
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.7, July 2014

3

RelationalJSON, An Enriched Method to Store and Query

JSON Records

Ankit Bharthan

Compro Technologies Pvt Ltd
E/88, Ashok Vihar,

Phase-1, Delhi, India

Devesh Bharathan
PayU India

E/88, Ashok Vihar,
Phase-1, Delhi, India

ABSTRACT

Storing JSON documents in a relational database is a

favorable solution because relational database are advanced

and scale very well and they have the advantage that in a

relational database management system (RDBMS) database

and organized data can coexist making it possible to build

application that involves both kind of data with little effort. In

this paper, we propose an algorithm schema named

RelationalJSON that translates JSON documents to relational

database according to anticipated storing structure. The steps

and algorithm are giving in details to describe how to use the

storing structure to storage and query JSON documents in

RDBMS. Then we report our experimental results on a real

database to show the performance of our method in some

sorts.

General Terms

Efficient data retrieval.

Keywords

JSON, Relational Database, RDBMS, SQL.

1. INTRODUCTION
Today’s data exchange between organizations has becoming

perplexing because of the differences in data format and

semantics of the meta-data which used to describe the data.

Now a days’ JSON emerged as a major standard for

representing data on World Wide Web while the dominant

storage mechanism for structured data is the relational

databases, which has been an efficient tool for storing,

searching, retrieving data from different collection of data.

The ability to map JSON data in relational databases is

difficult mission and challenging in the world of all IT

organization so there is a need to develop an interfaces and

tools for mapping and storing JSON data in relational

databases.

1.1 JSON
Short for JavaScript Object Notation, JSON is a lightweight

data-interchange format that is easy for humans to read and

write, and for machines to parse and generate. JSON is based

on the object notation of the JavaScript language. However, it

does not require JavaScript to read or write because it is a text

format that is language independent. JSON notation contains

these basic elements:

Objects: Objects begin and end with curly braces ({}).

Object Members: Members consist of strings and values,

separated by colon (:). Members are separated by commas.

Arrays: Arrays begin and end with braces and contain values.

Values are separated by commas.

Values: A value can be a string, a number, an object, an array,

or the literals true, false or null.

Strings: Strings are surrounded by double quotes and contain

Unicode characters or common backslash escapes.

1.2 Relational Databases
Today, the dominant storage mechanism for structured

enterprise data is the relational database, which has proven

itself an efficient tool for storing, searching for, and retrieving

information from massive collections of data. Relational

databases specialize in relating individual data records

grouped by type in tables. Developers can join records

together as needed using SQL (Structured Query Language)

and present one or more records to end-users as meaningful

information. The relational database model revolutionized

enterprise data storage with its simplicity, efficiency, and cost

effectiveness. Relational databases have been prevalent in

large corporations since the 1980s, and they will likely remain

the dominant storage mechanism for enterprise data in the

predictable future. Despite these strengths, relational

databases lack the flexibility to impeccably integrate with

other systems, since this was not historically a requirement of

the database model (Reed, D. 2008). In addition, although

relational databases share many similarities, there are enough

differences between the major viable implementations to

make developing applications to integrate multiple products

difficult. Among the challenges are differences in data types,

varying levels of conformance to the SQL standard, exclusive

extensions to SQL, and so on.

2. PROBLEM DESCRIPTION
For the storage of JSON document, the key issue is

transmuting the tree structure of a JSON document into tuples

in relational tables. Nowadays, there are more and more data

presented as JSON document, the need of storing them

persistently in a database has increased rapidly while the

native–JSON databases usually have limited support for

relational databases. In recent years, with the popularity of

relational databases (RDB), approaches based on RDB to

store and manipulate JSON data as relational tables but still

there is need to manage JSON data and relational data

seamlessly with similar storage and retrieval efficiencies

simultaneously. JSON and Relational databases cannot be

kept separately because JSON is becoming the universal

standard data format for the representation and exchanging the

information whereas most existing data lies in RDBMS and

their power of data proficiencies cannot be degraded so the

solution to this problem a new efficient methods for storing

JSON documents in relational database is required.. A new

efficient method for storing JSON document in relational

database is recommended in this paper to face these problems.

http://www.webopedia.com/TERM/J/JavaScript.html

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.7, July 2014

4

3. THE PROPOSED PROCESS

3.1 JSON Data
JSON is built on two structures:

First, A collection of name/value pairs. In various languages,

this is realized as an object, record, struct, dictionary, hash

table, keyed list, or associative array.

