ABSTRACT

In path factorization, Ushio K [1] gave the necessary and sufficient conditions for P_k-design when k is odd. P_{2p}-factorization of a complete bipartite graph for p, an integer was studied by Wang [2]. Further, Beilng [3] extended the work of Wang [2], and studied P_{2k}-factorization of complete bipartite multigraphs. For even value of k in P_k-factorization the spectrum problem is completely solved [1, 2, 3]. However, for odd value of k i.e. P_5, P_7, P_9, P_{11} and P_{4k-1}, the path factorization have been studied by a number of researchers [4, 5, 6, 7, 8]. The necessary and sufficient conditions for the existences of P_5-factorization of symmetric complete bipartite digraph were given by Du B [9]. Earlier we have discussed the necessary and sufficient conditions for the existence of $K_{m,n}$-factorization [10, 11]. Now, in the present paper, we give the necessary and sufficient conditions for the existence of P_{4k-1}-factorization of symmetric complete bipartite digraph of $K_{m,n}$.

Mathematics Subject Classification: 68R10, 05C70, 05C38.

Key words: Complete bipartite Graph, Factorization of Graph, Symmetric Graph.

1. INTRODUCTION

Let $K_{m,n}$ be a complete bipartiite symmetric digraph with two partite sets having m and n vertices. A spanning subgraph \vec{F} of $K_{m,n}$ is called a path factor if each component of \vec{F} is a path of order at least two. In particular, a spanning subgraph \vec{F} of $K_{m,n}$ is called a \vec{F}_{4k-1}-factor if each component of \vec{F} is isomorphic to \vec{P}_{4k-1}. If $K_{m,n}$ is expressed as an arc disjoint sum of \vec{P}_{4k-1}-factors, then this sum is called \vec{P}_{4k-1}-factorization of $K_{m,n}$. Here, we take path of order $4k-1$. A \vec{P}_{4k-1} is the directed path on $4k-1$ vertices.

2. MATHEMATICAL ANALYSIS

The necessary and sufficient conditions for the existence of \vec{P}_{4k-1}-factorization of complete bipartite symmetric digraph are given below in theorem 2.1.

Theorem 2.1: Let m and n be the positive integers then $K_{m,n}$ has a \vec{P}_{4k-1}-factorization if:

(1) $2kn \geq (2k-1)m$,
(2) $2kn \geq (2k-1)n$,

(3) $m + n \equiv 0 \pmod{4k-1}$, and
(4) $\frac{(4k-1)mn}{(2k-1)(m+n)}$ is an integer.

Proof of necessity of theorem 2.1

Proof: Let r be the number of \vec{P}_{4k-1}-factor in the factorization, and e be the number of copies of \vec{P}_{4k-1}-factor in a factorization, which can be computed by using

\[r = \frac{(4k-1)mn}{(2k-1)(m+n)} \quad \text{...(1)} \]

and

\[e = \frac{m+n}{4k-1} \quad \text{...(2)} \]

respectively.

Obviously, r and e will be integers. Thus conditions (3) and (4) in theorem 2.1 are necessary. Let a and b be the number of copies of \vec{P}_{4k-1} with its end points in Y and X, respectively in a particular \vec{P}_{4k-1}-factor. Then by simple arithmetic we can obtain, $2kb + (2k-1)a = m$ and $2ka + (2k-1)b = n$.

From this, we can compute a and b which are as follows:

\[a = \frac{2kn - (2k-1)m}{4k-1} \quad \text{...(3)} \]

\[b = \frac{2km - (2k-1)n}{4k-1} \quad \text{...(4)} \]

Since, by definition a and b are integers, therefore equation (1) and (2) imply,

\[\frac{2kn - (2k-1)m}{4k-1} \geq 0 \]

and

\[\frac{2km - (2k-1)n}{4k-1} \geq 0, \]

this implies that $2kn \geq (2k-1)m$ that $2kn \geq (2k-1)n$. Therefore condition (1) and
(2) in theorem 2.1 are necessary. This proves the necessity of theorem 2.1.

Proof of sufficiency of theorem 2.1

Further, we need the following number theoretic result (lemma 2.2) to prove the sufficiency of theorem 2.1. Its proof can be found in any good text related to number theory [12].

Lemma 2.2: If \(\gcd(xv, uy) = 1 \) then \(\gcd(uv, ux + vy) = 1 \), where \(x, y, u \) and \(v \) are positive integers.

We prove the following result of lemma 2.3, which will be used further.

Lemma 2.3: If \(K_{m,n} \) has \(P_{4k-1} \) factorization, then \(K_{m,n} \) has \(P_{4k-1} \) factorization for every positive integer \(s \).

