A Novel Approach to Cluster Search Result based on Search Goals

Rohini B. Mothe
(M.E. Student) Department of Computer Engg.
STES’S SKNCOE,
Pune, Maharashtra, India

V. S. Deshmukh
ASST..Professor Department of Computer Engg
STES’S SKNCOE,
Pune, Maharashtra, India

ABSTRACT
In present days world wide web provides a platform for users to satisfy their information needs, for this purpose search engine tools are commonly used. Available search engine give result for a particular query in the form of flat rank list, which works well for non-ambiguous query. But, in case of ambiguous query which having multiple aspects the flat rank list not works well. So in such cases reorganization of search result is necessary. In this paper, proposed a method which reorganizes search result by analyzing user’s implicit feedback. Based upon this feedback doing text processing, enriching each url by combination of title and snippet, and mapping these data to Pseudo-document. Pseudo-document contain set of keywords which are different aspects of query. And then performing clustering on these pseudo-document using fuzzy k-mean clustering. And these clusters contain links which are most relevant to each other. Also rearranging results based upon most visited links such that it should occur at topmost. And this reorganization will increase the performance and evaluation of search engine. And the cluster labels.

General Terms
Clustering Algorithm.

Keywords
Fuzzy k-means clustering, Implicit feedback, Pseudo-documents, User search goals.

1. INTRODUCTION
Available search engine tools works well for a non ambiguous query which doesn’t have broad meaning. But in the case of ambiguous query which is having multiple aspects, where different users have different aspects for same query, these tools not provide user’s interested result, as these tools provide results in the form of flat rank list. Consider a scenario, when user submits a query “Sun” to search engine, some users are interested to know information about Sunflower and some users want to know information about solar system. To provide search results according user’s interested aspects, it is essential to find out different search goal text and to reorganize search results on basis user search goal using Fuzzy k-mean clustering to get user its interested aspects.

Evaluation of user search goal plays an important role and it might have a numeral of advantages, one of its advantages is enhancing the search engine performance and user knowledge. Evaluating different user search goals related to information needs changes the normal query based information retrieval and to improve utility of search engine, it is necessary to collect the different user goal as well as retrieve the efficient information on different aspects of a query.

For effective reorganization of search results it is necessary to analysis of search results, which is also used to optimize search engine. When submitting query to search engine, the returned web pages of search results are analyzed [7], [8]. But analyzing of search results without considering user feedback, many unwanted and noisy search result that are unclicked by user may get analyzed, which is time consuming and may degrade the search goals discovery. Learning interesting aspects of similar query/topic from web search logs which consists clicked web pages URLs and organize search results accordingly this approach present in [7] by Wang and C.-X. Zhai. Deficiency of these approach results in limitation, as the different clicked URLs for a query may be small in number. In [14], [4] here they used query classification approach where classify queries into some predefined classes and try to find out query intents and user goals. But in case of non ambiguous query having multiple aspects for each predefining a class and such classes for each aspect of query and for such multiple queries is critical job. Predefining classes may be difficult and sometimes impossible to categorize.

So clustering of search result is an efficient way to organize search result in systematic and useful way. And it is an good approach to get user its interested document easily. In this approach, our aim is to discover different user search goals for a query and depict each search goal with some keywords automatically which used as labels of clusters. To discover the user interested information automatically, Firstly collecting feedback session by analyzing search engine log data. Afterwards, mapping feedback sessions to documents known as pseudo-documents by using text processing methods, which reflects user information needs. These pseudo-documents contains keywords which are user search goals. Finally, clustering of pseudo-documents done by using Fuzzy K- means clustering algorithm for inferring user search goals and depicting them with some meaningful keywords. So user search goals plays an important role to restructure the web search results.

2. RELATED WORK
Due to advantages of clustering web search results lots of work has been done in this area. Many previous works has been investigated on problem of analyzing user query logs [13], [9], [13], [4], [6]. The information present in (search) query logs can be used in multiple purposes, such as to infer search query intents or user goals, to classify queries, to provide personalization based on search results, also for suggesting query substitutes. To enhance utility as well as
relevance of any search engine, effective organization of search results is necessary and which is critical. One of the advantage of clustering is it allows a user to navigate into relevant documents quickly which is the best way. Presently all existing work [7], perform clustering on a set of top ranked results generated by search engine, to partition generated results into general clusters, which may contain different subtopics of the general query term. But, this strategy of clustering has two deficiencies which make it not always work well. First, resultant clusters do not necessarily correspond to the interesting aspect of a topic from user-oriented perspective. Second, cluster labels are more general and not informative to identify appropriate clusters. Wang and Zhai [3] proposed approach to organize search results in user-oriented manner. In this strategy they have used search engines log to learn interesting aspects of similar queries and categorize search results into aspects learned. Cluster labels are generated by using past query words entered by users.

