Hamiltonian Laceability in Line Graphs

Manjunath.G
Gopalan College of Engineering & Mgmt.Bangalore

Murali.R
Dr.Ambedkar Institute of Technology, Bangalore

Girisha.A
Acharya Institute of Technology, Bangalore

ABSTRACT
A Connected graph G is a Hamiltonian laceable if there exists in G a Hamiltonian path between every pair of vertices in G at an odd distance. G is a Hamiltonian-t-Laceable (Hamiltonian-t*-Laceable) if there exists in G a Hamiltonian path between every pair (at least one pair) of vertices at distance ‘t’ in G. 1 ≤ t ≤ diam G. In this paper we explore the Hamiltonian-t*-laceability number (λ*(t)) of graph L(G) i.e., Line Graph of G and also explore Hamiltonian-t*-Laceable of Line Graphs of Sunlet graph, Helm graph and Gear graph for t=1,2 and 3.

Keywords
Connected graph, Line graph, Sun let graph, Helm graph, Wheel graph, Gear graph and Hamiltonian-t-laceable graph.

1. INTRODUCTION
All graphs considered here are finite, simple, connected and undirected graph. Let \((G = V(G), E(G)) \) be a graph.

\[|V(G)| \text{ and } |E(G)| \] are called the order and the size of G respectively. The order of G denoted by \(O(G) \) is the cardinality of vertices of G. The distance between \(u \) and \(v \) denoted by \(d(u,v) \) is the length of the shortest \(u-v \) path in G.

G is a Hamiltonian path between every pair of the distinct vertices in it at an odd distance. G is a Hamiltonian-t-laceable if there exists a Hamiltonian path between every pair of the vertices \(u \) and \(v \) in G with the property \(d(u,v)=t \), where \(t \) is a positive integer, such that \(1 \leq t \leq \text{diam } G \).

The Line graph \(L(G) \) of G has the edges of G as its vertices and two vertices of \(L(G) \) are adjacent if and only if they are adjacent in G. In [3],[5],[6] and [7] the authors have studied Hamiltonian-t-laceability and Hamiltonian-t*-laceability of various graph structures. In this paper we explore the Hamiltonian-t*-laceability number of Line graph \(L(G) \) and also Hamiltonian-t*-laceability of Line graph \(L(G) \) of the sun let graph, Helm graph and Gear graph.

DEFINITION 1
The Line graph \(L(G) \) of G is the graph of E in which \(x, y \in E \) are adjacent as vertices if and only if they are adjacent as edges in G. In Figure 1, we display the graph G and its Line graph L(G).

DEFINITION 2
The Sun let graph \(S_n \) is a graph with cycle where by each vertex of the cycle is attached to one pendant vertex. Each sun let graph contains \(r \)-vertices with \(r \)-edges.

In Figure 2, we display the Sun let graph \(S_n \).

DEFINITION 3
The wheel graph with \(n \) spokes, \(W_n \) is the graph that consists of an \(n \)-cycle and one additional vertex, say \(u \), which is adjacent to all the vertices of the cycle.

In Figure 3, we display the Wheel graph \(W_n \).
2. RESULTS

Theorem 2.1: The Line graph L(G), where G=S_n, the sun let graph is Hamiltonian-t*-laceable for t=1 and 2 if odd n ≥3, where 1 ≤ t ≤ diamG.

Proof: Consider the graph G=S_n, the Line graph L(S_n) denote the vertices L(G) by

\[a_1, b_1, a_2, b_2, a_3, b_3, \ldots - a_{n-1}, b_{n-1}, a_n, b_n \]

for t=1, 2

Case (i): For t=1

Let there exists a Hamiltonian path. Hence there exists a Hamiltonian path for t=1.

