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ABSTRACT 

One the most important problems in target tracking are state 

estimation. This paper deals on estimation of states from noisy 

sensor measurements. Due to important of exact estimation in 

tracking problems must evader position and Line Of Sight 

angles estimated with least error rather than actual position. In 

this paper extended Kalman filter (EKF) and unscented 

Kalman filter (UKF) and Cubature Kalman Filter (CKF) are 

presented for bearing only Tracking problem in 3D using 

bearing and elevation measurements from tows sensors. The 

algorithms and model of system simulated using MATLAB 

and many tests were carried out. Simulation experiments 

show that the efficiency of EKF due to least RMSE have 

better performance on compared with the UKF algorithm. 

Also, the performance of EKF algorithm has been 

dramatically decreased when initialization (initial state 

assumption) is not good, which in this condition CKF method 

provides a more accurate approximation. Numerical results 

from Monte Carlo simulations show that the CKF have the 

best state estimation accuracy among all nonlinear filters 

considered. The proposed approach is interesting for the 

design of optimization algorithms that can run on target 

tracking systems.   
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1. INTRODUCTION 
Bearing only tracking (BOT) is used in many practical 

military and civil applications including under water weapon 

systems, infrared seeker based tracking, sonar based robotic 

navigation and TV camera. For weapon guidance system, 

BOT allows use of passive tracking sensors. Target tracking is 

generally carried out using seekers or sonars for aerospace 

and naval applications respectively. From the sensor either 

only bearing angle information or both bearing and range 

information are available. The passive tracking of 

manoeuvring objects using line of sight (LOS) angle 

measurements only is an important field of research in the 

application areas of submarine tracking, aircraft surveillance, 

Autonomous robotics and mobile systems [1-5]. In 1960, R.E. 

Kalman the filter design for prediction, estimation problem, 

now popularly known as the Kalman filter [6]. A Kalman 

filter can be defined as an optimal recursive data processing 

algorithm. Kalman filter is characterized by accurate 

estimation of state variables under noisy condition, which 

makes it suitable for drives, robotic manipulators and other 

industrial applications. The algorithm is formulated in two 

steps which involve; prediction and updating. One of the more 

common methods for dealing with a nonlinear model is to use 

the extended Kalman filter (EKF) [12]. More sophisticated 

approaches include the unscented Kalman filter (UKF) [13]. 

In [9], the EKF is implemented only for 2D tracking 

problems. In [7], the EKF, UKF, GHKF and CKF is 

implemented for only 2D tracking problems. Early research 

on the bearing-only filtering problem in 2D used the easy-to-

implement discrete-time EKF with relative Cartesian 

coordinates. In [8], the EKF is implemented using a 

discretized linear approximation for both the predicted state 

estimate and covariance. All of the approaches mentioned use 

a two Dimension state estimation. In [10], compared the 

performance of the extended Kalman filter (EKF), unscented 

Kalman filter (UKF), and particle filter (PF) for the angle-

only filtering problem in 3D using bearing and elevation 

measurements from a single maneuvering sensor. It is a 

nonlinear filtering problem to estimate the kinematics, such as 

the position and velocity of a target, using noise-corrupted 

bearing measurements of the target from a single moving 

observation platform. Early suboptimal algorithms, based on 

the extended Kalman filter (EKF) which linearizes the 

measurement model, often result in unstable performances, 

including poor track accuracy and track divergences [11, 12]. 

The unscented Kalman filter (UKF) [13] is a moment-

matching filter which deterministically selects a set of 

weighted sample points, called sigma points, to approximate 

the posterior probability density. It shows improved 

performance over the EKF, but there is an important 

implementation issue that arises in the UKF, particularly in 

high-dimensional systems. Specifically, the “plain” UKF [14] 

results in some negative weights for state dimensions greater 

than 3, which could potentially lead to numerical problems. A 

Gaussian-sum cubature Kalman filter with improved 

robustness compared to the original algorithm of CKF, which 

demonstrated good accuracy and efficiency for the bearings-

only tracking problem [23].  

