
International Journal of Computer Applications (0975 – 8887)

Volume 98– No.1, July 2014

41

Performance Evaluation using Various Models in

Distributed Component based Systems

Upinder Kaur
Computer Science Department

Chandigarh University, India

Sumit Sharma
Computer Science Department

Chandigarh University, India

ABSTRACT
Over the years, several models were proposed to analyze the

performance of distributed component based system with the

view of improving system’s performance. Traditional

methods of prediction such as Petri nets and queuing networks

exploit the benefits of component engineering paradigm, such

as division of work and reuse. We have surveyed different

approaches of performance prediction which have attained

widespread industrial use. Each approach has different goals

and context, at which phase of life cycle process which

approach is appropriate is described, there benefits and

drawbacks are also given. Based on the analysis we have

found that the models are machine centric e.g. throughput,

responsiveness, no. of processes CPU has to execute within

limited processor speed. None of the model draws parameters

from the contributions of the client organization and end

users. We have proposed a solution in this paper for taking

into consideration end users perspective. Software is

developed in order to satisfy requirements of the end users.

Therefore, involving users in evaluating performance should

not be underestimated.

General Terms
Distributed component based system

Keywords
CB-SPE, distributed systems, middleware, Palladio, PCM,

performance, performance evaluation, prediction models

1. INTRODUCTION
Change is a badge of modern corporate. No corporate can do

business without software. We are witnessing a change in

technology. Earlier the development of software was done in

traditional manner using different models (waterfall model,

spiral model, prototype model etc).But, there are some pitfalls

in traditional approach of software development such as

architecture is monolithic. Nowadays, there is increase in

demand of applications such as electronic commerce.

Traditional methodologies have not achieved drastic gain in

productivity and quality yet. Development time and cost is

comparatively more in traditional approach of development.

Concept of reuse seems to be difficult in traditional

approaches. So, it becomes the dream of software engineering

paradigm to remove all these pitfalls and introduce the

concept of reuse .As we know that for building large and

complex software, reuse of components is a smart means of

development. So, CBSE was introduced in 1990’s.

 “The software components are binary units of independent

production, acquisition, and deployment that interact to form a

functioning system”[1].It is an established approach in many

domains such as distributed systems, embedded systems, web

based services and many other. The aim of CBSE is to

achieve multiple quality objectives such as reusability,

interoperability, implementation transparency. Component

based software often consists of a set of self contained and

loosely coupled components allowing plug and play.

Component based software are developed using different

programming languages and are implemented on different

operating platforms. These are often produced either in-house

or can be third party off-the-shelf components (COTS) in

which source code is not available [2]. CBSE emphasizes

modular architecture so that we can develop a system and

incrementally enhance the functions by modifying the

components. To make such design possible software

architecture is required. One such example of software

architecture for component based systems is CORBA

(common object request broker architecture). Software

architecture is provided in the form of frameworks.

Frameworks are workable reference of underlying software

architecture; they can be hierarchical up from domain

independent to domain specific. Diagram below shows the

development of component based systems, how components

are integrated and deployed in the system.

Figure 1

1.1 How CBSE differentiates from

traditional approach of development?
CBSE differentiates from traditional approach of software

development in following manner:

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.1, July 2014

42

Table 1

1.2 Distributed systems
Various commercial trends have led to an increasing demand

of distributed systems. Today, Distributed component based

systems are one of the complex artifacts that are used by

organizations to deplore services simultaneously to many

people online and real time. Firstly, no. of merges between

companies is increasing rapidly. These merges let to an IT

companies, which have to provide unified services to the

demands of the customer. Secondly, time available for

providing new services is very less. This can only be achieved

from COTS and then integrate it into the required system

rather than building it from scratch. Finally, it is used by

people in real life applications such as electronic commerce,

online payment, and e-commerce and lots others these

services centralized servers and client server systems cannot

provide.