Case (ii): For t=2

Let there exists a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that \(d(a_1, b_1) = 1 \). Therefore G is a Hamiltonian-t*-laceable for t=2.
Lemma 2.1.1: The Line graph $L(G)$, where $G = S_n$, is a Hamiltonian-t-λ-laceability number if $(\lambda^*(t)) = 1$ for $t = 2$ if odd $n \geq 3$ and $t = 3$ if odd $n \geq 5$ where $1 \leq \text{diam}(G)$.

Proof: Consider the graph $G = S_n$, its line $L(S_n)$. Here we need to establish the following cases to show that, Hamiltonian-t-λ-laceability number if $(\lambda^*(t)) = 1$ for $t = 2$ if $n \geq 3$ and $t = 2$ and 3 if $n \geq 5$

Case (i): For $t = 2$

In $L(S_n)$, we find that $d(a_1, b_2) = 2$ and the path

$P: (a_1, b_1) \cup (b_1, b_2) \cup (b_2, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup (b_{n-2}, a_{n-2}) \cup (a_{n-2}, b_{n-3}) \cup (b_{n-3}, a_{n-3}) \cup \ldots \cup (b_3, a_3) \cup (a_3, a_2) \cup (a_2, b_2)$ is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_1, b_2) = 2$. Therefore G is a Hamiltonian-t-λ-laceable for $t = 2$ and Laceyability number $(\lambda^*(t)) = 1$ for $t = 2$.

Figure 7: Hamiltonian path from the vertex a_1 to a_2 in Line graph $L(S_n)$

Case (ii): For $t = 3$ if odd $n \geq 5$

In $L(S_n)$, we find that $d(a_1, b_3) = 3$ and the path

$P: (a_1, b_1) \cup (b_1, a_2) \cup (a_2, b_2) \cup (b_2, a_3) \cup (a_3, a_4) \cup (a_4, b_4) \cup \ldots \cup (b_{n-3}, a_{n-3}) \cup (b_{n-2}, a_{n-2}) \cup (b_{n-1}, a_{n-1}) \cup (b_n, a_{n-1}) \cup (b_n, a_n) \cup (b_n, b_{n-1}) \cup (b_n, a_{n-2}) \cup (b_n, b_{n-2}) \cup (b_n, b_{n-3}) \cup (b_n, a_{n-3}) \cup \ldots \cup (b_3, a_3) \cup (a_3, b_2) \cup (b_2, a_3) \cup (a_3, b_3)$ is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_1, b_3) = 3$. Therefore G is a Hamiltonian-t-λ-laceable for $t = 3$.

Figure 9: Hamiltonian path from the vertex a_1 to b_3 in Line graph $L(S_n)$

Theorem 2.2: The Line graph $L(G)$, where $G = S_n$, the sun let graph is Hamiltonian-t-λ-laceable for $t = 1, 2,$ and 3 if even $n \geq 4$, where $1 \leq \text{diam}(G)$.

Proof: Consider the graph $G = S_n$, the Line graph $L(S_n)$ denote the vertices $L(G)$ by

$a_1, b_1, a_2, b_2, a_3, b_3, \ldots, a_{n-1}, b_{n-1}, a_n, b_n$ for $t = 1, 2,$ and 3

Case (i): For $t = 1$

In $L(S_n)$, we find that $d(a_1, b_3) = 1$ and the path

$P: (a_1, b_1) \cup (b_1, a_2) \cup (a_2, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup (b_{n-2}, a_{n-2}) \cup (a_{n-2}, b_{n-3}) \cup (b_{n-3}, a_{n-3}) \cup \ldots \cup (b_3, a_3) \cup (a_3, b_2) \cup (b_2, a_3) \cup (a_3, b_3)$ is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_1, b_3) = 1$. Therefore G is a Hamiltonian-t-λ-laceable for $t = 1$.