The paper is organized in the following manner. The existing 

and improved suboptimal algorithms includes extended 

Kalman filter (EKF), unscented Kalman filter (UKF) and 

Cubature Kalman Filter (CKF) proposed for solving the 

bearings-only tracking problem are outlined in Section 2. The 

system model for the three-dimensional bearings-only 

tracking problem, which is of interest in this paper, is 

described in Section 3. Section 4 discusses the performance 

metrics used when comparing the different algorithms. In this 

section system is simulated using MATLAB, also highlights 

important practical implementation issues of the filters in the 

bearings-only tracking problem. The details of the simulations 

done and the comparisons of the performances of the several 

algorithms are given in Section 4. The final section 

summarizes the main contributions of this paper. 
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2. BEARING ONLY TRACKING 
The basic problem in bearing only tracking is to estimate the 

trajectory of a target from noise corrupted data [14]. In which 

we track a moving object with sensors, which measure only 

the bearings (or angles) of the object with respect positions of 

the sensors. There is a one moving target in the scene and two 

angular sensors for tracking it. Solving this problem is 

important, because often more general multiple target tracking 

problems can be partitioned into sub-problems. The state of 

the target at time step k consists of the position in three 

dimensional Cartesian coordinates              and the 

velocity toward those coordinate axes                . 

Thus, the dynamics of the target is modeled as a state space 

model. 

 

Fig 1: Definition of tracker coordinate frame bearing and 

elevation angle 

The Cartesian states of the target and ownship are defined 

[10]. 

                                        (1) 

And 

                                             (2) 

The relative state vector in the T frame is defined by 

                       (3) 

Let                            denote the relative state vector in 

the coordinate frame. Then        ,           , etc. 

Let    denote the range vector of the target from the ownship 

(or Sensor) in the Cartesian frame. Then    is defined by 

                                                    (4) 

The range is defined by  

                                          (5) 

The range vector can be expressed in terms of range, bearing 

( ) and elevation ( ), as defined in Figure 1, by 

     

        
        
    

                    (6) 

The ground range is defined by 

                                              (7) 

The state of the target at time step   consists of the position in 

three dimensional Cartesian coordinates    ,    ,    and the 

velocity toward those coordinate axes,     ,     and    . Thus, 

the state vector can be expressed as 

                                         (8) 

The dynamics of the target is modeled as a linear, discretized 

Wiener velocity model [16] 

  
          

                      (9) 

Where      and     are the state transition matrix and 

integrated process noise, respectively, for the time 

interval           , 

                          (10) 

     

 
 
 
 
 
 
       
       
       
      
      
       

 
 
 
 
 

                (11) 

Where                  is Gaussian process noise with 

zero mean and covariance      that must be discretized with 

power spectral density   : 

                                       (12) 

MEASUREMENT MODELS 

The passive sensor collects bearing and elevation 

measurements    at discrete times   . The measurement 

model for the bearing and elevation angles using the relative 

Cartesian state vector    is [10] 

                           (13) 

Where 

       
  
 
 
   

     
  

  

     
  

   
    

 

                 (14) 

Where    is a zero mean white Gaussian measurement noise 

with covariance R. 

  
                        (15) 

         
    

                  (16) 

The prior distribution for the state is            , where 

Parameters    and    are set using the information known 

about the system under the study. Because the measurement 

model is non-linear we replace the Kalman filter in the data 

association algorithm with EKF. Due to the linearization step, 
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the EKF is sub-optimal [12]. 