Due to heterogeneity of component technologies and different

network protocols used distributed applications are difficult to

manage and develop. Quality of service (QOS) attributes such

as reliability, security, performance, maintainability plays a

critical role in real time distributed applications. Distributed

systems should not only work properly in terms of

functionality but also meet the requirements of the customers.

In this paper we will focus on QOS attribute i.e. performance

of distributed systems.

Performance of the system must be predicted at design level

in order to avoid pitfalls of poor QOS during system

implementation.

Software architecture (SA) describes how the components are

interconnected, how they will communicate and interact with

each other. This part is the major source of errors. Hence,

performance evaluation at this level is useful for checking

whether it fulfills clients requirements or not, potential risks

and quality requirements.

We divide (SA) into two parts:-

(1)Macro-architecture-It covers external environment of the

software systems. Examples are culture and belief of the

people, government policies and regulations.

(2)Micro-architecture-It focuses on internal structure of the

system like execution architecture, code architecture etc [4].

Performance of the software is a quality attribute which can

be measured in terms of responsiveness, latency time,

throughput, resource utilization, fault tolerance etc. Accessing

the performance of the system is important for smooth and

efficient operation of the system. There is no. of approaches

used for predicting the performance of the software. We will

discuss in next section.

2. PERFORMANCE EVALUATION

METHODS
Performance prediction for component based software system

helps software architects to evaluate their systems based on

component performance specifications. Classical performance

models such as queuing networks, stochastic Petri nets or

stochastic process algebra can be used to analyze component

based systems but these models exploit the benefits of

component paradigm such as reuse and division of work. The

challenge of the component performance model is that the

performance of a software component depends on the context

it is deployed into and its usage profile.

In this section, brief summary of performance models used in

distributed component based system. This paper presents a

survey and evaluation of the proposed approaches to help

selecting an appropriate approach for a given survey.

 This survey is more detailed and up-to-date as compared to

the existing survey papers. The various approaches are

categorized as you can see below:-

Figure 2

2.1 Prediction approaches based on UML

The Unified Modeling Language (UML) is a graphically-

based object-oriented notation developed by the Object

Management Group as a standard means of describing

software designs which is gaining widespread acceptance in

the software industry [5].UML based prediction approaches

target on design phase prediction. It describes the component

behavior by sequence diagrams, collaboration diagram and

activity diagrams. Sequence or activity diagrams can be used

to express those scenarios that have performance

requirements. State chart diagrams describe the behavior of

objects, and the time required to respond to stimuli.

Deployment diagrams define how objects are mapped on to

processing resources.[6] Component allocation is described

by deployment diagram .UML only supports functional

specifications, its extensions (profiles, constraints, tagged

values) have been used by OMG(object management group)

to allow modeling of performance parameters such as usage

profile and workload. Earlier we use UML SPT profile which

focuses on schedulability, performance and time. Presently,

UML MARTE profile is in use. It adds capabilities to UML

for model-driven development of Real Time and Embedded

Systems (RTES). This extension, called the UML profile for

MARTE (abbreviated as MARTE), provides support for

specification, design, and verification/validation stages. This

new profile is intended to replace the existing UML Profile

Characteristics Traditional approach

CBSE

Architecture Monolithic Modular

Methodology Build from scratch Composition

Process Waterfall Evolutionary

Development

time

Takes more time Takes less

time

Reusability Reusability is not there It is reusable

Quality Quality cannot be

improved further

Better quality

products

Performance Evaluation approaches

Prediction

approaches

based on UML

Performance

approaches based

on proprietary

meta-models

Prediction

approaches

based on

middleware

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.1, July 2014

43

for Schedulability, Performance and Time. The benefits of

using this profile are: Firstly, it Provides a common way of

modeling both hardware and software aspects of a RTES in

order to improve communication between developers.

Secondly, it enables interoperability between development

tools used for specification, design, verification, code

generation, etc. Thirdly, it fosters the construction of models

that may be used to make quantitative predictions regarding

real-time and embedded features of systems taking into

account both hardware and software characteristics[7].