Figure 8: Hamiltonian path from the vertex a_1 to b_3 in Line graph $L(S_n)$
Figure 10: Hamiltonian path from the vertex \(a_1\) to \(b_1\) in Line graph \(L[S_n]\)

Case (ii): For \(t=2\)
In \(L(S_n)\), we find that \(d(a_1, a_2) = 2\) and the path
\[
P : (a_1, b_1) \cup (b_1, b_n) \cup (b_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup \ldots \cup (a_4, b_4) \cup (b_4, a_4) \cup (a_4, b_3) \cup (b_3, a_3) \cup (a_3, b_2) \cup (b_2, a_2)
\]
is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that \(d(a_1, a_2) = 2\). Therefore \(G\) is a Hamiltonian-\(t^*\)-laceable for \(t=2\).

Figure 11: Hamiltonian path from the vertex \(a_1\) to \(a_2\) in Line graph \(L[S_n]\)

Lemma 2.2.2: The Line graph \(L(G)\), where \(G=S_n\), is a Hamiltonian-\(t^*\)-laceability number, \((\lambda^*_t)\)

\[
= 1 \text{ for } t=2 \text{ and } 3 \text{ if even } n \geq 4, \text{ where } 1 \leq t \leq \text{ diam } G.
\]

Proof: Consider the graph \(G = S_n\), its line \(L(S_n)\). Here we need to establish the following cases to show that, Hamiltonian-\(t^*\)-laceability number if \((\lambda^*_t(t)) = 1\) for \(t=2\) and 3 if \(n \geq 4\)

Case (i): For \(t=2\)
In \(L(S_n)\), we find that \(d(a_1, b_2) = 2\) and the path
\[
P : (a_1, b_1) \cup (b_1, b_n) \cup (b_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup \ldots \cup (a_4, b_4) \cup (b_4, a_4) \cup (a_4, b_3) \cup (b_3, a_3) \cup (a_3, b_2) \cup (b_2, a_2)
\]
is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that \(d(a_1, b_2) = 2\). Therefore \(G\) is a Hamiltonian-\(t^*\)-laceable for \(t=2\) and Laceability number \((\lambda^*_t(t)) = 1\) for \(t=2\).

Figure 12: Hamiltonian path from the vertex \(a_1\) to \(a_2\) in Line graph \(L[S_n]\)

Case (ii): For \(t=3\)
In \(L(S_n)\), we find that \(d(a_1, b_3) = 3\) and the path
\[
P : (a_1, b_1) \cup (b_1, b_n) \cup (b_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup \ldots \cup (a_5, b_5) \cup (b_5, a_5) \cup (a_5, b_4) \cup (b_4, a_4) \cup (a_4, b_3) \cup (b_3, a_3) \cup (a_3, b_2) \cup (b_2, a_2)
\]
is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that \(d(a_1, b_3) = 3\). Therefore \(G\) is a Hamiltonian-\(t^*\)-Laceability number \((\lambda^*_t(t)) = 1\) for \(t=3\).
a_n, b_n, c_n. Hence we need to establish the following claims to show that G is a Hamiltonian-t*-laceable for t=1,2, 3 with diameter 3. In Figure 15, we display the Helm graph H_n.

Figure 15

Claim 2.3.1: For t=1
Case (i): If n is odd
In L(H_n), we find that \(d(a_1, c_1) = 1 \) and the path
\[
P: (a_1, b_1) \cup (b_1, b_n) \cup (b_n, a_n) \cup (a_n, b_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup \ldots \cup (a_6, b_3) \cup (b_3, a_3) \cup (a_3, a_2) \cup (b_2, a_2) \cup (a_2, a_1)
\]
is a Hamiltonian path.

