
International Journal of Computer Applications (0975 8887)
Volume 98 - No. 22, July 2014

A Simulated Annealing approach for solving Minimum
Manhattan Network Problem

S. M. Ferdous
Ahsanullah University of Science and Technology(AUST)

Dhaka

Anindya Das
Iowa State University, Ames

Iowa

ABSTRACT
In this paper we address the Minimum Manhattan Network
(MMN) problem. It is an important geometric problem with
vast applications. As it is an NP-complete discrete combina-
torial optimization problem we employ a simple metaheuris-
tic namely Simulated Annealing. We have also developed
benchmark datasets and tested our algorithm with the dataset.

General Terms:
Experimental Algorithms, Stochastic Approach

Keywords:
Combinatorial Optimization, Metaheuristics, Simulated Anneal-
ing, Network Length

1. INTRODUCTION
Finding minimum network length is an important problem in com-
puter science. In this paper we address the problem of finding
minimum network length in Manhattan metric. Given two points
p, q ∈ R2, a rectilinear path is achieved between these two points
if all the line segments along the path is either vertical or horizontal.
To a find a Manhattan path between p and q two properties must be
satisfied:

—The path between p and q must be rectilinear.

—The length of the path is exactly equals to dist(p, q) = ‖p.x −
q.x‖+ ‖p.y − q.y‖.

In MMN problem, we are given a set T of n points in R2. A net-
work M is said to be manhattan network on T , if for all p, q ∈ T ,
there exist at least one Manhattan path between p and q with all its
edge segment on M . Minimum Manhattan Network problem is to
find the Manhattan Network M with minimum network length.

MMN has vast applications in geometric network design as well
as in VLSI circuit design, where the (rectilinear) characteristics of
Manhattan networks adapt well to reality. An important example is
computer chip manufacturing where all the circuit paths are usually
rectilinear paths. Furthermore, the MMN problem has its applica-
tions in city planning, network layout and distributed algorithms
[9].

MMN has its application in the field of computational biology. In
[14], the author present a solution to the problem of designing effi-
cient search spaces for pair hidden Markov models that align bio-
logical sequences using Manhattan networks.

2. LITERATURE REVIEW
The MMN problem has various applications already discussed in
the previous section. Therefore, researchers started to work with
this problem. Gudmundsson et al. [8] first published anO(n3) time
4-approximation algorithm. Moreover, they proposed an O(n lgn)
time 8-approximation algorithm and also discussed the problem of
determining the complexity class of this problem.

Gudmundsson et al. [8] conjectured that there could be a 2-
approximation algorithm. Kato et al. [11] proved them right by pro-
viding an O(n3) time 2-approximation algorithm, although using
a different approach. The key idea provided by them is to deter-
mine efficiently whether a graph is a Manhattan Network or not.
A naive approach is to check whether Manhattan path exists for
all O(n2) pairs of nodes, but they proved that it is sufficient to
check only O(n) specific pair of points. Using similar idea as [11],
Benkert et al. [1] proposed a 3-approximation algorithm which runs
in O(n lgn) time and takes linear space.

Benkert et al. [2] also proposed a mixed integer programming for-
mulation. Chepoi et al. [4] used the idea of Pareto front and strip-
staircase decomposition to derive a rounding 2-approximation al-
gorithm based on an LP-formulation of the problem. Later, Guo
et al. [9] proposed a 2-approximation algorithm based on dynamic
programming which runs in O(n2) time. They also proposed an-
other approximation algorithm with same approximation ratio, but
with a better running time ofO(n lgn) using a simple greedy strat-
egy [10]. Seibert et al. [15] provided a 1.5-approximation algo-
rithm.

So far the complexity class of this problem remained unknown.
Chin et al. [5] first proved that Minimum Manhattan Network in 2
dimension is strongly NP-complete by reducing 3 − SAT to this
problem. It is not known whether this problem is APX-hard or not.
For 3 dimension, Munoz et al. [13] proved this problem to be NP-
hard. They proposed a 3-approximation algorithm which is the first
approximation algorithm in 3 dimension for a restricted version of
this problem.

1



International Journal of Computer Applications (0975 8887)
Volume 98 - No. 22, July 2014

First approximation algorithm for Generalized Minimum Manhat-
tan Network was proposed by Das et al. [6]. For an arbitrary di-
mension d, they proposed an algorithm with approximation ratio
O(lgd+1 n).

