
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.10, July 2014

9

An Investigation into Access Control in Various Types of

Operating Systems

Mohamed A. Ismail

Military Technical Colleague,
Cairo, Egypt

H. Aboelseoud M.
Doctor, Dept. of computer,

Military Technical Colleague,
Cairo, Egypt

Mohamed B. Senousy
Professor of Computer Science

Sadaat Academy Computer
Science and Information
Technology, Cairo, Egypt

ABSTRACT

Access control is a security aspect whose importancy

increases with technology advances as it forms the core of any

security system. Access control can be applied at the

operating system (OS) level, middle-ware level, or the

application level. The objective of this investigation is to give

a detailed overview of access control mechanisms

implemented in various types of OSs like general purpose

OSs, mobile OSs and distributed OSs. Finally, the paper

outlines the main problems and challenges of access control,

and proposes future directions in the access control field of

research.

General Terms

Security, Access Control

Keywords

Access Control, Operating System Security, Usage Control

1. INTRODUCTION
Access control is a security aspect which is responsible for

limiting or preventing unauthorized entities (e.g. users and

processes) form accessing the computational resources and

digital information while ensuring access for authorized

entities. The goals of access control can be divided into three

areas as follows: preventing unauthorized disclosure of

information (confidentiality) and improper malicious

modification (integrity), while ensuring accessibility of

resources to authorized entities (availability) [1].

Starting with Lampson’s access matrix in the late 1960’s [2],

dozens of access control mechanisms have been proposed.

Only three, usually called traditional access controls, have

achieved success in practice. They are:

1. DAC (Discretionary Access Control): in which objects or

data are owned by a user (owner) and permission to act on

them is given at the discretion of the owner [3]. DAC is

widely implemented in many systems because of its flexibility

and ease of implementation, enforcement, and policy

configuration but the disadvantages of DAC are that it is

highly vulnerable to Trojan horses and it is not suitable for an

information flow control.

2. MAC (Mandatory Access Control): it is also known as

lattice based access control (LBAC) or multilevel security

(MLS). In MAC, access is based on labels assigned to

subjects and objects and access decisions are made beyond the

control of the individual owner of the object [4]. MAC

policies are proposed to deal with the information flow

control, meet the data protect requirements of secret

information and to face the attacks of Trojan horses. The

problem with MAC is that it is very rigid, hardly to manage

by security administrators and suited, at best, for closed and

controlled environments.

3. RBAC (Role-based Access Control): in RBAC, access is

granted based on the roles individual users have in their

organization based on their job functions. Permissions are

assigned to roles based on the requirements of job functions

and users are made members of roles, thus gaining

permissions assigned to these roles [5]. RBAC is a policy

independent mechanism that can be configured as MAC

and/or DAC. The main advantage of RBAC that it simplifies

the process of administration and management of privileges

by making use of roles but the problem of it that it does not fit

into open systems where entities are definitely unknown [1].

The above mentioned traditional access control mechanisms

are usually considered user-oriented (i.e., access decisions are

taken mainly based on the identity of users), the problem with

the user-oriented access control comes from the fact that any

process operating on behalf of a user usually takes his

privileges. Thus, when a process is infected with malicious

code like (viruses, worms, etc.) it can misuse the user's

privileges to make any action that can compromise the OS’s

security or harm other applications installed on it so the need

comes for what so called application-oriented access control

(i.e., access decisions are taken mainly based on the

concerned applications rather than on the identity of users)

[6].

Application-oriented access control can be achieved by

application restrictions and sandboxes techniques which are

used to restrict an application’s ability to access resources by

devoting a set of resources to the application and preventing it

from working outside of the sandbox [7].

Access control mechanisms are used in OSs to protect and

control access to system resources (files, sockets, services,

etc.). In general the security at the OS level is a critical issue.

Since, if the OS is compromised then threats will definitely

propagate to other layers leading to complete penetration of

the entire system.

In the following sections we will describe the access control

aspects (user-oriented and application-oriented) in various

OSs types like general purpose OSs, mobile OSs and

distributed OSs.

