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ABSTRACT 
In many applications in which a huge amount of data is 

transmitted, and the data is processed in real time, data 

compression is crucial. Here, a smart compression method 

based on the wavelet subbands arranging technique is proposed 

for telemedicine. The proposed method can effectively reduce 

the large amount of transmitted data, and provide real-time 

analysis. Moreover, if available bandwidth drops, the proposed 

method is capable of tuning the rate of compressed data, and 

different input channels are simultaneously compressed with 

different rates, as well as the quality of each compressed data is 

preserved. The proposed method is tested on selected records 

from the MIT-BIH arrhythmia database. Based on results, it is 

concluded that the proposed approach is an appropriate choice 

to intelligently and simultaneously compress large amount of 

multichannel data, is able to tune compressed data rate to 

preserve the required quality of output, and to use the bit 

capacity of every input channel efficiently. 
 

Keywords 
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1. INTRODUCTION 
When voluminous amount of data is produced by medical 

instruments, the data either processed by recording facilities or 

transmitted to a control center for observation and further 

processing. The traffic to/from the control center is high due to 

active users.  

It is not always possible to increase bandwidth to support 

all users, and provide good service for them. However, one 

solution to efficiently use the bandwidth is the data compression 

with high accuracy and low error.  

Tcheou and his colleagues attempted to bring the attention 

to a challenging research problem for automation, measurement 

and control of power systems. Special attention was given to 

compression techniques for electric signals [1]. The need for 

introduction of powerful compression techniques for smart grid 

applications, and some of the most important research 

challenges were addressed. It was emphasized that signal 

compression is crucial to come up with smarter grids for smart 

sensing, monitoring, and protection in the next generation of 

electric systems [1]. 

At the institute of applied physics and computational 

mathematics in Beijing, China [2], researchers proposed a smart 

compression method based on information theory used to 

accelerate the large-scale time-varying volume rendering. The 

approach can automatically process the importance of each sub-

block in volume, then help users analyze and extract features 

from the huge data. The two-stage compression is used for non-

critical data discarding and lossy data compression, and the 

subsequent data transfer is only operated on these feature data 

in the visualization pipeline, so the bandwidth bottleneck can be 

eased [2]. 

In this paper, a smart compression approach is proposed to 

reduce the large amount of medical data transmitted and use 

available bandwidth effectively. Here, the method is applied on 

clinical data for the application of telemedicine. However, the 

proposed method can be applied for different applications in 

which a huge amount of data needs to be transmitted and 

processed in real-time [3]–[6]. 

Before explaining the proposed approach, it is necessary to 

define some criteria. The percent root mean square difference 

(PRD) is used as the evaluation criterion for the fidelity of 

reconstructed data. The PRD is expressed as follows: 
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where     is the ith sample from original input data,     is its 

reconstructed sample, and Ns is the number of samples in the 

original input data [7]. 

To test the redundancy removing ability of compression 

techniques, the compressed data rate or CDR (bits/s) is utilized: 
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where    is the sampling rate (samples/sec), and 

                    is the total number of bits to be transmitted 

or stored after compression [7], [8], [9]. 

In the following section, smart compression based on the 

wavelet subbands arranging technique is explained. In section 

3, the proposed method is tested by selected data from the MIT-

BIH arrhythmia database. The section 4 concludes the paper. 

 

2. PROPOSED METHOD 
The proposed smart compression method includes different 

phases which are illustrated in figure 1. 
 

2.1. Finding Minimum Acceptable CDR  
In this phase, the proposed method tries to determine the 

compressed data rate corresponding to a predefined error; the 

predefined error is the maximum acceptable PRD for which 

clinical information of decompressed input channels is 

preserved. Whereas the type of data for each input channel and 

its maximum acceptable error are known, the CDR (i.e. 

minimum acceptable CDR) corresponding to the maximum 

acceptable error is calculated for every input data.  