3. NONLINEAR FILTERING 

ALGORITHMS 

3.1 Extended Kalman Filter 
The widely used EKF is based on linearized approximations 

to nonlinear dynamic and/or measurement models. For this 

case, the linearized approximation is performed in the 

measurement update step. The extended Kalman filter extends 

the scope of Kalman filter to nonlinear optimal filtering 

problems by forming a Gaussian approximation to the joint 

distribution of state x and measurements y using a Taylor 

series based transformation. First order extended Kalman 

filters are presented, which are based on linear and quadratic 

approximations to the transformation. Higher order filters are 

also possible, but not presented here. The filtering model used 

in the EKF is 

                     (17) 

                              (18) 

Where     
 is the state,     

 is the measurement, 

               is the zero mean white Gaussian process 

noise with covariance Q,            is the is the zero 

mean white Gaussian measurement noise with covariance R, f 

is the (possibly nonlinear) dynamic model function and h is 

the (again possibly nonlinear) measurement model function. 

The steps for the first order EKF Algorithm 

Prediction: 

  
                 

  
                           

         

Update: 

               
     

            
      

   
    

          

       
   

    
      

   

        
           

       
            

  

Where   
  and   

 are the predicted mean and covariance of 

the state, respectively, on the time step k before seeing the 

measurement.    and    are the estimated mean and 

covariance of the state, respectively, on time step k after 

seeing the measurement.     is the innovation or the 

measurement residual on time step k.    is the measurement 

prediction covariance on the time step k.    is the filter gain, 

which tells how much the predictions should be corrected on 

time step k. The matrices             and           are the 

Jacobians of f and h, with elements: 

                
            

   
   

  
    

                (19) 

              
          

   
   

  
    

                (20) 

3.2 Unscented Kalman Filter 
The UKF firstly proposed in [18], The UKF is also an 

approximate filtering algorithm. However, instead of using 

the linearized approximation, the UKF uses the unscented 

transformation (UT) to approximate the moments [17]. This 

approach has two Advantages over linearization: it avoids the 

need to calculate the Jacobian and it provides a more accurate 

approximation [19]. 

The unscented Kalman filter (UKF) makes use of the 

unscented transform to give a Gaussian approximation to the 

filtering solutions of non-linear optimal filtering problems of 

form (17, 18). Using the matrix form of Unscented Transform 

(UT) the prediction and update steps [7]: 

The UKF can compute as follows: 

The steps for the UKF Algorithm 

Prediction: 

                                                  

                    

  
          

  
            

       

 

Update: 

  
     

       
            

      
   

  
      

     

  
  
   

      

       
      

       

       
     

    

           
   

       
                 

        
            

  

Where   
  and   

 are the predicted mean and covariance of 

the state, respectively, on the time step k before seeing the 

measurement.                  are predicted mean of the 

measurement, covariance of the measurement and cross-

covariance of the state and measurement , respectively, on the 

time step k .     is the filter gain.      and     are the updated 

mean and covariance of the state, respectively, on time step k. 
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3.3 Cubature Kalman Filter 
The CKF is a Kalman-filter-based algorithm that uses the 

third-degree spherical-radial rule to generate cubature points 

with normalized weights to numerically approximate the 

multidimensional integrals involved in Bayesian filtering [20, 

21]. In particular, according to the numerical stability factor 

metric defined in [22], the CKF is more stable with desirable 

numerical properties. The cubature Kalman filter (CKF) 

algorithm is presented below [7]. At time           
assume the posterior density function                  

                         is known. 

The CKF can compute as follows: 

The steps for the CKF Algorithm 

Prediction step: 

1. Draw cubature points                    from the 

intersections of the n- dimensional unit sphere and the 

Cartesian axes. Scale them by   . That is 

        
                             

                            
  

2. Propagate the cubature points. The matrix square root is the 

lower triangular cholesky factor. 