The rest of this paper is organized as follows. Section 2 shows

access control aspects in general purpose OSs (UNIX, Linux,

and Windows). Section 3 shows access control aspects in

mobile OSs (Android and Apple’s iOS). Section 4 shows

access control aspects in distributed OSs (CORBA). Section 5

describes usage control (UCON) model as the successor of

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.10, July 2014

10

access control. Section 6 presents the main problems and

challenges of access control and UCON. Finally, we give our

conclusions in Section 7.

2. Access Control in General Purpose OSs
In this section we will describe the access control aspects in

three familiar OSs (UNIX, Redhat Enterprise Linux server

version 6 (RHEL6) and windows server 2012) presenting

which mechanisms are implemented in them.

2.1 UNIX (standard UNIX)
UNIX is a file-orientated OS [8]. On every UNIX system, the

file system objects are stored in a hierarchical tree structure of

directories starts from the root (denoted by a slash '/'). Each

directory may contain a number of file system objects like

(regular files, other directories, character and block device

nodes or links (symbolic and hard links) to any of these

objects, etc.) [9].

The access control in UNIX is based on the DAC mechanism

with access control lists (ACL’s). The access control model of

the UNIX File system is implemented on a per object basis.

Each file system object in UNIX has an ACL which has three

sets of three access rights bits (read (r), write (w) and execute

(x)) determine whether a specified right can be requested on

the object or not by inspecting the identity of the requester.

The three sets are corresponding for three categories of users

which are respectively, the user who owns the object that can

be identified by a user ID (UID), the object group that can be

identified by a group ID (GID) and all other users [9].

Because files and directories are different entities, the

meaning of these bits assigned to each differs slightly. In case

of directory, the read permission allows the user to list the

files in the directory, the execute permission allows the user to

enter the directory, or access a file in the directory and the

write permission allows the user to add, rename and remove a

directory entry [9].

MAC is implemented in UNIX-based systems through

Domain and Type Enforcement (DTE) access control

mechanism which is an enhanced version of type enforcement

(TE). In DTE the OS is divided as a collection of subjects

(active entities) and objects (passive entities). Each subject

(process) in system is assigned a security attribute called a

domain and each object (file, directory, socket, etc.) is

assigned a security attribute called a type. Each domain is

defined as a collection of access rights where each right give

subjects the ability to access objects of a specified type in one

or more access modes (read, write, execute, create, send,

receive, etc.)[10]. DTE has a Language for specifying access

control policies called Domain Type Enforcement Language

(DTEL) which is very expressive language capable of

representing other common access control models [11].

Sandboxing is applied in UNIX-based systems by using

chroot jail [12]. It is used to limit the access of the controlled

process to a specific directory (virtual root directory) in the

directory tree structure of the File system. In UNIX many

daemons (e.g. Network Time Protocol (NTP) daemon) are

executed in their own dedicated chroot jail [13].

2.2 LINUX (RHEL6)
Like many other Linux distributions, the traditional UNIX

DAC mechanism is applied in RHEL6 at the file system level.

There are also several MAC implementations (e.g. Security-

Enhanced Linux (SELinux) and simple mandatory access

control (SMAC)) based on the Linux Security Modules

(LSM) project have been integrated into the kernel layer.

LSM is a lightweight, general purpose, access control

framework merged into Linux kernel permitting many

different access control mechanisms to be implemented as

loadable kernel modules (LKMs) which are programs written

with the intention to extend the kernel [14]. LSM allows

modules to mediate access to kernel objects by placing hooks

in the kernel code just ahead of the access [15], as shown in

Figure (1).

Fig 1: LSM Hook Architecture

One of the most widely used MAC mechanisms in Linux is

SELinux which is implemented based on LSM and Flask

architecture. SELinux implements a variation of the

traditional TE due to the use of object classes along with types

for objects and domain for subjects. SELinux also provides a

form of Role-Based Access Control (RBAC) built upon TE in

which roles are used to group domain types and relate these

domains with users, but decisions are based on TE rules

instead of RBAC permission assignments [16].

