectors connecting the

DISTRIBUTOR component with the ACCOUNT component.

Fig 8: Assembly components view (ACCOUNT, DISTRIBUTOR)

International Journal of Computer Applications (0975 – 8887)

Volume 99– No.1, August 2014

17

5. CONCLUSION AND PERSPECTIVES
The software components are interested in problems that are

not taken into account until now. They have a particular

vision of how to develop softwares; they are processes that

provide steps to drive the development.

It is no coincidence that the notion of component provides

great interest for the development of complex systems. It

presented an engineering approach based on components that

is based on the factorization data process with its four stages:

identification of the constituents, development activities of the

constituents, identification of system components and

component assembly.

The use of actions has shown its effectiveness for the

identification of sub-components and interfaces in all steps of

the proposed approach.

Currently, the research focuses on the complete definition of

approach conception of information systems based on

components. This type of research should lead to a real and

effective method of engineering domain. The objective is to

define a method of analysis/conception of components in

modeling complex systems.

6. REFERENCES
[1] Booch.G. 1993. Object-oriented Analysis and Design

with Applications (2nd ed. ed.). Redwood City:

Benjamin Cummings. ISBN 0-8053-5340-2.

[2] Cheesman.J. and Daniels.J. 2001. UML Components - A

Simple process for specifying Compnent-Based software

, Addison-wesley.

[3] CORBA. 2014. http://www.omg.org/spec/CORBA/3.3/

[4] D’Souza.D.F. and Wills.A.C. 1998. Objects,

Components, and Frameworks with UML - The Catalysis

Approach. ADDISON-WESLEY.

[5] B.E. El Asri, M. Nassar, B. Coulette, and A. Kriouile.

2006. "Architecture d'assemblage dynamique de

composants multivues dans VUML", ;in Proc.

INFORSID, 2006, pp.943-958.

[6] Fabresse.L. 2007. Du découplage à l’assemblage non-

anticipé de composants Conception et mise en oeuvre du

langage à composants SCL.

[7] Hair. A, Krioule.A, Coulette.B, 2002. Un processus

d’analyse et de conception unifié basé sur le concept de

point de vue. Actes de CARI’02, Octobre, Yaoundé,

Cameroun.

[8] Jacobson.I. 1992. Object-Oriented Software Engineering:

A Use Case Driven Approach. ISBN 0-201-54435-0.

[9] Jacobson.I. Booch.G. and Rumbaugh;J. 1999. The

Unified Software Developement Process, Addision-

Wesley.

[10] Kruchten P. 1998. The Rational Unified Process: An

Introduction.

[11] Kriouile. A. 1995. VBOOM, une méthode orientée objet

d'analyse et de conception par points de vue. Université

Mohammed V de Rabat.

[12] McIlroy.M.D. 1968. Mass produced software

components. In Proceedings, NATO Conference on

Software Engineering, éditeurs P. Naur et B. Randell,

Garmisch, Germany. [McIlroy, 1968,

http://fr.wikipedia.org/wiki/Douglas_McIlroy

[13] Microsoft. 2014. NET Framework Developer Center,

http://msdn.microsoft.com/fr-fr/vstudio/aa496123.

[14] Nassar.M. 2005. Analyse/conception par points de vue:

le profil VUML. Thèse en Informatique à L’institut

National Polytechnique De Toulouse.

[15] OMG. 2014. O.M.G. Home Page, http://www.omg.org,

[16] Renaux.E. 2004. Définition d’une démarche de

conception de système a base de composants, Université

de Lille 1.

[17] Renaux.E. 2004. Les composants logiques : vers une

ingénierie à base de composants. 59655 VILLENEUVE

D’ASCQ cedex.

[18] Renaux .E, CARON.O and GEIB.J.M. 2003. The

Component Unified Process Project. In SEA’03, page

669-647, Los Anglos USA,.IASTED,ACTA Press.

[19] Rochfeld.A. et Colletti.R. 1983. La Méthode Merise

Tome 1 : Principes et outils. Éditions d'Organisation,

Paris.

[20] Sun. (2014). E.J.B. HomePage,

http :www.oracle.com/technetwork/java/javaee/ejb/index

.html,

IJCATM : www.ijcaonline.org