To calculate the minimum acceptable CDR for each input 

data, a small part of every input is selected as training set and is 

compressed by wavelet subbands arranging technique (WSAT) 

[14]. 
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Then, a vector called      including the values of minimum 

acceptable CDRs for all input channels is built. Afterwards, 

elements of the       are sorted based on the value of CDRs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Schematic of the proposed method 

 

2.2. Evaluating Available Bandwidth 
The path capacity is the maximum IP-layer throughput that a 

flow can get in the network path from a sender station to a 

receiver station [10]. 

The available path capacity depends on the data rate used 

by each active system, the number of active systems, 

unsuccessful transmissions, etc.   

To estimate the path capacity, the tool called Pathrate is 

utilized [11]. The main advantage of Pathrate is that it is robust 

to cross traffic effects. In other words, Pathrate can estimate the 

path capacity even when the path is loaded significantly. 

The route that the path follows should be unique during 

measurements. The path capacity is calculated by the link with 

the minimum transmission rate. Pathrate is an end-to-end 

capacity estimation tool, and utilizes packet-pairs and packet-

trains to estimate the path capacity. 

Pathrate uses UDP (i.e. User Datagram Protocol) packets 

for the packet-pairs and packet-trains, and a TCP connection for 

exchange of control information. Pathrate can be run from user-

space, and it does not require superuser privileges. Pathrate 

operates as follows [10]: 

Step 1: Pathrate finds the maximum train-length that the 

path can handle. Overloading the path with long packet trains is 

prevented because long packet trains would lead buffer 

overflows and losses. Pathrate transmits a few packet trains of 

increasing length named as preliminary measurements, to 

determine if the narrow link has parallel sub-channels, or if it 

performs traffic shaping.  

The main goal of preliminary measurements is the 

calculation of the bandwidth resolution. 

Step 2: Pathrate produces a large number of packet-pairs to 

find all local modes in the packet-pair bandwidth distribution. 

The packets sent by Pathrate have variable size, to make the 

non-capacity local modes weaker and wider. 

Step 3: In this step, the Asymptotic Dispersion Rate (ADR), 

measured with long packet trains, is estimated. ADR is a lower 

bound of the capacity and an upper bound of the available 

bandwidth [11].  

Finally, Pathrate estimates the capacity of the path. 

The available bandwidth,            ,  which is distributed 

among the different flows during a certain period τ is 

formulated as [12], [13]: 
 

 

(3) 
 

where           is the bandwidth utilized for the last period τ,    

and    are constant, C is the estimated path capacity, and  Q(t) 

is the minimum queue length happened during the last period τ. 

The parameter τ can be expressed as follows:  
 

(4) 

 

where       is the actual capacity of the path, and    is the 

system base delay or the delay excluding the queuing delay.  

The error of path capacity estimation is expressed as           

          and it should be compensated up to a certain 

limit. When the capacity of the path is fully utilized, it is 

expected that the available bandwidth to be zero or close to 

zero. Thus, the estimation error limit is expressed as [12]:  
 

(5) 

 
 

2.3. CDR Adjustment 
If the available bandwidth drops due to any reason, it leads to 

delay in data transmission. This situation is very risky if it 

happens during continues healthcare monitoring. Thus, the 

proposed method reduces the rate of compressed data for input 

channels corresponding to the dropped bandwidth.  

The process of CDR reduction for input channels is tunable. 

In other words, if CDR reduction for one or more input 

channels lead to losing the quality of compressed data― 

decreasing CDR for an input may cause a CDR value less than 

its minimum acceptable CDR value from     ― then, the 

proposed method tries to tune the rate of compressed data. 

After CDR reduction, if an input channel has a CDR value 

less than its minimum acceptable CDR value, the channel is 

called as weak channel.  

To tune the CDR value of weak channels, the proposed 

method reconsiders the input channels which have less 

minimum acceptable CDR than the CDR of weak channels 

(called strong channels). Then, to moderate the CDR reduction 

in weak channels, the CDR of the strong channels is decreased. 

In other words, different channels are prepared to 

simultaneously compress with different CDR, and the quality of 

each compressed data is kept. 
 

2.4. Simultaneous Compression 
To simultaneously compress input channels the wavelet 

subbands arranging technique (WSAT) is used. 