Experiment result illustrate that this algorithm is superior to the traditional k-means algorithm.

In [7] by H-J Zeng proposed method to cluster search results which is a query based. In this for a given query, the rank list of documents return by a certain Web search engine, it first extracts and ranks most salient phrases as candidate cluster names, based on a regression model learned from pervious training data. Clusters are formed by assigning documents to relevant salient phrases known as candidate clusters and by merging these candidate clusters the final cluster are generated. This method only produces the result with higher level of the documents only [7].

As stated by H. Chen and S. Dumais [8] in this they organize web search results into hierarchical categories. For classifying search results they used Automatic text classification technique (SVM classifier). Advantage of known category labels information, for classifying new items into the category structure and to help user to quickly focus on task relevant information [8].

3. PROBLEM STATEMENT

Effective way to reorganize search results is clustering of web search result. Here in this approach reorganizing search results truly based on user search goals. These search goals represents user’s interested aspect. Discover the number of user search goal for a query based upon these keywords and using fuzzy k-mean clustering algorithm, forms the cluster which contain one label which is one of the aspect of query and that cluster contain links related to each other and label.

And rearrange in such way that top most visited links should occur at topmost.

. These will be added when the publications are assembled.

4. PROPOSED APPROACH

In this section, describing proposed approach in which reorganization of search results can be done using search goal and fuzzy K-mean algorithm. Flow of proposed approach in figure 5.1.

As shown in figure 5.1. If the feedback data is not present in database for query then using google api showing result same as google. When for a query get user’s implicit feedback then mapping these feedback data to pseudo-document which contain set of keywords. Finally using fuzzy k-mean clustering algorithm clustering pseudo-documents for that query, then by using cosine similarity and Euclidian distance mapping similarity between documents. Finally rearranging links such that most visited links should occur at topmost.

Constructing pseudo-documents:

Every URL present in feedback data is combination of its title and snippet which is small textual content and URLs alone are not so much informative, snippet which present with that URL contain important information which are useful to achieve intended meaning of a submitted query. To enriching information, here enriching each URL by extracting the titles and snippets of URLs stored in feedback session. Then afterwards text pre-processing is done on those textual contents, such as removing stop words, transforming all letters to lowercase, word stemming by using porter algorithm [16]. Finally, TF-IDF [8] vector of URL’s titles and snippets are formed respectively as:
\[T_{ui} = [t_{ui1}, t_{ui2}, \ldots, t_{uin}]^T \]
\[S_{ui} = [s_{ui1}, s_{ui2}, \ldots, s_{uin}]^T \]

Here, \(T_{ui} \) and \(S_{ui} \) are TF-IDF vectors of URL's title and snippet, respectively. \(u_i \) is \(i^{th} \) URL in feedback session, where \(W_j \) is the \(j^{th} \) term present in the enriched URL. The term \(t_{uij} \) and \(s_{uij} \) denotes \(j^{th} \) term in the URL's title and snippet respectively. Here in this approach enriching of URL known as Feature representation of that URL. Feature representation of \(F_{ui} \) of \(i^{th} \) enriched URL is weighted sum of \(T_{ui} \) and \(S_{ui} \).

\[F_{ui} = \omega_1 T_{ui} + \omega_2 S_{ui} = [f_{ui1}, f_{ui2}, \ldots, f_{uin}]^T \]

where \(\omega_1 \) and \(\omega_2 \) are weights of title and snippet respectively. Each term of \(F_{ui} \), represents the importance of term in \(i^{th} \) URL. Optimization method is used to merge feature representations of each clicked and unclicked enriched URLs in the feedback for obtaining feature representation of a feedback, optimization method is used. Let \(F_{uc} \) and \(F_{uc} \) are feature representation of clicked and unclicked URLs respectively and \(F_{uc} \) is the vector for term \(f_{uij} \) and it should be such that sum of distance between \(F_{uc} \) and \(F_{uc} \) each is minimized and sum of distance between \(F_{uc} \) and \(F_{uc} \) is maximized.

\[F_{uc} = [f_{uc1}, f_{uc2}, \ldots, f_{ucn}]^T \]

Feedback is represented by \(F_{fr} \). This is nothing but pseudo-document which is used for discovering user intents or search goals. These pseudo-documents contain what user requires and what do not, which is used to learn interesting aspects of a query.

\[\text{Sim}_{ij} = \cos(F_{ui}, F_{uj}) \]

Here to cluster document it is necessary to represent them in form of vector space model, for that there using TF-IDF value for each document.