Proof: Let \(K_{m,n} \) be a \(-1\)-factorable [13] and \(\{F_1, F_2, ..., F_s\} \) be a \(-1\)-factorization of \(K_{m,n} \). For each \(i \) with \(1 \leq i \leq s \), replace every edge of \(F_i \) by a \(-1\)-factorable subgraph \(G_i \) of \(K_{m,n} \) such that the graph \(G_i \)'s \((1 \leq i \leq s) \) are pair wise edge disjoint, and there union is \(K_{m,n} \). Hence \(K_{m,n} \) has \(P_{4k-1} \) factorization, it is clear that \(G_i \) is also \(P_{4k-1} \)-factorable, and hence \(K_{m,n} \) has \(P_{4k-1} \) factorization. Now to prove the sufficiency of theorem 2.1, there are three cases to consider:

Case (i) \(2kn = (2k-1)n \): In this case from lemma 2, \(K_{m,n} \) has \(P_{4k-1} \) factorization. Consider the trivial case at \(k = 1, m = 1 \) and \(n = 2 \), then number of copy \(e = 1 \) and total number of factor \(r = 2 \). Path factor is given below:

![Diagram](image)

Case (ii) \(2km = (2k-1)m \): Obviously, \(K_{m,n} \) has \(P_{4k-1} \) factorization since in this case position of \(m \) and \(n \) changes only from previous case.

Case (iii): \(2km > (2k-1)n \) and \(2kn > (2k-1)m \): In this case, let

\[
a = \frac{2kn - (2k-1)m}{4k-1}, \quad b = \frac{2km - (2k-1)n}{4k-1}.
\]

Case (i): \(2kn = (2k-1)m \); In this case, \(a \) is a positive integer and \(a \) and \(b \) are integers. Then from condition (1)-(4) of theorem 2.1, \(a, b, e \) and \(r \) are integers and \(0 < m < n \) and \(0 < b < n \). As obtained previously \(2kb + (2k-1)a = m \) and \(2ka + (2k-1)b = n \). Hence

\[
r = \frac{4k-1}{4k-1}(m+n), \quad e = \frac{m+n}{4k-1}.
\]

Then from condition (1)-(4) of theorem 2.1, \(a, b, e \) and \(r \) are integers and \(0 < m < n \) and \(0 < b < n \). As obtained previously \(2kb + (2k-1)a = m \) and \(2ka + (2k-1)b = n \). Hence

\[
r = 2ka + (2k-1)b + \frac{ab}{2k-1}.
\]

Let

\[
z = \frac{ab}{2k-1}.
\]

These equality implies the following equality:

\[
d = \frac{(2k-1)2kp + (2k-1)qz}{pq},
\]

\[
r = \frac{(p+q)4k^2p + (2k-1)^2qz}{pq},
\]

\[
m = \frac{(2k-1)(p+q)2kp + (2k-1)qz}{pq},
\]

\[
n = \frac{4k^2p + (2k-1)^2qz}{2kpq}.
\]

These equality implies the following equality:

\[
a = \frac{p2kp + (2k-1)qz}{pq},
\]

\[
b = \frac{(2k-1)q2kp + (2k-1)qz}{2kpq}.
\]

Let \(k = \frac{1}{p_1p_2...p_{k}b}, \frac{1}{p_1p_2...p_{k}b}, ..., \frac{1}{p_1p_2...p_{k}b} \) where \(p_1, p_2, ..., p_k \) are distinct prime number.

Let \(k_1, k_2, ..., k_r \) are positive number, and \(2k = k_1^1, k_2^1, ..., k_r^1 \) are positive integers, where \(h_1, h_2, ..., h_w \) are positive integer.

If

\[
\gcd(p, 2k-1) = p_{1}^{h_1}p_{2}^{h_2}...p_{k}^{h_k} \cdot p_{k+1}^{2k-1}\cdot p_{k+2}\cdot p_{k+3}\cdot ...\cdot p_{2k-2},
\]

Where \(1 \leq \alpha \leq \beta \leq

\[
0 \leq n_k \leq \gamma \text{when } 0 \leq j \leq \alpha \) or

\[
0 \leq i_j \leq \kappa(j) \text{when } \alpha + 1 \leq j \leq \beta \),

\[
gecd(q, 4k^2) = q_{1}^{h_1}q_{2}^{h_2}...q_{k}^{h_k} \cdot q_{k+1}^{2k-1}\cdot q_{k+2}\cdot q_{k+3}\cdot ...\cdot q_{2k-2},
\]