Case (ii): If n is even
In L(H_n), we find that \(d(a_1, c_1) = 1 \) and the path
\[
P: (a_1, b_1) \cup (b_1, b_n) \cup (b_n, c_n) \cup (c_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, c_{n-2}) \cup (c_{n-2}, a_{n-2}) \cup (a_{n-2}, b_{n-3}) \cup (b_{n-3}, c_{n-3}) \cup (c_{n-3}, a_{n-3}) \cup \ldots \cup (a_2, c_2) \cup (c_2, c_1) \cup (b_3, c_1) \cup (c_1, a_3) \cup (a_3, b_2) \cup (a_2, a_{n-1}) \cup (b_{n-1}, c_{n-1}) \cup (c_{n-1}, c_1)
\]
is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that \(d(a_1, c_1) = 1 \). Therefore G is a Hamiltonian-t*-laceable for t=1.

Figure 16: Hamiltonian path from the vertex \(a_1 \) to \(c_1 \) in Line graph \(L[H_n] \)

3. Remark
If \(n \geq 4 \), the distance from \(d(a_1, a_2) = 3 \) is a Hamiltonian-t*-laceable for \(t=3 \) and its laceability number \((\lambda^*_t(t)) = 1 \) for \(t=3 \), then the path
\[
P: (a_1, b_1) \cup (b_1, b_n) \cup (b_n, a_n) \cup (a_n, b_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup \ldots \cup (a_6, b_3) \cup (b_3, a_3) \cup (a_3, a_2) \cup (b_2, a_2) \cup (a_2, a_1)
\]
is a Hamiltonian path.

Figure 14: Hamiltonian path from the vertex \(a_1 \) to \(a_3 \) in Line graph \(L[S_n] \)

Theorem 2.3: The Line graph \(L(G) \), where \(G=H_n \), \(n \geq 3 \), the Helm graph is Hamiltonian-t*-laceable for \(t=1,2 \) and 3, with diameter 3.
Proof: Consider the graph \(G=H_n \), its Line graph is denoted by \(L(H_n) \) denote the vertices of \(L(G) \) by \(a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3, a_4, b_4, c_4, \ldots, a_{n-1}, b_{n-1}, c_{n-1} \).

Figure 13: Hamiltonian path from the vertex \(a_1 \) to \(b_3 \) in Line graph \(L[S_n] \)
$P: (a_1, b_n) \cup (b_n, a_n) \cup (a_n, c_n) \cup (c_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, c_{n-1}) \cup (c_{n-1}, b_{n-2}) \cup (b_{n-2}, a_{n-2}) \cup \ldots \cup (b_4, a_4) \cup (a_4, c_4) \cup (c_4, b_2) \cup (b_2, a_2) \cup (a_2, c_2) \cup (c_2, b_1) \cup (b_1, c_1)$ is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_1, c_1) = 1$. Therefore G is a Hamiltonian-t*-Laceable for $t=1$.

![Image 17: Hamiltonian path from the vertex a_1 to c_1 in Line graph $L(H_n)$](image)

Claim 2.3.2: For $t=2$

Case (iii): If n is odd

In $L(H_n)$, we find that $d(a_1, a_2) = 2$ and the path $P: (a_1, b_n) \cup (b_n, c_n) \cup (c_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup (b_{n-2}, c_{n-2}) \cup (c_{n-2}, a_{n-2}) \cup \ldots \cup (c_4, a_4) \cup (a_4, b_2) \cup (b_2, a_2) \cup (a_2, c_2) \cup (c_2, b_1) \cup (b_1, a_1)$ is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_1, a_2) = 2$. Therefore G is a Hamiltonian-t*-Laceable for $t=2$.

![Image 18: Hamiltonian path from the vertex a_1 to a_2 in Line graph $L(H_5)$](image)

Case (iv): If n is even

In $L(H_n)$, we find that $d(a_1, a_2) = 2$ and the path $P: (a_1, b_n) \cup (b_n, c_n) \cup (c_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup (b_{n-2}, c_{n-2}) \cup (c_{n-2}, a_{n-2}) \cup \ldots \cup (c_4, a_4) \cup (a_4, b_2) \cup (b_2, a_2) \cup (a_2, c_2) \cup (c_2, b_1) \cup (b_1, a_1)$ is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_1, a_2) = 2$. Therefore G is a Hamiltonian-t*-Laceable for $t=2$.