Second, An ordered list of values. In most languages, this is

realized as an array, vector, list, or sequence.

These are general data structures. Virtually all modern

programming languages support them in one form or another.

It makes sense that a data format that is interchangeable with

programming languages also be based on these structures.

In JSON, they take on these forms:

An object is an unordered set of name/value pairs. An object

begins with { (left brace) and ends with } (right brace). Each

name is followed by : (colon) and the name/value pairs are

separated by , (comma).

It is an instance of JSON document contains information

about students as follows:

{

 "Personal": {

 "Student": [

 {

 "type": "Online",

 "Name": "Ankit",

 "Id": "21357",

 "Age": "22"

 },

 {

 "type": "Full Time",

 "Name": "Devesh",

 "Id": "22134",

 "Age": "24"

 },

 {

 "type": "Full Time",

 "Name": "Bharthan",

 "Id": "87688",

 "Age": "28"

 }

]

 }

}

Fig 1: JSON Document

3.2 The Tree Structure of JSON Document
In this section we represented the tree structure of JSON

document in Fig 2 with labeling

3.3 Relational JSON Structure

3.3.1 RelationalJSON Structure
Each and every JSON can be describing as a JSON tree. In

this figure the squares are the elements and the ovals are the

attributes of the elements. A generated JSON tree has been

shown in the figure. Every element or attributes are identified

by a moniker (number).

3.3.2 Algorithm
JSON document can be stored in relational database, in

this paper, MYSQL by use of above two tables. In this

paper algorithms are proposed to store JSON document

into relational database.

3.3.3 Example 1
In this structure when an element or type associates with its

signature it also represents its parent element. We add

document name in association with the id to be able to add

multiple JSON file in the storage. Figure 2 represents the

storage of the JSON file associated with its signature. For

every element there will have a signature associated with it

and there will also have a parent’s signature associated with it.

In table 1: fieldName represents the name of the node; id

represents the id of the node which is the PK. And finally

parentID represents the parent id of the node. As document

name don’t have any parent id so the id of the document name

and parent id of the document name is same that has been

shown in the table 2.

Table 1. Field Structure

fieldName id parentID

Personnel.JSON 1 1

Personnel 2 1

Student 3 2

Type 4 3

Name 5 3

Id 6 3

Age 7 3

Student 8 2

Type 9 8

Name 10 8

Id 11 8

Age 12 8

Student 13 2

Type 14 13

Name 14 13

Id 15 13

Age 16 13

Student 17 13

Table 2 Field Value

fieldID Value type

4 Online A

5 Ankit E

6 21357 E

7 22 E

9 Full Time A

10 Devesh E

11 22134 E

12 24 E

14 Full Time A

15 Bharthan E

16 87688 E

17 28 E

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.7, July 2014

5

Fig 2: JSON Tree Structure with fieldIDs

In table 2, we represent the value associated with the elements

or type. In RelationalJSON structure there is no need to store

the path value or path structure as it will be determine

recursively by its parent id. In Table 1: fieldName is the name

of the tag, where Id is the parent key. In Table 2: fieldID

presents the Table 1 id thus fieldIDis the foreign key. In Table

2 fieldID only represents the elements which contain a value

and the value represents on the value column. And the type

‘A’ denoted to the attribute and ‘E’ denoted to the element.