3. BASICS OF SIMULATED ANNEALING (SA)
Simulated Annealing (SA) is a generic probabilistic algorithm and
it is sometimes commonly said to be the oldest among the meta-
heuristics. It is also one of the first algorithms that had an explicit
strategy to escape from local minima. The name and inspiration
come from annealing in metallurgy, a technique that involve heat-
ing and controlled cooling of a material. Heating and cooling the
material affects both the temperature and the thermodynamic free
energy. While the same amount of cooling brings the same amount
of decrease in temperature it will bring a bigger or smaller decrease
in the thermodynamic free energy depending on the rate that it oc-
curs, with a slower rate producing a bigger decrease.

This notion of slow cooling is implemented in the Simulated An-
nealing algorithm as a slow decrease in the probability of accepting
worse solutions as it explores the solution space. SA was first pre-
sented as a search algorithm for Combinatorial Optimization prob-
lems in [7, 12] . The basic idea is to permit moves that result in
solutions of worse quality than the current solution (uphill moves)
to escape from local minima. The probability of doing such a move
is decreased during the search which is controlled by the tempera-
ture parameter. The high level algorithm is described in Algorithm
(1).

Algorithm 1 Generic SA [3]
s← GenerateInitialSolution()
T ← T0

while termination condition not met do
s′ ← PickAtRandom(Neighbor(s))
if f(s) < f(s′) then

s← s′

else
Accept s′ as new solution with probability p(T, s′, s)

end if
Update(T )

end while

4. OUR APPROACH: SIMULATED ANNEALING
FOR MMN

In this section, we will describe the SA implementation for MMN
in details. The high-level pseudocode for solving MMN by SA is
shown in Algorithm (2).
The algorithm starts with initializing a set of parameters. After
reading the dataset it starts with generating an initial solution(s).
Then at each iteration it selects a new solution(s′) by tweaking the
previous one and it is accepted as new current solution depending
on size(s), size(s′) and T where size(S) is the fitness(the man-
hattan network size) of solution S and T is the temperature param-
eter. As it is described in [3], we will use the Boltzman distribution
computed as exp

−(size(s′)−size(s))
T to find the probability of select-

ing a worse solution (p(T, s′, s)). The temperate, T is decreased at
each iteration using the equation Ti = α× Ti−1, where α ∈ [0, 1].

Algorithm 2 MMNSA
Initialize r,c,itLimit,T ,α.
Read Dataset
manPaths← GENERATESOLUTION(n,m,nNodes)
while itCounter < itLimit do

newManPath← TWEAK(manPaths)
if size(newManPaths) < size(manPaths) then

manPaths← newManPaths
else

manPaths ← newManPaths with probability
p(T,manPaths, newManPaths)

end if
T ← α× T

end while

4.1 Generating a solution
For each pair of nodes in the grid, we construct a probabilistic man-
hattan path. The manhattan network is constructed from all the in-
dividual manhattan paths.

We have developed a stochastic approach to construct a manhattan
path between two nodes which will be called source and destination
nodes henceforth. The algorithm is iterative in nature. Starting from
the source node at each step the algorithm chooses a feasible grid
edge randomly from a uniform distribution. Then the source node
is updated to the other end of the chosen edge. The procedure is
continued until the source becomes destination. From a source node
it is necessary to detect the feasible grid edges. The feasible set of
edges from a particular source node depend on the orientation of
the source and destination nodes. The possible orientation and the
feasible edges are shown in Figure (1). The detailed pseudocode of
generating a solution is shown in Algorithm (3)

Algorithm 3 Generate a Solution
function GENERATESOLUTION(r,c,nNodes)

manPath← a vector of edges
manPaths← a vector of manPath
for each pair of nodes (x, y) and (x′, y′) do

source← (x, y)
destination← (x′, y′)
manPath ← CONSTRUCTMAN-

PATH(source,destination)
add(manpaths,manpath)

end for
return manPaths

end function
function CONSTRUCTMANPATH(source,destination)

manPath← φ
while source 6= destination do

E ← feasible grid edges from source.
e← randomly select an edge from E.
source← Other end point of e.
manPath← append(manPath,e)

end while
return manPath

end function

The process of generating a solution is shown in Figure (2).

2



International Journal of Computer Applications (0975 8887)
Volume 98 - No. 22, July 2014

Fig. 1. Feasible grid edges for different source and destination orientation ((s,d) and (s’,d’)). The bold arrows are the allowed edges from the source node.
(a)-(b): Orientations where one edge is feasible. (c)-(d): Orientations where two edges are feasible.

4.2 Tweaking a solution
Tweaking is the process of generating new solutions given any valid
solution. To get a new solution we randomly select a pair of nodes.
Then we reconstruct the manhattan path between these two nodes.
The detailed pseudocode is given in Algorithm (4).