2.3 Windows Server 2012
In earlier releases of Windows OS the major access control

mechanism used was discretionary access control list (DACL)

which used to define permissions on objects and resources.

In windows server 2012 Microsoft introduces a new File

system access control mechanism called Dynamic Access

Control which make the administrators capable of specifying

central file-access policies at the domain level that can be

used in every file server in the domain [17], There are five

key components in Dynamic Access Control that work

together to achieve the mission [18]:

1. User and Device Claims: claims are Active Directory (AD)

properties that can be used with Central Access Policies [17].

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.10, July 2014

11

Administrators can set claims for both users and devices, for

example a user claim can be (the department the user work in,

role, clearance level, balance, etc.) and a device claim can be

(location, managed, etc.). In fact, this model was originally

named “claim-based access control,” but Microsoft renamed it

to Dynamic Access Control because it offers more than just

claims [17].

2. File Classification Infrastructure (FCI): it allows the file

server data to be identified and classified using NTFS file

system tags so that the administrators can make policies based

on this tags, This tagging can be done manually by the file

server content owner or automatically by an application that

search for certain formats or words in the file server content

[17].

3. Expression-Based ACLS: now NTFS file system can use

regular expressions in file system ACLS besides other

security principals (users, groups, etc.). It is a new great

feature for the administrators because it gives them the

opportunity to make a flexible policies that manages a fewer

security groups. In previous group-based policies there was no

concept of an “and” operator for groups, you could only OR

groups together, but now using Expression-Based ACLS an

expression that means “user is in sales group and managers

group” can be written [17, 18].

4. Central Access and Audit Policies: Central Access Policy

(CAP) combines both of FCI and Expression-Based Access

Control to define appropriate centralized policies that can be

applied across multiple file servers in the organization.

Central Access Policies are checked after the local DACL is

checked but they dominates it which means that if a local

DACL on a resource (R) allows access to user (U) but a

Central Policy restricts access to this user, the user will not be

able to access the resource, These policies are more flexible,

powerful and precise than policies that were available in the

previous Windows access control models [17, 18].

5. Access Denied Assistance: it helps the clients to know the

reasons that prevent them from accessing a given resource. It

can remind them to insert a physical passkey or explain to

them the access rule they have violate [18].

MAC is implemented in Windows Server 2012 through a

security feature called Mandatory Integrity Control (MIC) (it

is also referred to as Windows Integrity Control (WIC)) which

introduced in Windows Server 2008 and Windows Vista and

implemented in subsequent releases of Windows. We can say

that MIC is a kind of “User Access Control” oriented to

processes by adding Integrity Levels (IL)-based isolation to

running processes [19]. Multiple classes of applications can

be isolated by using MIC, So scenarios like sandboxing

potentially-vulnerable applications (such as Internet-facing

applications) can now be achieved [20].

RBAC is implemented in Microsoft AD using groups (e.g.,

Administrators, Account Operators, Backup Operators, etc.)

to control the access of users within those groups to the

system resources based on their job functions, Microsoft has

also provided a tool called AzMan to help security

administrators accomplish RBAC using AD more simply [21].

A sandboxing mechanism called AppContainer is

implemented in Windows Server 2012 providing a new

isolation method applied to Metro applications. AppContainer

protects the OS resources by restricting these applications

from reading and writing to most of the file system, except the

application’s own AppData folder [22].

3. ACCESS CONTROL IN MOBILE OSS
The security of mobile devices is increasingly important as a

result of their growing use. In this section we will describe the

access control aspects in two familiar mobile OSs (Android

and Apple’s iOS).

3.1 Android
Android is the first free, open source, and fully customizable

OS for mobile devices [23] which is developed and

maintained by Google. Nowadays, we can see that it is one of

the most popular mobile platforms. It offers a full software

stack consisting of [24]:

1. Base OS: it is based on the Linux kernel which provides

low-level services to the rest of the system such as file system

support, device drivers, memory management, process

management, and networking.