\[F_{center} = \frac{\sum_{\xi} \xi \cdot f_{r \xi}}{\sum_{\xi} |\xi|} \quad (6) \]

\(F_{center} \) is \(i^{th} \) cluster center and \(C_i \) is the number of pseudo-documents in the \(i^{th} \) cluster. User search goal/intent of \(i^{th} \) cluster and \(F_{center} \) to categorize the search results. User search goals/intents are the terms with highest values in the center points of each cluster. These keywords can be used to suggest more meaningful labels of clusters.

\[\text{AP} = \frac{1}{N^+} \sum_{r=1}^{N} \frac{\text{rel}(r)}{r} \]

\(N^+ \) denotes the number of clicked documents from total retrieved documents in single user feedback session, \(r \) is the rank, \(N \) is the total number of retrieved documents, rel() is a binary function on the relevance of a given rank, and \(R_r \) is the number of relevant retrieved documents of rank \(r \) or less.

\[\text{VAP} = \frac{1}{N^C} \sum_{c=1}^{N^C} \text{rel}(c) \frac{R_r}{r} \]

where \(N^C \) is the number of clicked documents from the class having maximum number of clicks.[1]

\[\text{Risk} = \frac{\sum_{c=1}^{N^C} \text{rel}(c) d_{ij}}{C+2} \]

where \(m \) is number of clicked URLs and \(d_{ij} \) is 0 if pair of clicked URLs belongs to same class otherwise \(d_{ij} \) is 1.[1]

\[\text{CAP} = \text{VAP} \times (1 - \text{Risk}) \]

D. Rearranging web search results

Reorganization of web search results are done on the basis of discovered user search goals which achieve by analyzing search results as mentioned above. Inferred user search goals represents with vectors in (6) and feature representation of each URL in search result is calculated by (1) and (2). By selecting the smallest distance between user search goal vectors and URL vectors categorizing each URL into a cluster centered with user search goals/intents. And finally rearranging links based on most visited links occur at topmost.

E. Evaluation criterion

To evaluate performance of restructured (clustered) web search results and original search results, using parameters like Average Precision (AP) [1], Voted AP (VAP) which is AP of the class having more clicks, Risk to avoid wrong classification of search results and Classified AP (CAP). If user got correct classified results with higher AP value, this value is used to optimize the no of clusters of user search goals.

1) Average precision (AP): Calculated according to given user feedbacks. It is the average of precisions computed at the point of each clicked document in the ranked sequence of user feedback.[1]

2) Voted AP (VAP): VAP is calculated for restructured search results classes i.e. different clustered results classes. It is same as AP and calculated for class which having more clicks i.e. the class user interested in.

3) Risk: At sometimes VAP will always be highest value because each URL from single session is classified into the single class no matter whether users have different search goals or not. So, there should be a risk to avoid wrong classification search results into too many classes. It evaluates the normalized number of clicked URL pairs that are not in the same class.

4) Classified AP (CAP): New criterion Classified AP (CAP) is extension of VAP by using above Risk. It combines AP of class having more clicks and risk of wrong classification. It is used to evaluate performance of restructured search results.
where γ is normalizing factor used to adjust influence of Risk on CAP. Generally, categorizing search results into less clusters will induce smaller Risk and bigger VAP, and more clusters will result in bigger Risk and smaller VAP. The proposed CAP depends on both of Risk and VAP.[1]

5. RESULTS AND DISCUSSIONS
Here as mentioned in [1], with the help of CAP, AP, VAP parameter to check performance of proposed system. Here dataset is real time data that is user feedback. The following graph shows the comparison between proposed method and previous method. Following graphs shows results for 50 queries. X-axis represent query ID and Y-axis Risk, CAP parameter. As shown in figure 6.1 shows comparison between proposed method and old method[1] based on risk parameter. Proposed method shows less risk value. And in figure 6.2 proposed method shows highest value for CAP parameter. And in figure 6.3 shows highest value for vap or proposed system than old method. In [1] mention that the system has best performance if it has less risk value and highest, VAP CAP value. Based upon these graph we can show that proposed method has best results as compare to [1] old method.

Fig: 6.1 Risk Based Parameter Comparison

Fig: 6.2 CAP Based Parameter Comparison

Fig: 6.3 CAP Based Parameter Comparison
6. CONCLUSION
This paper proposed an approach to automatically reorganize search result. This approach completely based user’s implicit feedback data. and fuzzy K-mean clustering algorithm. By using clustering algorithm forms the cluster whose center will predict clusters label which will nothing but user’s interested aspects. And different clusters of a query show the different aspect of query and contain relevant document. And finally rearranging links such that most visited links occur at topmost. Future work will be to collaborate query classification and search result combination so that user will get more classified results.

7. REFERENCES