Where \(1 \leq \mu \leq \theta \leq \nu \),

\[
0 \leq j_i \leq h_i \text{when } 0 \leq i \leq \mu \) or

\[
0 \leq j_i \leq h_i \text{when } \mu + 1 \leq i \leq \nu \),

\[
s = p_{1}^{h_1}p_{2}^{h_2}...p_{k}^{h_k}, \quad t = p_{1}^{h_1}p_{2}^{h_2}...p_{k}^{h_k}, \quad \gamma = p_{k+1}^{h_1}p_{k+2}^{h_2}...p_{2k-2}^{h_k},
\]

\[
u = p_{k+1}^{h_1}p_{k+2}^{h_2}...p_{2k-2}^{h_k}p_{2k-1}^{h_k}.
\]
International Journal of Computer Applications (0975–8887)
Volume 98– No.11, July 2014

\[w = p_{b+1}^{h_1} p_{b+2}^{h_2} \ldots p_r^{2k_r}, \]

and

\[s' = a_1 q_1 \ldots q_{\mu-1} q_{\mu} t', \]

\[u' = q_{\mu+1} q_{\mu+2} \ldots q_r \]

\[w' = q_{\mu+1}^{h_{\mu+1}} q_{\mu+2}^{h_{\mu+2}} \ldots q_r^{h_r}. \]

Then \(2k - 1 = stuvw \) and \(2k = s't'u'v'. \)

Also let \(p = s'uv'^2w^2 \) and \(q = s'u'v'^2w^2q'. \) Now by using \(p, q, (2k - 1) \) and \(2k \) the parameter \(m, n, a, b \) and \(r \) satisfying the condition \((1) - (4)\) are expressed in the following lemma (2.4). The purpose of lemma (2.4) is to discuss the detail of \(F_{b-1} \) factorization, and reduce it to number of base cases, which are then solve in later lemma.

Lemma 2.4:

Case 1: If \(t' \equiv 1 \pmod{2} \) and \(v'w' \equiv 1 \pmod{2} \), then

\[m = stut'(sw^2v'p' + s'u'v'^2w^2q')(twvp + tvwq)wz', \]

\[n = suvw'w'(st'u'p' + st^2uq')(twv'p + tvwq)wz', \]

\[a = suvw't'(vw't'p' + tvw'q')wz', \]

\[b = stuw'w'q'(vw't'p' + tvw'tq')wz'/2, \]

\[r = t'w'(sw^2v'p' + s'u'v'^2w^2q')(st'u'p' + st^2uq')wz'/2, \]

\[d = stut'(vw't'p' + tvw'tq')wz'/2, \]

for some positive integer \(z' \).

Case 2: If \(t' \equiv 0 \pmod{2} \) and \(v'w' \equiv 1 \pmod{2} \), then

\[m = stut'(sw^2v'p' + s'u'v'^2w^2q')(twv'p' + tvw'q')wz'/2, \]

\[n = suvw'w'(st'u'p' + st^2uq')(twv'p' + tvw'q')wz'/2, \]

\[a = suvw't'(vw't'p' + tvw'q')wz'/2, \]

\[b = stuw'w'q'(vw't'p' + tvw'tq')wz'/2, \]

\[r = t'w'(sw^2v'p' + s'u'v'^2w^2q')(st'u'p' + st^2uq')wz'/2, \]

\[d = stut'(vw't'p' + tvw'tq')wz'/2, \]

for some positive integer \(z' \).

Case 3: If \(t' \equiv 1 \pmod{2} \) and \(v'w' \equiv 0 \pmod{2} \), then

\[m = stut'(sw^2v'p' + s'u'v'^2w^2q')(tvw'p' + tvw'q')wz'/2, \]

\[n = suvw'w'(st'u'p' + st^2uq')(tvw'p' + tvw'q')wz'/2, \]

\[a = suvw't'(vw't'p' + tvw'q')wz'/2, \]

\[b = stuw'w'q'(vw't'p' + tvw'tq')wz'/2, \]

\[r = t'w'(sw^2v'p' + s'u'v'^2w^2q')(st'u'p' + st^2uq')wz'/2, \]

\[d = stut'(vw't'p' + tvw'tq')wz'/2, \]

for some positive integer \(z' \).