4. THE ANALYSIS OF RESEARCH
This section discusses the experimental results of storage,

parsing and query performance of JSON document using

RelationalJSON method. All the experiments were conducted

on a Pentium Intel i5 CPU

3.00 GHz with 2 GB RAM 320GB hard disk. We used

Windows XP SP2, java 1.6 SDK and MYSQL 5.1 as the

DBMS for storing and retrieving JSON document using

RelationalJSON method as structure independent mapping

approaches. We have implemented data loader for

RelationalJSON using SAX and DOM parsers. From the

results, the proposed method can be used as an efficient way

for storing and queering JSON data in relational database.

4.1 Database Size:
The database size for JSON document in Fig. 1 using

RelationalJSON method is given in show that by this storage

method we can reduce not only the size of database

requirement of the labelling of node, but also the number of

tables.

4.2 Parsing Time:
The time of parsing the JSON document using

RelationalJSON method is faster because it uses Document

Object Model (DOM) parsing technique. Using DOM it read

the nodes and corresponding child node.

4.3 Insertion Time
The insertion time of JSON document in Fig.1 using

RelationalJSON method is given in table 3. As seen

in the table 3, the RelationalJSON is fast and the

reason could be that the data is stored in only two

tables in this method.

Table 3. Performance Analysis

Insertion Time 1.177 Seconds

Database Size 0.001663 MB

Parse Time 0.053 Seconds

4.4 JSON Validation
RelationalJSON method also included JSON validation

package. Before parsing whole JSON document, it checks if

the JSON file has valid structure and grammar or not. It also

shows the error on the JSON file with specific line number.

5. INFERENCE
RelationalJSON, a general storage method for JSON

document using relational database is proposed in this paper.

RelationalJSON adopts the model-mapping method to store

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.7, July 2014

6

JSON document in relational database, to decompose the tree

structure into nodes and store all information of nodes in

relational database according to the node types by recursive

way. It can deal with any documents no matter whether it has

fixed outline or not. By using this method we can reduce the

database size require to store the JSON document into

relational database. The storing algorithm of JSON document

into relational database was also given in the paper, and

examined the accuracy of it by using the JSON document in

performance section. Exploiting the actual JSON document

evaluated the performance of storing JSON document into

relational database by using our method.

6. REFERENCES
[1] Florescu, D., D. Kossman, 1999. Storing and querying

JSON data using an RDBMS, IEEE Data Engineering

Bulletin.

[2] Hasan Zafari, Keramat Hasami, M . Ebrahim Shiri, 2010.

Xlight, an Efficient Relational Schema to Store and

Query JSON Data. In proceeding of the IEEE

International conference in Data Store and Data

Engineering, pp: 254-257.

[3] Tatarinov, I., S. Viglas, K. Beyer, et al., 2002. Storing

and querying ordered JSON using a relational database

system, in Proceedings of the ACM SIGMOD.

[4] Tian, F., D. DeWitt, J. Chen, C. Zhang, 2002.The design

and performance evaluation of alternative JSON storage

strategies, ACM Sigmod Record

[5] Florescu, D., D. Kossman, 1999. Storing and querying

JSON data using an RDBMS, IEEE Data Engineering

Bulletin.

[6] M.A. Kashem, Abu Sayed Chowdhury, Rupam Deb, and

Moslema Jahan, Query Optimization on Relational

Databases for Supporting Top-k Query Processing

Techniques 2010 JCIT, ISSN 2078-5828 (PRINT), ISSN

2218-5224 (ONLINE), VOLUME 01, ISSUE 01 2013

[7] Majid Khan and M. N. A. Khan, Exploring Query

Optimization Techniques in Relational Databases,

International Journal of Database Theory and

Application Vol. 6, No. 3, June, 2013

[8] Zhang Yu, Research of Conversion Method of Entity

Object and JSON Data, The 2nd International

Conference on Computer Application and System

Modeling (2012)

IJCATM : www.ijcaonline.org