                                          

3. Evaluate the cubature points with the dynamic model 

function 

         
                 

4. Estimate the predicted state mean 

        
 

  
          

 

  

   

 

5. Estimate the predicted error covariance 

        
 

  
          

 

  

   

         
   

               
       

Update step: 

1. Draw cubature points                    from the 

intersections of the n- dimensional unit sphere and the 

Cartesian axes. Scale them by   . That is 

2. Propagate the cubature points. 

                                    

3. Evaluate the cubature points with the help of the 

measurement model function 

                       

4. Estimate the predicted measurement 

         
 

  
          

  

   

 

5. Estimate the innovation covariance matrix 

        
 

  
          

  

   

         
  

                 
     

6. Estimate the cross-covariance matrix 

           
 

  
            

  

   

         
                  

 
 

7. Calculate the Kalman gain term and the smoothed state 

mean and covariance 

                    
   

                              

                            
  

 

4. SIMULATION AND RESULTS 
For using from Kalman filter algorithms firstly the 

continuous-time dynamic equation must be written in discrete 

form as (17). The state of the target at time step (t) consists of 

the position in three dimensional Cartesian coordinates 

          and the velocity toward those coordinate axes 

            . Thus, the dynamics of the target is modeled as 

state space model (9). In table 1 have listed the Value of 

parameters for Monte Carlo simulation. 

Table 1. Value of Parameters 

Parameters value 

Start point of target                     

Position of ownship or sensors                         

Power spectral density                               

Covariance of measurement noise                     

Covariance of the state on the 
initial time 

                                 

Time interval         

Monte Carlo runs number         

In table 2 have listed of three tested Scenarios in good 

initialize for EKF, UKF and CKF algorithms (Scenario 1) and 

in bad initialize (Scenario 2) and (Scenario 3) over 500 Monte 

Carlo runs. 
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Table 2. Tests Scenarios  

Parameter Scenarios Value 

Mean of the 
state on the 

initial time 

   ) 

S1                   

S2                               

S3                                

 Fig 2: Position estimation (Scenario 1) 

 Fig 3: Position estimation (Scenario 2)

 Fig 4: Position estimation (Scenario 3) 

The real trajectory of Target and estimation of position with 

EKF, UKF and CKF algorithms have shown in three 

dimensions at figures of 1, 2, and 3.  

The performance of filters with using of root mean square 

error (RMSE) for each running simulation which is given by: 

         
 

   

    
       

 
   

 
 

 
   

                   (21) 

Where         is Monte Carlo runs number,   
 
   

is 

estimation for j Monte Carlo runs on (t) time and   
     is true 

value. 

In table 3 have listed the root mean square errors. RMSE 

(mean of position errors) of three tested methods in good 

initialize for EKF, UKF and CKF (Scenario 1) and in bad 

initialize (Scenario 2) and (Scenario 3) over 500 Monte Carlo 

runs. 

Table 3. RMSEs of estimating the position in kilometers 

 

Algorithm 
RMSE 

scenario 1 

RMSE 

scenario 2 

RMSE 

scenario 3 

EKF 0.1066 0.1912 0.7993 

UKF 0.1687 0.1076 0.5644 

CKF 0.1310 0.1075 0.3689 
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 Fig 5: RMSE in estimating position with EKF, UKF and 

CKF (Scenario 1) 

Fig 6: RMSE in estimating position with EKF, UKF and 

CKF (Scenario 2) 

Fig 7: RMSE in estimating position with EKF, UKF and 

CKF (Scenario 3) 

5. CONCLUTION 
In this paper, state estimation introduced for target tracking 

problems in three dimensions. Firstly State and measurement 

equations were obtained for target tracking problems. Then, 

the measurements (LOS angles in azimuth and elevation 

between pursuer and evader) that contaminated by high 

degree of noise are estimated using Extended Kalman filter 

(EKF), Unscented Kalman filter (UKF) and Cubature Kalman 

Filter (CKF) techniques. The filtering algorithms created in 

MATLAB have been tested under various scenarios. The 

results obtained which the efficiency of EKF has better 

performance due to least RMSE to compare with the UKF and 

CKF. But, the performance EKF algorithm has been 

dramatically decreased when initialization (initial state 

assumption) is not good, which in this condition CKF method 

provides a more accurate approximation. 
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