Proof: Let us assume that \(\gcd(p, (2k - 1)^2) = s'uv'^2w^2 \) and \(\gcd(q, 4k^2) = s'u'v'^2w^2. \)

If \(\gcd(p, q) = 1 \) and \(p = s'uv'^2w^2p' \) and \(q = s'u'v'^2w^2q' \) hold.

then

\[\gcd(s'uv'^2w^2p', s'u'v'^2w^2q') = 1. \]

Which implies that, if \(\gcd(4k^2p, (2k - 1)^2) = 1 \) and \((2k - 1) = stuvw \) and

\(2k = s't'u'v'w' \) hold, then \(\gcd(s't'u'v'p', st^2uq) = 1. \)

Since

\[r = (sw^2v^2p' + s'u'v'^2w^2q')(st'u'p' + st^2uq)z/pq, \]

is an integer, therefore by using lemma 2.2, we see that \(\gcd(s'uv'^2w^2p', s'u'v'^2w^2q') = 1 \)

implies that

\[\gcd(s't'u'v'p', st^2uq') = 1 \]

and

\[\gcd(s't'u'v'p', st^2uq) = 1. \]

Since \(r \) is an integer therefore \(\frac{r}{pq} \) must be an integer.

Let \(z_1 = \frac{r}{pq} \) then we have

\[d = \frac{stuvw't'p' + tvw'tq'}{tvw'q'}, \]

is an integer.

Now for the values of \(t' \) and \(v'w' \) there are three cases will possible.

Case 1: When \(t' \equiv 1 \pmod{2} \) and \(v'w' \equiv 1 \pmod{2} \).

Since,

\[\gcd(2, v'w') = \gcd(stuv, v'w') = \gcd(vw't'p' + tvw'q', v'w') = 1, \]

therefore \(z_2 = \frac{z_1}{v'w'} \) is an integer. Letting \(z_2 = \frac{z_1}{v'w'} \) we have

\[b = \frac{stuvw'q'(vw't'p' + tvw'q')z_2}{t}, \]

Since

\[\gcd(2, t') = \gcd(stuvw'q', t') = \gcd(vw't'p' + tvw'q', t') = 1. \]

Therefore \(z_1 = \frac{z_2}{t'} \) is an integer. Let \(z_1 = \frac{z_2}{t'} \). Then all the values \(m, n, a, b, r \) and \(d \) in case (1) hold.

Case 2: When \(t' \equiv 0 \pmod{2} \) and \(v'w' \equiv 1 \pmod{2} \).

Since \(\gcd(2, v'w') = 2, \)

\[\gcd(stuv, v'w') = \gcd(vw't'p' + tvw'q', v'w') = 1, \]

therefore \(\frac{z_1}{v'w'} \) is an integer. Let \(z_2 = \frac{z_1}{v'w'} \), then

\[b = \frac{stuvw'q'(vw't'p' + tvw'q')z_2}{2t}. \]
Since \(\gcd(2, t) = 2 \), \(\gcd(stu'w'q', t) = \gcd(vwt'p + tw'q', t) = 1 \), therefore \(\frac{za}{t} \) is an integer. Let \(z = \frac{za}{t} \). Then all the values of \(m, n, a, b, r \) and \(d \) in case (2), hold.

Case 3: When \(t \equiv 1 \pmod{2} \), and \(v'w' \equiv 0 \pmod{2} \).

Since
\[
\gcd(2, v'w') = 2, \quad \gcd(stu', v'w') = \gcd(vwt'p + tw'q', v'w') = 1,
\]
Therefore \(\frac{za}{2t} \) is an integer. Let \(z = \frac{za}{2t} \), then
\[
b = \frac{stu'w'q'(vwt'p + tw'q')}{2t}.
\]
Since \(\gcd(stu'w'q', t') = \gcd(vwt'p' + tw'q', t') = 1 \), therefore \(\frac{za}{2t} \) is an integer. Let \(z = \frac{za}{2t} \). Then all the values of \(m, n, a, b, r \) and \(d \) in case (3), hold.

This proves the lemma 2.4.

For the parameters \(m \) and \(n \) in lemma 2.4 case (1) - case (3) when \(s = 1 \), we can construct a \(\tilde{P}_{4k-1} \) factorization of \(K_{m,n}^* \).

It is easy to see that the existence of a \(\tilde{P}_{4k-1} \) factorization of \(K_{m,n} \) implies the existence of a \(\tilde{P}_{4k-1} \) factorization of \(K_{m,w} \).

For our main result we need to prove the following lemma:

Lemma 2.5: For any positive integers \(s, t, u, v, w, s', t', u', v', w', p \), and \(q \), let
\[
m = stu(tsw'tq + s'u'w'q')(twp'vq + tw'q'),
\]
\[
n = swtw'q('st^2u'p + s't'uqw'),
\]
Then \(K_{m,n}^* \) has a \(\tilde{P}_{4k-1} \) factorization if \(s, t, u, v, w + 1 = s't'u'w' \), where \(k - 1 = s = t = u = v + 1 \).