Before encoding, the wavelet transform is applied on input 

data. During the wavelet decomposition, the original input data 

is passed through low pass and high pass filters. Then, the 

outputs filtered are down-sampled to generate wavelet 

coefficients distributed in an approximation subband and a 

detail subband (or subbands) [15]. 

     which is the threshold of the Nth wavelet subband is 

expressed as follows: 

 

                                                                                                       

                                                                               (6) 

 
 

where    is the wavelet coefficient at location i [16]. 
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Among the calculated thresholds, the largest threshold is 

selected as the initial operation threshold [14].  

Wavelet coefficients with larger magnitude are typically 

placed in low frequency wavelet subbands [17]. Arranged 

wavelet subbands of input channels lead to more efficient 

multichannel compression, because appropriate parent-offspring 

relations among coefficients of wavelet subbands are 

hierarchically constructed [14]. 

To compress multichannel data, first, the subbands of input 

channels are appropriately rearranged. To rearrange the 

subbands, the largest threshold from each channel is calculated 

by equation (6). Among input channels, a channel with the 

largest threshold is selected (it is called initial channel). The 

second chosen channel has threshold larger than that of residual 

channels but its threshold is smaller than that of the initial 

channel. This procedure continues till all channels are chosen.  

Therefore, a new structure is built in which the 

approximation and detail subbands of selected channels are 

rearranged and sorted. 

Then, the coefficients are rearranged in hierarchies, with 

roots are in the lowest wavelet frequency subband, and 

branching into higher wavelet frequency subbands 

consecutively. 

In the hierarchical form, Des(i) is defined as the set of all 

descendants of a node placed at location i, which is named as 

the set of type I. Ex(i) is defined as the set of all descendants 

excluding offspring of a node placed at location i, which is 

named as the set of type II. 

After choosing the initial operation threshold, the given 

threshold is compared with the threshold of each subband. This 

process is performed from the high frequency subbands to the 

low frequency subbands, and the process will be finished if the 

threshold of a subband becomes equal to the initial operation 

threshold for first time [14]. Then, the location of the last 

coefficient from the wavelet subband where comparison was 

performed up to, is saved. The given location (named as 

frontier) limits evaluation by which the significance of Ex(i) or 

Des(i) is obtained [16]. 

During compression procedure, the main information about 

the wavelet coefficients is sorted as follows: 

CAT1: The category of locations relating to wavelet 

coefficients that have magnitude smaller than a given threshold. 

CAT2: The category of locations relating to wavelet 

coefficients that have magnitude larger than/equals to a given 

threshold. 

CAT3: A two-column matrix including the category of 

locations corresponding to the sets of the wavelet coefficients 

placed in hierarchical form; those sets have magnitude smaller 

than a given threshold. 

The coefficients are compressed during several scans. 

During every scan, the wavelet coefficients with magnitudes 

which are larger than a certain threshold are compressed. 

At first, the CAT2 is set as empty. If the length of 

approximation subband (i.e.    ) is even, the locations of {0 to 

    } will be placed into the CAT1, and the locations of           

{      to     }, will be placed into the CAT3 as type I. If 

the length of approximation subband is odd, the locations of             

{0 to     } will be placed into the CAT1, and the locations of  

{         to     }, will be placed into the CAT3 as type 

I. 

A wavelet coefficient relating to the CAT1 is significant if 

the coefficient is larger than/equal to the current operation 

threshold. Therefore, a one is sent with a sign bit, and its 

location placed to the CAT2. If the coefficient is not significant, 

a zero is sent and its location saved until the next compression 

level. For the negative sign, the sign bit is set as 0, otherwise 

the sign bit is set as 1. 

After checking the CAT1, coefficients relating to the CAT3 

are processed.  

When all sets in the first column of the CAT3 are checked, 

Ex(i) in the second column of the CAT3 are checked. 

Before evaluation of each Ex(i), the two offspring, direct 

descendants of a wavelet coefficient at location i, are 

reconsidered. These direct children of a tree node at position i 

are used to improve the evaluation of Ex(i)s. If these direct 

children are smaller than the current operation threshold, those 

are selected as new entries of type I, and directly moved to the 

first column of the CAT3. Therefore, evaluation of Ex(i) is not 

performed. If at least one of the direct children is larger 

than/equal to the current operation threshold, evaluation of Ex(i) 

is done. In this case, if Ex(i) is not significant, a zero is sent. 

