
International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

29

Generation of Test Cases from Sliced Sequence Diagram

Manpreet Kaur
Department of CSE

CGC, Gharuan
Mohali, India

Rupinder Singh
Assistant professor of CSE

CGC, Gharuan
Mohali, India

ABSTRACT

UML diagrams are vital design and modeling artifacts. These

UML models can also be used to create test cases. In this

approach, condition slicing is used and creates test cases from

UML sequence diagrams. Test cases can be planned at design

level of software development life cycle. But to visualize the

system model or architecture is hard due to its bulky and

complex structure. This methodology derives test cases of the

computed slice using conditional predicate and it beneficial

for sequence diagram containing number of messages. The

proposed methodology also use the notion of model based

slicing to compute the slice of the sequence diagram by

extracting the desired chunk.

Keywords

Software Testing, Sequence diagram, Model based slicing.

1. INTRODUCTION
Testing is an important failure detection technique whose

major aim is to identify all defects existing in software

product. Software testing is done to expose possible failures

of the software. So testing becomes difficult due to raise in

product sizes and complexities. Due to raised product size

and complexity, UML models for that product tend to become

large and complex and also have thousands of interactions

between hundreds of objects. For such huge system

architectures, it becomes extremely complicated to understand

and analyze these models. For huge system architectures, it is

very difficult to test the entire system in one pass. So there is

need for some ways to reduce that effort.

One capable way to hold software architecture development is

to use slicing technique. Program slicing concept was

originally established by Weiser [1], is a decomposition

technique which removes irrelevant program elements from

the source program. A program slice contain only that

content of program which may directly or indirectly affect the

computed part of program at some point of interest, called a

slicing criterion. The procedure required to compute program

slices is known as program slicing [2]. In this context, they

have proposed to use program slicing techniques to

decompose large architectures into manageable portions [3].

 However, in considering software architectures, the structural

models (e.g. class diagrams) explain various relationships

exist among classes, such as aggregation, association,

composition, and generalization/specialization. In contrast, the

behavioral models (e.g., communication and sequence

diagrams) are used to represent a sequence of actions in an

interaction which explain how the objects are interacting to

complete their individual action [4]. The conventional slicing

is generally executed using data and control dependency

relationships present among program statements. On the other

hand, to execute model based slicing, it is necessary to

convert model into an appropriate intermediate representation

which represents different dependence relations that may be

present among classes and their sub-classes, methods, and

attributes, and call sequences. This intermediate

representation represents elements in an xml document. DOM

parser parse the xml file for Object name, identifier, message

name, message to & fro information. DOM parser uses the

function DocumentBuilderFactory () to generate the object of

the class to parse the file. The entire information generated by

parser will be stored in .txt file. Then apply slicing criteria and

produce a particular slice and generate test cases

corresponding to that slice. Test cases are mainly created

based on the guard condition. This makes the test case

generation at the early level of software development life

cycle that is at design level. The main idea of model based

slicing technique is to disintegrate the structure of system

model into sub-models without affecting their original

structure and functionality. It assists the developer to take the

perfect view of system software as per their requirement.

2. RELATED WORK
In this section, related work is concisely explained. Today’s

scenario tells that researchers are interested to use UML

models for test generation. However, the works of slicing

UML models have been reported in the literature.

Zhao [5] introduced the concept of architectural slicing by

using architectural description language ADL (e.g. Acme). In

this context, there are three types of dependencies like

component-connector dependency, connector component

dependency, and additional dependency. They proposed a two

phase algorithm to compute architectural slice which is based

on SADG (software architectural dependency graph). As an

extension of his previous work Zhao [2] introduced

Architectural Information Flow Graph with three types of

information flow arcs: Component-connector, Connector-

component, internal flow arcs and in this work different ADL

(e.g. Wright) is used.

J. Kim et al. [6] proposed an approach whose target is the

hierarchy and orthogonality problems occur in slicing of UML

State machine diagram. In their approach, first they

constructed a control flow graph (CFG) and hierarchy graph.

Then, they make dependency graph by using CFG and

hierarchy graph which is required to show the related

functionality.

Korel et al. [7] presented the slice reduction technique of

slicing the EFSMs (Extended Finite State Machines) by

isolating the parts of the model that may participate to faulty

behavior. They present slicing such as deterministic and

nondeterministic. Developer proposed a tool to automate the

computation of slice that constitute of graphical editor, an

EFSM executor and slicer which is based upon control and

data-flow analysis.

Samuel et al. [8] presented a method that is “Ctest” to

generate test cases automatically from UML communication

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

30

model. They developed a tool named UTG (UML behavioral

Test case Generator) transform the predicate to find the test

data. This tool use communication diagram as input in xml

format and DocumentParser class parses that XML file. And

then constructs the communication tree, while TestDataFinder

uses the parsed information and displaying the list of test

cases for communication diagram.

Kagdi et al. [9] proposed method of context-free model slicing

to compute slices on class models. Concrete applications of

model slicing such as design understanding, fault location,

and metric relevance etc. are used to address particular

software maintenance questions which support the usefulness

and validity of the method. The disadvantage of their

approach is that, they extract slice in a very general manner.

That is why class models are lacking of representing precise

behavioral information and represent structural behavior only.

Lallchandani et al. [3] propose a technique for generating

static and dynamic slices of UML models. They proposed an

algorithm AMSMT (Architectural Model Slicing through

MDG Traversal) to produce the static and dynamic

architectural model slices. They proposed and implement

another tool named Static Slicer for UML Architectural

Models (SSUAM) [26] to implement similar algorithm.