Algorithm 4 Tweak a Solution
function TWEAKSOLUTION(oldManPath)

a, b← random 2 points from the nodes
newManPath← CONSTRUCTMANPATH(a,b)
newManPaths← update(oldManPaths,newManPath)

end function

5. EXPERIMENTS
We have conducted our experiments in a computer with Intel Core
2 Quad CPU 2.33 GHz. The available RAM was 4.00 GB. The

operating system was Windows 7. The programming environment
was Matlab.

5.1 Datasets
To our best knowledge, there are not any benchmark dataset for
MMN. Here we introduced a random set of data. We set the grid
size (r × c) as 20 × 20, i.e. both the number of rows and columns
are 20. We divide the datasets into four groups. Each group contain
10 test cases. For group1 each test case contain 10 points. 25, 50
and 100 points are considered in the each test cases of group2,
group3 and group4 respectively.

5.2 Results
Table(1-3) represent the results of SA algorithm. The three tables
are generated for 3 cooling values. The result is divided in 4 groups.
Under each group we have 2 columns. The first column represent
the average of 10 independent runs of the algorithm. The second
column is the standard deviations of the runs.

3



International Journal of Computer Applications (0975 8887)
Volume 98 - No. 22, July 2014

Fig. 2. Generating a solution. (a): feasible grid edges (arrowed) from the source node. Bold arrow is the selected edge. (b): update source according the
selected grid edge. (c) - (e): continue selection of feasible grid edges and updating source. (f): Final Manhattan Path

6. CONCLUSION
In this paper we have developed a metaheuristic technique namely
Simulated Annealing for solving the MMN problem. We have also
developed several benchmark data sets. With these we have re-
ported our findings and results. Future research might be in de-

signing more metaheuristic approaches for the problem. A detailed
comparative analysis of performances of different metaheuristics
on this problem would be a good future exercise.

4



International Journal of Computer Applications (0975 8887)
Volume 98 - No. 22, July 2014

Table 1. Network length by MMNSA (α = 0.2)
group1 group2 group3 group4
Avg. Net. Length Std Avg. Net. Length Std Avg. Net. Length Std Avg. Net. Length Std
201.80 9.04 543.60 18.22 638.30 8.04 758.20 1.32
205.60 15.58 556.50 7.82 661.10 6.76 756.50 2.80
210.50 9.41 563.40 11.77 650.20 9.84 753.10 2.18
251.10 9.87 552.10 8.27 705.50 6.55 754.80 2.86
304.20 7.64 516.20 14.86 739.40 4.30 752.00 3.23
205.10 10.95 523.50 17.60 724.90 6.98 748.60 2.99
216.80 11.73 515.20 13.93 699.70 4.50 739.40 5.02
174.20 11.55 479.30 7.62 712.40 7.09 753.20 2.53
210.70 6.60 442.10 10.20 718.10 5.43 756.20 1.93
228.00 11.43 542.80 7.98 679.90 6.90 753.50 2.42

Table 2. Network length by MMNSA (α = 0.5)
group1 group2 group3 group4
Avg. Net. Length Std Avg. Net. Length Std Avg. Net. Length Std Avg. Net. Length Std
200.30 8.35 538.60 10.30 635.10 7.88 757.80 1.23
206.60 8.37 552.30 10.57 657.50 7.71 755.90 3.11
205.90 12.65 554.50 12.89 654.30 7.51 753.20 2.30
256.40 13.79 554.50 14.52 707.40 6.13 756.30 1.34
307.00 7.83 519.40 13.72 738.50 3.57 753.00 2.83
194.50 9.74 515.80 14.95 721.30 7.56 750.10 3.98
208.20 5.71 514.20 9.80 698.80 6.01 738.70 4.27
164.80 11.09 477.50 7.95 713.40 8.26 752.40 2.95
208.50 4.40 439.50 14.28 718.60 5.58 756.30 1.16
224.80 13.89 537.80 10.14 679.50 5.91 752.60 2.95

7. REFERENCES
[1] Marc Benkert, Alexander Wolff, and Florian Widmann. The

minimum manhattan network problem: A fast factor-3 ap-
proximation. In Proceedings of the 2004 Japanese Confer-
ence on Discrete and Computational Geometry, JCDCG’04,
pages 16–28, Berlin, Heidelberg, 2005. Springer-Verlag.

[2] Marc Benkert, Alexander Wolff, Florian Widmann, and
Takeshi Shirabe. The minimum manhattan network problem:
Approximations and exact solutions. Comput. Geom. Theory
Appl., 35(3):188–208, October 2006.