2. Middle-ware layer: it includes the Dalvik Virtual Machine

(DVM), Java and native libraries, and provides system

services, such as the application life cycle management.

3. Application layer: it consists of a collection of pre-installed

and third party applications (available from the Google store)

as well as some tools and APIs easing the development of

third-party applications with the Java programming language.

Several access control mechanisms are applied in Android.

We can classify them with respect to the software stack as

shown in Figure (2).

Fig 2: Android software stack with applied access control

mechanisms

3.1.1 Kernel layer -specific mechanisms
The traditional UNIX DAC mechanism is applied in the

underlying Linux kernel to control the access to the Android

Files (both application and system files) and to enforce

process isolation by making every application on the Android

device runs as a separate user account with a unique (UID)

and (GID). So Applications can only access their own files, or

files that are explicitly defined as world-wide readable [25]

and they will not be able to access the files of the other

applications because they doesn’t have the necessary

permissions.

3.1.2 Middle-ware layer -specific mechanisms
Android’s middle-ware layer provides MAC on inter-

component communication (ICC) calls which enable android

applications to communicate with each other. ICC calls are

like Inter-Process Communication (IPC) calls but it is

preferred to use the term ICC because these calls occur at the

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.10, July 2014

12

granularity of application components [25]. ICC calls is

controlled by making the Android’s reference monitor checks

permission assignments at run-time and refuses ICC calls if

the caller does not have the necessary permissions [25].

3.1.3 Application layer -specific mechanisms
The core of the application level security in Android is the

permission system [24] which controls the operations that an

application can perform to limit the application abilities.

Application developers must declare which permissions the

application needs to be executed properly. At install time, The

Package Manager is responsible for granting permissions to

the application after the user approve for all the requested

permissions and at run-time the application framework is

responsible for enforcing system permissions [24].

A wide range of permissions in Android protects Security

sensitive operations such as: dialing the phone

(CALL_PHONE), taking photos (CAMERA), accessing the

Internet (INTERNET), or writing an SMS (WRITE_SMS). Of

course any Android application can define any new

permissions it needs to protect access to sensitive application

interfaces. In order to have permission the application must

include it in its manifest file (the application’s “contract” with

Android) which is part of the application’s installation

package. Permissions have four protection levels [24]:

1. Normal: permissions that are not especially dangerous to

have and automatically granted to the application without the

user’s approval before or during installation process.

2. Dangerous: permissions that are more dangerous than

normal, or not normally needed by applications; such

permissions may be granted to an application with the user’s

explicit confirmation at installation time of the application.

3. Signature: permissions that can only be granted to other

packages that are signed with the same signature as the one

declaring the permission.

4. SignatureOrSystem: a signature permission that is also

granted to packages installed in the Android system image,

these permissions are not available to 3rd party applications.

The application developer assigns the protection level during

the development process due to his discretion.

3.2 Apple iOS
iOS (formally known as iPhone OS) is the OS that is running

on Apples’ iPhone, iPod Touch, and iPad devices. It is a

proprietary OS developed and maintained by Apple.

The security model of iOS is not permission based as in

Android [26]. When a developer submit his application to the

Apple App Store, Apple inspects the application by making

manual and automatic tests on it to ensure that the application

do not have any malicious behavior. When the application

goes through the inspection process Apple signs it digitally

and make it available to be downloaded and installed on any

apple device.

Once on the device, the application is free to access any

resources on the device except few resources (e.g. user’s

location) that needs the user’s approval for it at the first time

the application use the resource. Later, whenever the user

likes to revoke the application access to this resource he can

do it by navigating to the iOS settings.

The traditional UNIX DAC mechanism is applied in iOS to

manage the file system and achieve the basic privilege

separation [27] while Controlling and separating the

applications in iOS is done by an access control system

current known as the Apple Sandbox which is implemented as

a policy module in the TrustedBSD MAC framework [28]. A

set of entitlements for the security permissions in iOS are

declared for each application in its plist file (XML format file)

to determine its sandbox policy [27].