![Image 19: Hamiltonian path from the vertex a_1 to a_2 in Line graph $L(H_6)$](image)

Claim 3: For $t=3$

Case (v): If n is odd

In $L(H_n)$, we find that $d(a_1, a_3) = 3$ and the path $P: (a_1, b_n) \cup (b_n, c_n) \cup (c_n, a_n) \cup (a_n, b_{n-1}) \cup (b_{n-1}, a_{n-1}) \cup (a_{n-1}, b_{n-2}) \cup (b_{n-2}, a_{n-2}) \cup (a_{n-2}, c_{n-2}) \cup (c_{n-2}, a_{n-2}) \cup \ldots \cup (c_4, a_4) \cup (a_4, b_2) \cup (b_2, a_2) \cup (a_2, c_2) \cup (c_2, b_1) \cup (b_1, a_1)$ is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_1, a_3) = 3$. Therefore G is a Hamiltonian-t*-Laceable for $t=3$.

![Image 20: Hamiltonian path from the vertex a_1 to a_3 in Line graph $L(H_6)$](image)
(b_{n-2}, c_{n-2}) \cup (c_{n-2}, a_{n-2}) \cup (a_{n-2}, b_{n-3}) \cup
\ldots \cup (c_{n-12}, a_{n-12}) \cup \ldots \cup (b_j, c_j) \cup
(c_j, c_2) \cup (c_2, a_2) \cup (a_2, b_2) \cup (b_2, a_3)

is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that
d(a_1, a_3) = 3 \ d(a_1, a_3) = 3. Therefore G is a Hamiltonian-t*-Laceable for t=3.

Figure 20: Hamiltonian path from the vertex a_1 to b_2 in Line graph L[H_3]

Case (vi): If n is even

In L(H_n), we find that d(a_1, a_3) = 3 and the path

P : (a_1, b_n) \cup (b_n, a_n) \cup (a_n, c_n) \cup (c_n, b_{n-1}) \cup
(b_{n-1}, a_{n-1}) \cup (a_{n-1}, c_{n-1}) \cup (c_{n-1}, b_{n-2}) \cup
(b_{n-2}, a_{n-2}) \cup (a_{n-2}, c_{n-2}) \cup
\ldots \cup (b_2, a_4) \cup (a_4, c_4) \cup (c_4, b_4) \cup (b_4, a_3) \cup \ldots \cup
(c_2, b_1) \cup (b_1, c_1) \cup (c_1, a_1) \cup (a_1, a_3)

is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that
d(a_1, a_3) = 3. Therefore G is a Hamiltonian-t*-Laceable for t=3.

Figure 21: Hamiltonian path from the vertex a_1 to a_3 in Line graph L[H_6]

Theorem 2.4 The Line graph L(G), where G = G_n, n ≥ 4, the Gear graph is Hamiltonian-t*-laceable for t=1, 2 and 3, with diameter 3

Proof: Consider the graph G = G_n, its Line graph is denoted by L(G_n) denote the vertices of L(G) by

a_1, a_2, a_3, a_4, \ldots, a_{n-1}, a_n. Hence we need to establish the following claims to show that G is a Hamiltonian-t*-laceable for t=1, 2 and 3 with diameter 3.

Claim 1: For t=1

Case (i): If n is odd

In L(G_n), we find that d(a_0, a_1) = 1 and the path

P : (a_0, a_{2n-2}) \cup (a_{2n-2}, a_{2n-4}) \cup (a_{2n-4}, a_{2n-4}) \cup
(a_{2n-9}, a_{3n-9}) \cup \ldots \cup (a_{16}, a_{15}) \cup
(a_{15}, a_{2n+5}) \cup \ldots \cup (a_{14}, a_{13}) \cup \ldots \cup
(a_{6}, a_{2n+2}) \cup (a_{2n+2}, a_3) \cup (a_5, a_4) \cup (a_3, a_2) \cup
(a_{2n-1}, a_2) \cup (a_2, a_1) is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that
d(a_0, a_1) = 1. Therefore G is a Hamiltonian-t*-Laceable for t=1.