Based on UML approach there are models. We describe the

model which is mostly used nowadays in industry and has

good tool support. There are many other models. But we are

excluding those models from our survey papers which are

outdated. Model for UML is CB-SPE

CB-SPE

The Component-Based Software Performance Engineering

(CB-SPE) approach by Bertolino and Mirandola uses UML

extended with the SPT profile as design model and queuing

networks as analysis model.

CB-SPE adapts to CB framework and uses the standard RT-

UML profile. The CB-SPE framework includes freely

available modeling tools (Argo UML) and performance

solvers (RAQS).The modeling approach is divided into a

component layer and an application layer. In the component

layer the component developer checks the performance of

individual component in isolation. In application layer the

system assembler predicts the performance of the integrated

components on the actual platform. The results of the

performance are analyzed by system assembler. Results can

be contention based or best-worst case. If the results obtained

are not meeting the desired result then the system assembler

either changes the parameters to obtain the desired result or

after a while, declare the infeasibility of the requirements. The

CB-SPE framework includes freely available modeling tools

(Argo UML) and performance solvers (RAQS)[8]. Future

work includes the validation of the methodology by its

application to case studies coming from industrial world.

2.2 Prediction approaches based on meta-

models
The approaches in this group aim at design time performance

prediction. Instead of using modeling language for prediction,

these approaches use meta-models.

PCM (Palladio component model)

The PCM is a meta-model for the description of component

based software architectures. The model is designed with a

special focus on the prediction of QOS attributes, especially

performance and reliability. In this paper, we focus on the

performance related parts of the PCM. In the following, we

give some details on our envisioned CBSE development

process and the participating roles.

Four types of developer roles are involved in producing

artifacts of a software system:

Business domain Experts, who are familiar with the

customers or users of the system, provide different usage

scenarios.

Parameters to be undertaken –Domain experts can specify

user behavior with control flow constructs such as sequence,

iterative and loop. Domain experts also specify workload.

Workload can be open or closed. Open workload is that in

which no. of users are not fixed and closed workload is that in

which no. of users are fixed.

Software deployers model the resource environment and

afterwards the allocation of components from the assembly

model to different resources of the resource environment [9]

Parameters to be undertaken–System deployers allocate the

resources to the components .Resources can be active and

passive. Active resources are those which can execute request

(hard disk, CPU etc) and passive resources are those which

cannot execute request (semaphores, threads etc).

Component developers Component developers model the

performance properties of component services with annotated

control flow graphs, which include resource demands and

required service calls (so-called resource demanding service

effect specifications, RDSEFF).

Parameters to be undertaken-They can parameterize

RDSEFFs for input and output parameter values as well as

for the deployment platform .Resource demands can be

specified using general distribution functions.

Software architects assemble components to build

application.

Parameters to be undertaken-It takes care of control flow,

resource demands.

The PCM reduces modeling complexity by providing

different models for different CBSE developer roles.

Figure 3

Diagram shows the individual performance roles [10].

Parametric dependency-The performance of software

component is influenced by its usage. The resource demand

may vary depending on input parameters (e.g., uploading

larger files with a component service produces a higher

demand on hard disk and network).Different required services

can be called as a result of different inputs [10].

Limitations of PCM

There are certain limitations in PCM we will describe it

briefly:

Static architecture: This means neither the connectors change

nor the components move like agents.

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.1, July 2014

44

Abstraction from the state: It is assumed that no run time

environments or internal state of components determine the

behavior of the system.

Limited support for concurrency: Quality-of-service

properties in concurrent system are hard to predict.

Mathematical assumptions: To reduce the complexity of the

model, mathematical assumptions are required.

Tool support

An Eclipse-based open-source tool called “PCM-Bench” is

implemented, which enables software developers to create

instances of the PCM metamodel and run performance

analyses. The tool offers a different view perspective for each

of the four developer roles and provides graphical model

editors. Models of the different developer roles reference

each other in the editor, which enables the creation of a full

PCM instance. The PCM-Bench is an Eclipse RCP

application and its editors have been partially generated from

the PCM Ecore metamodel with support of the Graphical

Modeling Framework (GMF)[11].Industrial Case study of

PCM is present[9].