Then, the Ex(i) is omitted from the second column of the CAT3, 

its type and location are saved until the next compression level. 

If the set of type II is significant, a one is sent. Then, its two 

offspring are chosen as new sets of type I and moved to the first 

column of the CAT3. The Ex(i) is subsequently omitted from 

the second column of the CAT3.  

When all Ex(i)s  in the second column of the CAT3 were 

checked, new Des(i)s in the first column of the CAT3 are 

checked. The evaluation of the CAT3 is finished when no new 

Des(i) moved to the first column of the CAT3.  

After the CAT3 evaluated, the CAT2 is checked. Every old 

entry of the CAT2 is evaluated. When an old entry of the CAT2 

is significant over the current operation threshold, a zero is sent, 

otherwise a one is sent.  

After evaluating the CAT2, the magnitude of all 

coefficients for which their locations placed in the CAT2 and 

are larger than the current operation threshold, are subtracted by 

the current operation threshold. 

Afterwards, the current operation threshold is halved, the 

evaluation of CAT1, CAT3, and CAT2 are repeated as far as 

the desirable bit rate is achieved. 
 

3. RESULTS 
To show the efficiency of the proposed method, it is supposed 

that quick extreme reduction of the bandwidth happens. Then, 

clinical input data are intelligently compressed by the proposed 

method. 

The ECG records as input channels are selected from the MIT-

BIH arrhythmia database [18]. The resolution of each sample is 

set as 11 bits per sample. The sampling rate is 360 samples per 

second.  

ECG signals are non-stationary, each heart beat cycle 

consists of QRS complex, P, T, S-T segment, baseline, etc. The 

QRS complex, P, and T are most useful in clinical diagnosis. 

The major energy of the P and T waves are below 5 Hz, and the 

major energy of the QRS complex is between 5 to 15 Hz. 

Therefore, the type of filter bank and the number of wavelet 

decomposition levels should be appropriately selected. The 

biorthogonal 9/7 tap filters are chosen, and a 5-level wavelet 

decomposition is utilized [19], [20]. 

As recommended by the American Heart Association 

(AHA) for routine visual readings of compressed and 

reconstructed ECG signals, the PRD value may not exceed 5% 

[21]. 

The average percent root mean square difference (APRD) is 

utilized to evaluate the reconstructed signals in multichannel 

compression [7], [14]. 

It is supposed 14 dual channel ECG records (data in record 

numbers: 100, 104, 107, 111, 112, 115, 116, 117, 118, 119, 121, 

213, 214, and 231) from the MIT-BIH arrhythmia database are 

compressed and transmitted.  

At the beginning of each experiment, the initial bit rate 

utilized to transmit 14 ECG inputs is 7Kbps.  
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First, the proposed method processes each input channel, 

and calculates minimum acceptable CDR value for every input 

channel. Table 1 demonstrates the values of minimum 

acceptable CDR for all selected input channels. In fact, if the 

CDR value of an input channel becomes less than the minimum 

acceptable CDR in      for that channel, the PRD value 

exceeds 5% for the given channel. 

With the bit rate of 7Kbps, each of 14 ECG inputs can be 

compressed with the CDR value of 500bps, and the quality of 

all ECG signals is preserved. 

If available bandwidth suddenly drops 50%, the proposed 

method changes the CDR value of every input channel from 

500 to 250 bps.  

However, if the CDR value changes from 500 to 250 bps, 

based on Table 1, the quality of ECG signals from the input 

channel of 2, 4, and 14 (i.e. record numbers: 104, 111, 231) will 

not be preserved after compression (Figure 2). In other words, 

the minimum acceptable CDR for the given channels (i.e. weak 

channels) is above 250bps, and  the PRD of reconstructed ECG 

signals for the input channel of 2, 4, and 14 will be more than 

5% at new CDR (i.e. 250bps). 
 