4. ACCESS CONTROL IN

DISTRIBUTED OSS
The integration of distributed computing systems and the

object oriented model results in what so called distributed

object computing systems, in which objects are distributed

across multiple computers [29]. A good example of

distributed object computing is the Common Object Request

Broker Architecture (CORBA) which is defined and

standardized by the Object Management Group (OMG) [30].

CORBA can interconnect multiple object systems providing

interoperability between applications running on them in

heterogeneous distributed environments [31].

The core element of CORBA is the object request broker

(ORB) [29], which allows clients and servers to communicate

with each other providing language transparency, location

transparency and interoperability.

The distributed nature of CORBA (and middleware in

general) makes it a perfect target for the attackers because

there are many places where the attackers can exploit it to

break into the system [32]. Thus, security requirements of

CORBA systems must be taken into consideration.

Access control plays an important role in CORBA systems,

When a client make a request and the target side receives it ,

the access control module should intercept it and decide if the

caller is allowed to invoke the target method or not [32].

Access control in CORBA can be achieved at both sides

(client-side and server-side). The ORB at each side is

responsible for applying the client/server domain access

policy which checks if the client is authorized to invoke the

required operation or not [32].

The access control policy can be applied at the target objects

level by inspecting the role or clearance of the principal and it

can be also applied at the operations level by associating

standard sensitivity levels to each operation and comparing

the required level of access to the operation with the level

granted to the client to see if the client’s granted level is

sufficient for access or not [32].

The specification provides a standard set of access rights

includes g (get), s (set), u (use), and m (manage) and

additional rights families may also be defined by developers

to fit the requirements of their access control model. Thus,

different access control mechanisms can be applied, such as

DAC, MAC, and RBAC [32].

5. UCON MODEL
Researchers have studied various new solutions and

enhancements for current classic access control models but

these studies are usually dedicated to specific target problems

(ad-hoc solutions) and not comprehensive enough to cover the

broad traditional models, hence UCON model comes as a

unified framework to extend traditional access control models

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.10, July 2014

13

in a way that make it suitable for new challenges in the

computer security.

UCONABC model proposed by Sandhu et. al [33] formalizes

the UCON model based on the concepts of authorization (A),

obligations (B),and conditions (C) and also introduces new

features like continuity (ongoing controls) and mutability of

attributes, it encompasses and enhances traditional access

control models, Trust Management (TM), and Digital Rights

Management (DRM) and goes beyond them in its definition

and scope.

A number of publications on UCON at the OS level are

proposed such as [34, 35, 36, 37] to protect and control usage

of OS sensitive resources by detecting and preventing

kernellevel malicious attacks.

6. PROBLEMS AND CHALLENGES OF

ACCESS CONTROL
This section will give an overview of the main problems and

challenges of the access control systems that still need a

substantial amount of research and identify some of the future

research directions in UCON.

Conflict resolution. The problem of policy conflicts

presents a challenge. Policy conflicts may happen as a result

of the interaction of different access policies, leading to severe

security problems. Research is required to identify the process

of conflicts detection and resolving [38].

Usability. The usability of access controls should be

taken into account by the access control designers and

communities, they should resolve the tension between low

level enforcement and a higher level controls for users [39].

Administration. The administration of access control

systems is a tough challenge especially in systems like Grid

computing, Cloud, social networks and other distributed

systems where we can find several administrative domains.

Splitting access control across different domains, making it

hard to evaluate the effective permissions which a subject has

[39], the main issue in multiple administrative domains

environment is to how to map the local access policy to global

access policy and vice versa.

Reliability in centralized administrative access control system

is also a significant problem. Since, if the central

administration server goes down, or communication problems

occur between the server and clients the users will not be able

to access their resources [40].

Lack of standardization. In our opinion, there is a

lack of standardization generally in security and especially in

access control. There is a real need to clarify and standardize

many access control aspects like models, mechanisms, policy

languages and even the concepts and definitions used in this

field.