2.3 Performance approaches based on

Middleware
Some distributed systems are built with middleware

technologies such as J2EE (Java 2 enterprise edition) or

CORBA (common object request broker architecture).These

provide services and facilities whose implementations are

available when architectures are defined. Middle tier software

that provides facilities and services to simplify distributed

assembly of components, e.g., communication,

synchronization, threading and load balancing facilities and

transaction and security management services The same

middleware behaves differently in different context of

applications. Medvidovic, Dashofy and Taylor state the idea

of coupling the modeling power of software architectures with

the implementation support provided by middleware. They

notice that “architectures and middleware address similar

problems, that is large-scale component-based development,

but at different stages of the development life cycle.”[11]

J2EE Test Suite Design
Central to the J2EE specification is the Enterprise JavaBeans

(EJB) framework. EJBs are server-side components, written

in Java, that typically execute the application business logic in

an N-tier application. An EJB container is required to execute

EJB components. The container provides EJBs with a set of

ready to use services including security, transactions and

object persistence. Importantly, EJBs call on these services

declaratively by specifying the level of service they require in

an associated XML file known as a deployment

descriptor. This means that EJBs do not need to contain

explicit code to handle infrastructure issues such as

transactions and security.

An EJB container also provides internal mechanisms for

managing the concurrent execution of multiple EJBs in an

efficient manner. EJBs themselves are not allowed to

explicitly manage concurrency, and hence must rely on the

container for efficient threading and resource usage, including

memory and thread usage for application components (EJBs)

and database connections.

The Foresight Approach

The performance prediction methodology has three aims.

The first is to create a COTS product-specific performance

profile that describes how the various components of the

middleware product affect performance. This profile is aimed

at analyzing the behavior and performance of a middleware

product in a generic manner that is not related to any

particular application requirements. Using this profile, it

should be possible to use a set of generic mathematical

models to predict the behavior of the middleware

infrastructure under various configurations. The second aim is

to construct a reasoning framework for understanding

architectural trade-offs and their relationships to specific

technology features. This reasoning framework provides the

architect with insights into how the different quality attributes

of the application interact with each other. It aims to help the

architect reason about the effects of their architectural

decisions and the effects of these on application performance

and scalability. The third and final aim is to create an

application-specific configuration that takes in to account the

behavioral characteristics of the application at hand. The

application architect describes the application behavior in

terms of client loads, business logic complexity, transaction

mix, database requirements, and so on. By inputting these

parameters in to the generic performance models, it is possible

to predict the application configuration settings required to

achieve high performance.

Performance parameters [11]

Table 2

Workload No. of clients

Client request frequency

Client request arrival rate

Duration of the test

Physical

resources

Number and speed of CPU(s)

Speed of disks

Network bandwidth

Middleware

configuration

Thread pool size

Database contention pool size

Application component cache size

Message queue buffer size

Application

specific

Interactions with the middleware

-Use of transaction management

-Use of security service

-Component replication

-Component migration

Interaction among components

-remote method calls

-asynchronous message deliveries

Middleware selection- The possibility of evaluating and

selecting the best middleware for the performance of a

specific application is important. Based on the abstract

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.1, July 2014

45

architecture designs, it allows measuring and comparing the

performance of a specific application for different middleware

and middleware technologies.

NITCA-This performance prediction model targets server

side component technologies such as EJB, .NET and CORBA.

It doesn’t distinguish roles between component developer and

system architect and assumes that middleware has higher

impact than single components. To determine the parameters

of QN model authors analyze different architectural patterns

for EJB applications. The activities in these diagrams refer to

generic container services. The activity diagrams are further

augmented with use case specific information such as the

number of times a certain pattern is executed and the

frequency of each transaction type. The resulting model

contains placeholders for services provided by the component

container, which are used as platform independent resource

demands.