[3] Christian Blum and Andrea Roli. Metaheuristics in combi-
natorial optimization: Overview and conceptual comparison.
ACM Comput. Surv., 35(3):268–308, September 2003.

[4] Victor Chepoi, Karim Nouioua, and Yann Vaxès. A rounding
algorithm for approximating minimum manhattan networks.
Theor. Comput. Sci., 390(1):56–69, January 2008.

[5] Francis Y.L. Chin, Zeyu Guo, and He Sun. Minimum man-
hattan network is np-complete. In Proceedings of the Twenty-
fifth Annual Symposium on Computational Geometry, SCG
’09, pages 393–402, New York, NY, USA, 2009. ACM.

[6] Aparna Das, Krzysztof Fleszar, Stephen G. Kobourov,
Joachim Spoerhase, Sankar Veeramoni, and Alexander Wolff.
Polylogarithmic approximation for generalized minimum
manhattan networks. CoRR, 2012.

[7] V. ern. Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm. Journal of Opti-
mization Theory and Applications, 45(1):41–51, 1985.

[8] Joachim Gudmundsson, Christos Levcopoulos, and Giri
Narasimhan. Approximating a minimum manhattan network.
Nordic J. of Computing, 8(2):219–232, June 2001.

[9] Zeyu Guo, He Sun, and Hong Zhu. A fast 2-approximation
algorithm for the minimum manhattan network problem. In
Rudolf Fleischer and Jinhui Xu, editors, Algorithmic Aspects
in Information and Management, volume 5034 of Lecture
Notes in Computer Science, pages 212–223. Springer Berlin
Heidelberg, 2008.

[10] Zeyu Guo, He Sun, and Hong Zhu. Greedy construction of 2-
approximation minimum manhattan network. In Proceedings
of the 19th International Symposium on Algorithms and Com-
putation, ISAAC ’08, pages 4–15, Berlin, Heidelberg, 2008.
Springer-Verlag.

[11] Ryo Kato, Keiko Imai, and Takao Asano. An improved algo-
rithm for the minimum manhattan network problem. In Pro-
ceedings of the 13th International Symposium on Algorithms
and Computation, ISAAC ’02, pages 344–356, London, UK,
UK, 2002. Springer-Verlag.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimiza-
tion by simulated annealing. SCIENCE, 220(4598):671–680,
1983.

[13] Xavier Muoz, Sebastian Seibert, and Walter Unger. The min-
imal manhattan network problem in three dimensions. In
Sandip Das and Ryuhei Uehara, editors, WALCOM: Algo-
rithms and Computation, volume 5431 of Lecture Notes in
Computer Science, pages 369–380. Springer Berlin Heidel-
berg, 2009.

[14] Lior Pachter and Fumei Lam. Picking alignments from
(steiner) trees. In Proceedings of the Sixth Annual Interna-
tional Conference on Computational Biology, RECOMB ’02,
pages 246–253, New York, NY, USA, 2002. ACM.

[15] Sebastian Seibert and Walter Unger. A 1.5-approximation of
the minimal manhattan network problem. In Proceedings of

5



International Journal of Computer Applications (0975 8887)
Volume 98 - No. 22, July 2014

Table 3. Network length by MMNSA (α = 0.8)
group1 group2 group3 group4
Avg. Net. Length Std Avg. Net. Length Std Avg. Net. Length Std Avg. Net. Length Std
202.50 5.21 539.50 7.72 638.70 9.18 758.40 1.26
210.70 9.74 544.60 9.94 661.30 6.96 757.00 1.70
207.70 17.47 567.10 7.29 650.90 8.18 755.20 2.39
252.70 6.18 548.30 15.31 707.50 1.72 756.60 1.90
304.90 9.95 512.30 13.97 735.60 3.92 754.10 2.60
205.10 10.40 517.70 11.42 725.50 5.21 748.90 2.38
213.00 9.09 512.30 15.04 701.30 4.52 740.50 3.66
175.60 8.09 468.90 12.41 717.00 5.85 753.00 1.56
214.30 11.55 437.20 13.21 714.10 6.40 755.70 2.21
226.90 8.57 539.00 11.37 679.00 8.96 751.60 2.67

the 16th International Conference on Algorithms and Compu-
tation, ISAAC’05, pages 246–255, Berlin, Heidelberg, 2005.
Springer-Verlag.

6


	Introduction
	Literature Review
	Basics of Simulated Annealing (SA)
	Our Approach: Simulated Annealing for MMN
	Generating a solution
	Tweaking a solution

	Experiments
	Datasets
	Results

	Conclusion
	References