Scalability. In systems like Ultra-Large-Scale (ULS)

systems [41] which have a huge number of users, resources,

volumes of data, policies, objectives, and lines of source code

the problem of access control is a challenge because it needs

to scale beyond the normal systems which consists of few

machines and centralized servers. The access control in ULS

systems needs to handle issues such as scaling, performance

of communications, fault tolerance and hence there is a need

to develop novel access control mechanisms which is suitable

for such environments [40].

UCON is largely open to research and there is still a lot of

work to be done in this field because:

1. UCON is just a conceptual model and there is no concrete

realization specification for it [42].

2. UCON is typically implemented at the application layer

because at the OS level there is no support readily available

for it [43]. So, further research is still required at this level.

3. There is a need to develop new policy specification

languages that are capable of expressing complicated usage

scenarios and policies that exist in modern systems.

4. Administration and delegation of rights issues in UCON are

still active areas of research.

7. CONCLUSION
This paper investigated the existing access control

mechanisms implemented in various types of OSs and

presented a novel promising model called UCON as the

successor of access control. Finally, it pointed to the main

problems and challenges of the access/usage control research

area. The results of this investigation show that the current

access control solutions implemented at OS level are not

sufficient enough and they need to be supported with

appropriate UCON models that can provide substantial

security benefits. The major advantage of UCON is that it is

capable of expressing various access models such as DAC,

MAC, RBAC, TM, DRM and going beyond them in its

definition and scope.

Summary of the investigation is displayed in table 1. Some

interested points about this summary include:

• General purpose OSs are typically used in multiuser

environments. So, user-oriented access control comes at the

first place in this type of OSs.

• Most, if not all, of the OSs reviewed in this paper use DAC

mechanism as the base access control mechanism because of

its flexibility and also, because system administrators are

quite familiar with it.

As relying only on DAC mechanism for protecting OS

resources is not sufficient to obtain a high level of security

and often leads to make OS vulnerable to Trojan horse type

attacks, OSs strengthens their security systems by using

access control systems supporting MAC (e.g., SELinux,

SMAC, MIC, etc.). The rigidity and complexity of MAC

policies are problems that face security administrators and

needs to be solved. So, it is recommended to develop tools

that automate the labeling process to simplify the process of

administration and management of this type of policies.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.10, July 2014

14

Table 1: Availability of Access/Usage Control Mechanisms in the Investigated OSs

OS Type OS DAC MAC RBAC Sandbox UCON

General

Purpose

OS

UNIX

Linux(RHEL6)

Windows

Server 2012

Mobile OS

iOS

Android

Distributed

OS
CORBA Implementation Dependable

RBAC is strongly supported in the investigated General

purpose OSs as they are usually used in corporate

environments where there is a need to mimics the

organization’s roles. Hence, RBAC is proposed as a policy

independent model that can be configured as MAC and/or

DAC with a major purpose of facilitating the security

administration process in these organizations.

• As can be seen in table 1, there are OSs (e.g. Linux and

Windows) applying the three mechanisms (DAC, MAC and

RBAC) together to achieve the flexibility, strength and ease of

administration but the interaction of these different access

policies may lead to the problem of policy conflicts. So,

Security administrators should find suitable methods to

identify and resolve these conflicts.

• Since mobile devices are typically personal devices, the

access control systems in mobile OSs are not primarily focus

on the users(user-oriented access control), but it mainly

focuses on the applications (application–oriented access

control) by limiting the access for them using application

sandboxing like in Apple’s iOS or by applying a restricting

permission system like in Android.

• RBAC is not supported in the investigated mobile OSs as

current mobile devices are considered to be personal devices

and usually not used in corporate environments but soon or

later, mobile devices will be adopted for use in such

environments. So, RBAC and other access control features

will be needed to protect business data that may be stored on

these mobile devices.

• OMG has designed the CORBA Security model in a

sufficient generic way that allows for applying various access

control mechanisms like (DAC, MAC, RBAC, etc.) which in

turn gives great flexibility in security policy specification. It

makes use of proper abstractions that allow fine-grained

access control at the operations level besides the target objects

level.