Tool - There are plans to build a capacity planning tool suite

called Revel8or based on the approach.

Case study-Industrial case study is there on stock Online test

application based on two middleware technologies i.e.

CORBA and EJB.

3. COMPARITIVE ANALYSIS

Figure 4

4. CRITICAL REFLECTIONS

4.1 Prediction approaches based on UML
The main benefit of UML based approaches is their

compliance to OMG standards. Hiding the complexity of

performance models by using model transformations and

results feedback could increase the acceptance of performance

analysis techniques. Furthermore, UML based techniques

enables developers to reuse existing UML models, thereby

lowering the cost and effort.

There are several drawbacks that have limited UML based

approaches for performance prediction. The concept of reuse

is only introduced in UML 2.0 and is still subject to

discussion. Component developer and software architect have

to work dependent on each other using the same UML.

Existing UML performance profile doesn’t include

parameterized component specifications for different usage

profile and scenarios. Tools have not much supported. Many

companies use UML only as a documentation tool.

4.2 Prediction approaches based on meta-

model
This approach is based on their own meta-models and doesn’t

rely on UML.The benefit of these approaches is good tool

support with graphical editors, model transformations to

known models. Meta-models allow researchers to create new

level of abstraction for component system which could be

more accurate than UML.These models are stricter than UML.

The modeling languages used are easier to learn for

developers.

As drawbacks, these methods are not standard conforming

like UML so they have to undertake several challenges.

Developers first have to learn a new language then re-

formulate the existing UML models into proprietary language,

which might now be a straight forward approach due to

different levels of abstraction. Moreover, they support only

specific UML version.

Name CB-SPE PCM NICTA

Approach Based on performance

approach of UML

Based on performance approach

of meta-models

Based on performance of

middleware

Lifecycle phase Design phase Design phase Early phases of lifecycle

Case study Software retrieval system Web audio store Online stock test application

Tool support Modeling analysis (CB-SPE)

tool support

PCM-bench Revel8or

Division of work It doesn’t divide the roles. Easy to implement as it divides

the roles

It doesn’t divide the roles

Applicability in industry Medium(Case studies exist-

but tools are outdated)

High(case studies exist and tools

are also up-to date)

Medium(Case study exist but

tools not prepared yet)

Behavior model UML -SPT PCM EJB 2.0 + UML activity

diagrams

Performance model Execution graph + QN EQN,LQN QN(Queuing networks)

User centric/machine

centric

Machine centric Machine centric Machine centric

International Journal of Computer Applications (0975 – 8887)

Volume 98– No.1, July 2014

46

4.3 Prediction approaches based on

Middleware
Benefits of these approaches are high accuracy and easy

applicability in industry. These approaches have a high

influence where there is focus on middleware

implementations.

Drawbacks of these approaches are there running, setup cost

is high. Portability is low as it is restricted for specific

middleware version. It becomes easily outdated if a new

version appears. Tool support for these approaches is limited.

5. PROPOSED SOLUTION
A solution is proposed for user centric approach in evaluating

the performance of the system. In this approach our main

focus is on the level of experience of individual resource

(human resource) which is usually underestimated in machine

centric approach. The performance of the system doesn’t

contribute individual resource in achieving the required

output. I will make you understand by depicting an example.

Let’s suppose there are 10 employees working in a cycle

factory their output for one day is 50 productions of cycles.

We are assuming equal contribution and experience of all

employees in achieving the required output, which will

always not be possible. Our approach is to assign weights to

each resource according to the level of experience. A person

(human resource) having more experience is assigned large

no. of weights and vice versa. In this way level of experience

is not ignored in evaluating the performance of the system and

hence performance of users is taken into consideration.