Proof. The proof is by construction (case 1 of lemma 2.4). Let
\[
a = swtwp(vwtp + tw'q),
b = stuwq(vwtp + tw'q'),
\]
\[
r = tsww'(vsw'p + s'u'w'q')(st^2u'p + s't'uqw'),
\]
\[
r_1 = t(s't^2u'p + s't'uqw'),
\]
\[
r_2 = tw(s't^2u'p + s't'uqw').
\]

Let \(X \) and \(Y \) be the two partite sets of vertices of \(K_{m,n}^* \) such that:
\[
X = \{x_{ij} \mid 1 \leq i \leq r_1, 1 \leq j \leq m_0 \},
\]
\[
Y = \{y_{ij} \mid 1 \leq i \leq r_2, 1 \leq j \leq n_0 \}.
\]
Where first subscript of \(x_{ij} \)'s and \(y_{ij} \)'s taken additional modulo \(r_1 \) and \(r_2 \) respectively and the second subscript of \(x_{ij} \)'s and \(y_{ij} \)'s taken additional modulo \(m_0 \) and \(n_0 \) respectively, where \(m_0 = \frac{m}{r_1} \) and \(n_0 = \frac{n}{r_2} \) i.e.,
\[
m_0 = stu(twp'vq + tw'q'),
\]
\[
n_0 = swtwq(twp'vq + tw'q').
\]

Now we construct a model of \(\tilde{P}_{4k-1} \) factor of \(K_{m,n}^* \), here type \(M \) copies of \(\tilde{P}_{4k-1} \) denote the \(\tilde{P}_{4k-1} \) with its end point in \(Y \) and type \(W \) with its end point in \(X \).

Type \(M \) copies of \(\tilde{P}_{4k-1} \).

For each \(i, x, y, z \) and \(x' \), \(1 \leq i \leq t'p, 1 \leq x \leq t \), let
\[
f(i, x, y) = swtw^2(x - 1) + suw(x - 1) + y,
\]
\[
g(i, y, z, x) = s'tu'v'w'q'(x - 1) + suw(x - 1) + y + x',
\]
\[
and h(i, x, y, x') = suw(i - 1) + suw(twp' + tw'q')q(x - 1) + y + x' - 1.
\]

Hence set
\[
E = \{ (i, x, y, z) : f(i, x, y), g(i, y, z, x), h(i, x, y, x') \}.
\]

Each of \(\tilde{E}_1 \) consists of \(n_0 \) vertex disjoint type \(M \) copies. And \(\cup_1 \tilde{E}_i \) contains \(a = swtwp(vwtw + tw'q) \) vertex disjoint type \(M \) copies of \(\tilde{P}_{4k-1} \).

Type \(W \) copies \(\tilde{P}_{4k-1} \).

For each \(i, x, y, z \) and \(x' \), \(1 \leq i \leq v'w'q, 1 \leq x \leq stu \),
\[
1 \leq y \leq swtw, 1 \leq z \leq t, 0 \leq x' \leq 1,
\]
\[
let \psi(i, x, z) = s'tu'v'w'p + st^2u(x - 1) + stu(x - 1) + x,
\]
\[
\varphi(i, x, y, x') = swtw^2tp + s'u'w't'(i - 1) + svw(x - 1) + y + x',
\]
\[
and \Phi(i, x, y, x') = swtw^2tp + x + stu(i - 1) + suvwtwp + tw'q')(y - 1) + x' - 1.
\]

Hence set
\[
E = \{ (i, x, y, z) : f(i, x, y), g(i, y, z, x), h(i, x, y, x') \}.
\]

Each of \(\tilde{E}_i \) consists of \(n_0 \) vertex disjoint type \(W \) copies. And \(\cup_1 \tilde{E}_i \) contains \(a = swtwp(vwtw + tw'q) \) vertex disjoint type \(W \) copies of \(\tilde{P}_{4k-1} \).
It is shown that the graphs $F_{i,j}$ $(1 \leq i \leq r_1, 1 \leq j \leq r_2)$ are edge disjoints factor of $K_{m,n}$ and their union is $K_{m,n}$. Thus $(F_{i,j}; 1 \leq i \leq r_1, 1 \leq j \leq r_2)$ is a P_{4k-1} factorization of $K_{m,n}$. This proves the lemma 2.5.

By similar manner we can also prove the other two cases of lemma 2.4.

Applying lemma 2.3 – 2.4 and 2.5, we see that for parameter m and n satisfying conditions in theorem 2.1, $K_{m,n}$ has a P_{4k-1} factorization.

3. REFERENCES