• None of the OSs that were investigated in this paper apply

UCON model. So, it is recommended to bring UCON into

these OSs because there are a lot of usage scenarios that can

be applied at OS level to secure and control usage of OS

resource besides preventing malicious attacks that target OS

kernel. Researchers and developers should also design new

UCON models, policy specification languages and

enforcement mechanisms suitable for the evolution of OSs.

8. REFERENCES
[1] Lazouski, Aliaksandr, Fabio Martinelli, and Paolo Mori.

"Usage control in computer security: A survey."

Computer Science Review 4.2 (2010): 81-99.

[2] LAMPSON, B.W. 1971. Protection. 5th Princeton

Symposium on Information Science and Systems.

Reprinted in ACM Operating Systems Review 8, 1, 18–

24, 1974

[3] Russell D, Gangemi GT. Computer security basics.

Sebastopol, CA:O’Reilly and Associates; 1991.

[4] Ramachandran R, Pearce DJ, Welch I. AspectJ for

multilevel security. In: The 5th AOSD workshop on

aspects, components, and patterns for infrastructure

software (ACP4IS). Bonn, Germany; 2006. p. 1–5.

[5] SANDHU, R., COYNE, E., FEINSTEIN, H., AND

YOUMAN,C. 1996. Role based access control models.

IEEE Computer 29, 2.

[6] Schreuders, Z. Cliffe, Tanya McGill, and Christian Payne.

"The state of the art of application restrictions and

sandboxes: A survey of application-oriented access

controls and their shortfalls." Computers & Security 32

 .219-241 :(2013)

[7] Andress, Jason. The basics of information security:

understanding the fundamentals of InfoSec in theory and

practice. Access Online via Elsevier, 2011.

[8] Dalton, Chris I., Tse Huong Choo, and Andrew P.

Norman. "Design of secure UNIX." Information Security

Technical Report 7.1 (2002): 37-56.

[9] Mellander, Jim. "Unix Filesystem Security." Information

Security Technical Report 7.1 (2002): 11-25.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.10, July 2014

15

 [10] Sterne, Daniel F., et al. "Scalable access control for

distributed object systems." Proceedings of the 8th

USENIX Security Symposium. 1999.

[11] Carr, Steve, and Jean Mayo. "Teaching access control

with domain type enforcement." Journal of Computing

Sciences in Colleges 27.1 (2011): 74-80.

[12] R. E. Smith, Mandatory protection for internet server

software," in Proceedings of the 12th Annual Computer

Security Applications Conference, ser. ACSAC '96.

Washington, DC, USA: IEEE Computer

Society,1996,pp.178{.[Online].Available:http://dl.acm.or

g/citation.cfm?id=784588.784626

[13] Matthews, Christopher James. Isolating Legacy

Applications with Lind. Diss. University of Victoria,

 .2013

[14] Rául Siles Peláez. Linux kernel rootkits: protecting the

systems ``ring-zero''. GIAC Unix Security Administrator

(GCUX), May 2004.

[15] C. Wright, C. Cowan, J. Morris, S. Smalley, and G.

Kroah-Hartman. Linux Security Modules: General

Security Support for the Linux Kernel. In Proceedings of

the 11th Annual USENIX Security Symposium, pages

17–31, San Francisco,California, August 2002.

[16] Mayer, F., MacMillan, K., & Caplan, D. (2007). SELinux

by example: using security enhanced Linux. Upper

Saddle River, NJ: Prentice Hall.

[17] http://windowsitpro.com/windows-server-012/exploring-

windows-server-2012-dynamic-access-ontrol.

[18] http://www.infoq.com/news/2012/l0/Dynamic-Access-

Control.