Figure 22: Hamiltonian path from the vertex a_0 to a_1 in Line graph L[G_7]

Case (ii): If n is even

In L(G_n), we find that d(a_0, a_1) = 1 and the path

P : (a_0, a_{2n-2}) \cup (a_{2n-2}, a_{2n-1}) \cup (a_{2n-1}, a_{2n}) \cup
(a_{2n}, a_{2n+1}) \cup (a_{2n+1}, a_{2n+2}) \cup (a_{2n+2}, a_{2n+3}) \cup
\ldots \cup (a_{15}, a_{14}) \cup \ldots \cup (a_5, a_4) \cup
(a_4, a_5) \cup \ldots \cup (a_3, a_2) \cup
(a_2, a_3) is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that

d(a_0, a_1) = 1. Therefore G is a Hamiltonian-t*-Laceable for t=1.
4.1. Therefore G is a Hamiltonian graph.

Claim 3.4.1: For $t=2$

Case (i): If n is odd

In $L(G_n)$, we find that $d(a_0, a_3) = 2$ and the path

$$P: (a_0, a_1) \cup (a_1, a_2) \cup (a_2, a_3) \cup (a_3, a_4) \cup (a_4, a_5) \cup (a_5, a_6) \cup (a_6, a_7) \cup (a_7, a_8) \cup (a_8, a_9) \cup (a_9, a_{10}) \cup (a_{10}, a_{11})$$

is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_0, a_2) = 2$. Therefore G is a Hamiltonian-t^*-Laceable for $t=2$.

Figure 23: Hamiltonian path from the vertex a_0 to a_3 in Line graph $L[G_3]$

Figure 24: Hamiltonian path from the vertex a_0 to a_2 in Line graph $L[G_2]$

Case (ii): If n is even

In $L(G_n)$, we find that $d(a_0, a_2) = 2$ and the path

$$P: (a_0, a_1) \cup (a_1, a_{2n-2}) \cup (a_{2n-2}, a_{2n-1}) \cup (a_{2n-1}, a_{2n}) \cup (a_{2n}, a_2)$$

is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_0, a_2) = 2$. Therefore G is a Hamiltonian-t^*-Laceable for $t=2$.

Claim 3.4.2: For $t=3$

Case (i): If n is odd

In $L(G_n)$, we find that $d(a_0, a_3) = 3$ and the path

$$P: (a_0, a_1) \cup (a_1, a_2) \cup (a_2, a_3) \cup (a_3, a_4) \cup (a_4, a_5) \cup (a_5, a_6) \cup (a_6, a_7) \cup (a_7, a_8) \cup (a_8, a_9) \cup (a_9, a_{10}) \cup (a_{10}, a_{11}) \cup (a_{11}, a_{12})$$

is a Hamiltonian path. Hence there exists a Hamiltonian path between at least one pair of vertices such that $d(a_0, a_2) = 2$. Therefore G is a Hamiltonian-t^*-Laceable for $t=3$.

Figure 25: Hamiltonian path from the vertex a_0 to a_3 in Line graph $L[G_3]$
4. CONCLUSION

In this present study, the concept of Hamiltonian-t*-laseability in line graphs and t*-laceability number (are investigated. In our further work, Laceability of total graphs of other kind is to be proposed.

5. ACKNOWLEDGMENTS

The first author thankfully acknowledges the support and encouragement provided by the Management and staff of the department of Mathematics, Gopalanchi College of Engineering and Management, Bangalore, Karnata. The authors are also thankful to the management and R&D Centre, Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore, Karnataka.

6. REFERENCES