6. CONCLUSION AND FUTURE SCOPE

6.1 Conclusion
In this paper latest performance approaches are reviewed,

there underlying principles of design and implementation and

there benefits and limitations. We were able to establish that

the parameters of performance models in this period were

machine centered/driven and we propose that future models

should have as input parameters, based on organization

variables.” How to measure the performance from user

perspective” is hoped that this question will be addressed for

future work.

6.2 Future scope
This survey has revealed many open issues and

recommendations for future work in performance evaluation

of distributed component based systems:-

Hybrid solution techniques: Hybrid solution combines

numerical analysis method with simulation approaches. None

of the method has used hybrid approach. Hybrid approaches

could be the solution for efficient and accurate performance

analysis.

User-centric model: User centric model should be taken into

consideration. As we have seen above all the models are

machine centric, take input parameters as CPU utilization,

resource demand, throughput etc. These parameters don’t

satisfy requirements of end users. Organization decision

variables (organization goals and tasks, level of users

experience in IT, information requirements of users and

format) should not be underestimated. Question-Answer set

should be designed for performance evaluation. For each

scenario, question set is given and users have to answer it.

Based on this evaluation can be done in future. Designing of

user specific performance models or hybrid model which

takes into consideration both user variables and machine

variables is foreseen in future.

7. REFERENCES
[1] Aoyama, M. (1998, April). New age of software

development: How component-based software

engineering changes the way of software development.

In 1998 International Workshop on CBSE.

[2] Brown, A. W., & Wallnau, K. C. (1998). The current state

of CBSE. IEEE software, 15(5), 37-46.

[3] Akinnuwesi, B. A., Uzoka, F. M. E., Olabiyisi, S. O., &

Omidiora, E. O. (2012). A framework for user-centric

model for evaluating the performance of distributed

software system architecture. Expert Systems with

Applications, 39(10), 9323-9339.

[4] Olabiyisi, S. O., Omidiora, E. O., Uzoka, F. M. E.,

Akinnuwesi, B. A., Mbarika, V. W., & Kourouma, M. K.

(2011). Exploratory Study of Performance Evaluation

Models for Distributed Software Architecture. Journal of

Computer Resource Management (International Journal

of Computer Measurement Group Inc), Autumn, 130, 47-

57.

[5] Gomaa, H., & Menascé, D. A. (2001). Performance

engineering of component-based distributed software

systems. In Performance Engineering (pp. 40-55).

Springer Berlin Heidelberg.

[6] Bennett, A. J., & Field, A. J. (2004, October).

Performance engineering with the UML profile for

schedulability, performance and time: a case study.

In Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems, 2004.(MASCOTS 2004).

Proceedings. The IEEE Computer Society's 12th Annual

International Symposium on (pp. 67-75). IEEE.

[7] Object Management Group (OMG). UML Profile for

MARTE, Beta 1. http://www.omg.org/cgi-

bin/doc?ptc/2007-08-04, August 2007. last retrieved

2008-01-13.

[8] Bertolino, A., & Mirandola, R. (2004). CB-SPE Tool:

Putting component-based performance engineering into

practice. In Component-Based Software Engineering (pp.

233-248). Springer Berlin Heidelberg.

[9] Becker, S., Koziolek, H., & Reussner, R. (2009). The

Palladio component model for model-driven performance

prediction. Journal of Systems and Software, 82(1), 3-22.

[10] Becker, S., Koziolek, H., & Reussner, R. (2007,

February). Model-based performance prediction with the

Palladio component model. In Proceedings of the 6th

international workshop on Software and

performance (pp. 54-65). ACM.

[11] Denary, G., Polini, A., & Emmerich, W. (2004, January).

Early performance testing of distributed software

applications. In ACM SIGSOFT Software Engineering

Notes (Vol. 29, No. 1, pp. 94-103). ACM.

[12] Koziolek, H., Becker, S., Happe, J., & Reussner, R.

(2008). Evaluating performance of software architecture

models with the Palladio component model. Model-

Driven Software Development: Integrating Quality

Assurance, IDEA Group Inc, 95-118.

IJCATM : www.ijcaonline.org