[19]http://www.informit.com/guides/content.aspx?g=windowsserv

er&seqNum=306

[20] http://en.wikipedia.org/wiki/Mandatory_Integrity_Control

[21] http://www.sans.org/reading-room/analysts-program/
access-control-foxt

[22] http://blog.avecto.com/2012/05/application-sandboxing-

in-windows 8/

[23] Ni, Xudong, et al. "DiffUser: Differentiated user access

control on smartphones." Mobile Adhoc and Sensor

Systems, 2009. MASS'09. IEEE 6th International

Conference on. IEEE, 2009.

[24] Shabtai, Asaf et al. "Google Android: A state-of-the-art

review of security mechanisms." arXiv preprint arXiv:

09l2.5l01 (2009).

[25] Bugiel, Sven, et al. "Towards taming privilege-escalation

attacks on Android." Proceedings of the 19th Annual

Symposium on Network and Distributed System

Security. 2012.

[26] Mylonas, Alexios, et al. "On the feasibility of malware

attacks in smartphone platforms." E-Business and

Telecommunications. Springer Berlin Heidelberg, 2012.

217-232.

[27] Wang, Tielei, et al. "Jekyll on iOS: when benign apps

become evil." Presented as part of the 22nd USENIX

Security Symposium}. USENIX}, 2013.

[28] Blazakis, Dionysus. "The Apple Sandbox." Arlington,

VA, January (2011).

[29] Narasimban, P., Louise E. Moser, and P. Michael

Melliar-Smith. "Using interceptors to enhance CORBA."

Computer 32.7 (1999): 62-68.

[30] Hartman, Bret, Donald J. Flinn, and Konstantin

Beznosov. Enterprise Security with EJB and CORBA.

Vol. 16. John Wiley & Sons, 2002.

[31] Deng, Robert H., et al. "Integrating security in CORBA

based object architectures." Security and Privacy, 1995.

Proceedings., 1995 IEEE Symposium on. IEEE, 1995.

[32] Lang, Ulrich, and Rudolf Schreiner. Developing secure

distributed systems with CORBA. Artech house, 2002.

[33] Park, Jaehong, and Sandhu Ravi (2004). The UCONabc

usage control model. ACM Trans. Inf. Syst. Secur.,

7:128–174.

[34] Teigão, Rafael, Carlos Maziero, and Altair Santin.

"Applying a usage control model in an operating system

kernel." Journal of Network and Computer

Applications 34.4 (2011): 1342-1352.

[35] M. Xu, X. Jiang, R. Sandhu, X. Zhang, Towards a

VMMbased usage control framework for OS kernel

integrity protection,in: SACMAT’ 07: Proceedings of

the 12th ACM Symposium on Access Control Models

and Technologies, ACM, NewYork, NY,USA, 2007, pp.

71–80.

[36] D. Kyle, J.C. Brustoloni, Uclinux: A linux security

module for trustedcomputingbased usage controls

enforcement,in: STC’07: Proceedings of ACMWorkshop

on Scalable Trusted Computing, ACM, New York, NY,

USA, 2007, pp. 63–70.

[37] M. Alam, J.P. Seifert, Q. Li, X. Zhang, Usage control

platformization via trustworthy SELinux, in:

ASIACCS’08: Proceedings of ACM Symposium on

Information, Computer and Communications Security,

ACM, New York, NY, USA, 2008, pp. 245– 248.

[38] Ray, Indrakshi, and Indrajit Ray. "Access Control

Challenges for Cyber-Physical Systems."

[39] Usability Meets Access Control Challenges and Research

Opportunities 2009.

[40] Garnes, Håvard Husevåg. "Access Control in Multi-

Thousand-Machine Datacenters." (2008).

[41] http://en.m.wikipedia.org/wiki/Ultra-large-scale_systems

[42] Danwei, Chen, Huang Xiuli, and Ren Xunyi. "Access

control of cloud service based on ucon." Cloud

Computing. Springer Berlin Heidelberg, 2009. 559-564.

[43] Suhendra, Vivy. "A survey on access control

deployment." Security Technology. Springer Berlin

Heidelberg, 2011. 11-20.

IJCATM : www.ijcaonline.org