Table 1 

The value of minimum acceptable CDR for 14 ECG records 

from MIT-BIH arrhythmia database 

Input # ECG Record  
Minimum 

Acceptable CDR 

(bps) 

1 100 207 

2 104 314 

3 107 204 

4 111 264 

5 112 127 

6 115 197 

7 116 149 

8 117 126 

9 118 196 

10 119 145 

11 121 107 

12 213 246 

13 214 182 

14 231 262 

 
Therefore, the proposed method starts tuning the CDR of 

weak channels. To do that, the method selects the strong 

channels from the sorted      . 

Table 2 demonstrates the sorted     . 

To tune the CDR of the weak channels, the proposed 

method selects the input channel of 11, 8, and 5 as strong 

channel. Then, these channels will give a part of their bit 

capacity to the weak channels (i.e. the input channel of 2, 4, and 

14). In other words, the CDR of the input channel of 11, 8, and 

5 reduces to less than 250 bps, so the weak channels can use the 

bit capacity of the input channel of 11, 8, and 5. Therefore, the 

quality of reconstructed signals related to the weak channels is 

preserved. 

The final values of CDR for all input channels after tuning 

the CDR of the weak channels, are presented in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. APRD values for selected records at 500 and 250 

bps; the PRD of reconstructed ECG signals for the record 

number of 104, 111, 231 is more than 5% at 250 bps.   

 

Table 2The sorted      

Input # ECG Record  

Minimum 

Acceptable CDR 
(bps) 

2 104 314 

4 111 264 

14 231 262 

12 213 246 

1 100 207 

3 107 204 

6 115 197 

9 118 196 

13 214 182 

7 116 149 

10 119 145 

5 112 127 

8 117 126 

11 121 107 

 

 

In Table 4, the APRD values for the selected ECG records 

are presented corresponding to final CDRs. 

Based on Table 4, the PRD values of all input channels will 

be equal or less than 5%. Therefore, the quality of reconstructed 

ECG signals is preserved, even after quick extreme bandwidth 

reduction. 

In order to demonstrate the effect of proposed method on 

the reconstructed signal, one of the weak channels, that is the 

record 111, and its reconstructed signals are shown in Figure 3. 

The PRD value is 5.04% for the lead MLII, and 4.96% for the 

lead V1 at bit rate 264 bps per two channels (the sampling rate 

is 360 samples/sec). 
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Table 3The final value of CDR for 14 input channels 

Input # ECG Record  
Final Operation CDR 

(bps) 

1 100 250 

2 104 314 

3 107 250 

4 111 264 

5 112 238 

6 115 250 

7 116 250 

8 117 236 

9 118 250 

10 119 250 

11 121 186 

12 213 250 

13 214 250 

14 231 262 

 

Table 4The APRD values for selected ECG records 

corresponding to final CDRs 

ECG Record 

Final Operation 

CDR 

(bps) 

APRD (%) 

100 250 4.2 

104 314 5 

107 250 3.5 

111 264 5 

112 238 2.2 

115 250 4.2 

116 250 2.7 

117 236 2.5 

118 250 3.6 

119 250 2.4 

121 186 2.3 

213 250 4.8 

214 250 3.4 

231 262 5 

 

4. CONCLUSION 
In this paper, a smart compression method was proposed to 

transmit a large amount of data and provide real-time analysis. 

Moreover, the proposed method can efficiently compress input 

channels even if the available bandwidth changes, to keep the 

continuous transmission of clinical data, and to preserve the 

quality of reconstructed data. 

Using proposed method, (i) the bit rate of each input 

channel is completely under controlled, (ii) the weak channels 

can use the bit capacity of strong channels, (iii) input channels 

can be compressed with different CDRs, (iv) the signal quality 

can be gradually improved as the bit rate increases.  

The method is an attractive choice for applications in which 

real time processing is crucial. In fact, the capability of more 

convenient real-time analysis of data can be provided for 

specialists. 

In conclusion, the proposed method is able to intelligently 

and simultaneously compress huge amount of data with 

significant high compression ratio at controllable low error. In 

addition, it is possible to use bit capacity of every input channel 

efficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

Figure 3. The original and reconstructed dual-channel ECG 

of record 111 which is one of weak channels 
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