Moreover, developer proposed a DSUAM algorithm [27] in

which edges of MDG is traversed according to slicing

criterion. In this work, they present a tool Archlice, which

computes a dynamic slice for UML architectural models by

using MDG and DSUAM algorithm. This tool supports

analysis of Extensible Markup Language (XML) in static and

dynamic manner.

Samuel and Mall [10] presented a novel approach to generate

slice and test cases by using edge marking dynamic slicing

algorithm of UML activity diagrams. In this work, they used

the flow dependency graph (FDG) which shows the

dependencies arise during run time among activities. They

mark the stable and unstable edges in FDG and they may

generate dynamic slice based on slicing criteria and test cases

are automatically generated with respect to each slice.

Yatapanage et al. [11] developed an approach for

automatically reducing Behavior Tree models by using

slicing. In their approach, they draw Behavior Tree

dependency graph (BTDG) then they use the slicing criterion

consisting of all state-realization nodes. Their results illustrate

the improvements in execution time and memory usage that

allows the verification of models for which model checking

was earlier infeasible.

Lano [12] proposed a method for slicing UML state machines

by refactoring the models to be simplified and factored on the

origin of features. The concept of data and control

dependency between states is simpler than the Korel’s

concepts of transition post-domination. Shaikh et al. [13]

proposed an innovative slicing technique for UML/OCL class

diagrams to improve their scalability. The satisfiability of the

original model can be predicted by examining if at least one

sub model or all sub-models are satisfiabile. [14] [15] Later

on, they proposed a tool (UOST) to allow the efficient

verification of UML/OCL models by using aggressive slicing

technique. The tool can verify the properties of models with

disjoint and non-disjoint solutions.

Noda et al. [16] proposed a technique of sequence diagram

slicing which is enable accurate slice calculation based on

high-precision data dependency and may support various

programs as well as exceptions and multithreading. In order to

achieve this, they develop a named as “Reticella” that

envision object-oriented program’s behavior and calculation

slice on the Eclipse platform.

Swain et al. [17] proposed a technique which is used

condition slicing and create test cases from interaction

diagrams. In the proposed technique, they first build a

message flow dependence graph from an ordinary sequence

diagram and then apply conditioned slicing on a predicate

node of the graph to compute slices and to generate test cases.

Sarma et al. [18] proposed a method to generate automatic test

cases as of sequence diagrams with the help of SDG

(Sequence diagram graph). They traverse the SDG and to

generate test cases based on sequence path coverage criteria of

all message. Archer et al. [19] proposed a novel technique of

slicing on the feature model by using cross-tree constraints

with respect to slicing criteria. [20]They also proposed the

idea that how set of complementary set of operators (like

aggregate, merge and slice) can provide practicality.

Zoltan et al. [21] [22] explain a dynamic backward slicing

approach for model transformation programs and their

transformed models. They focuses on the simultaneously

assess data and control dependencies with the help of program

slicing for model transformations. Later on, researcher

presented that conversion of models into MT Language is

completed by three consecutive processes (Graph pattern,

Graph transformation and control language on VIATRA2

transformation language platform).

Blouin et al. [23] [24] developed the DSML Kompren

language to model and generate model slicers for some DSL.

They proposed a two-level generative approach where

Kompren’s compiler processes Kompren models to generate

an actual model without human intervention. In Kompren, the

Model Slicer Model uses the ‘Ecore’ to explain the structure

of metamodel and ‘Kermeta’ an action language to identify

the behavior of slicer.

Falessi et al. [25] presented a technique of model slicing to

automate the safety inspection of system. They developed a

tool named “Safe Slicer”, which allow automatic extraction of

the safety slices of design models. The methodology and the

slicing algorithm of the Safe Slice tool that ensures the

traceability of links required for automated slicing.

3. OVERVIEW OF PROPOSED

METHODOLOGY
The proposed work involves the slicing of sequence diagram

and generates test cases of that slice to ease the software

visualization by using conditional predicate. In the proposed

methodology, following steps has been followed:

3.1 Creation of Sequence diagram from a user requirement

specification. There are several software tools such as Visual

paradigm for UML, Rational rose and Magic-draw etc. to

generate diagram.

3.2 Produce XML code from the specified sequence diagram.

Visual paradigm for UML 10.2 version has in-built

functionality to export XML.

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

31

3.3 Java API Document Object Model (DOM) parser used for

parsing XML code and generating an output file containing

Object name, identifier, message name, message to & fro

information with .txt extension.

3.4 Apply slicing criteria which is java program act as slicer

to the file obtained from step 3 and producing the slice in a

separate .txt file.

3.5 Converting object id with relative object name among

which message is passing so that information can be recover

easily (it only deal with sliced part).

Fig 1: Overview of Proposed Methodology

3.6 Test cases are generated of the computed slice of

information obtain in step5. Test cases are generated

corresponding to the conditional coverage.

4. IMPLEMENTATION
After evaluating the literature survey of software testing,

program and architectural slicing techniques, software

visualization and UML (unified modeling language), the

result says that slicing UML diagrams is one of the most

important area in which work can be extended. And also

analyze that the slicing sequence diagram has no consolidate

technique to extract the point of interest from architecture of

software to ease the software visualization that uses

conditional predicate for finding out a relative slice.

Consider an example UML sequence diagram as shown in fig

2. In the example there are ten objects that are interacting with

each other by message passing using guard condition. There

are some variable (such as x, y, z etc) and constants (such as

1,2,3 etc) are used in guard condition. To illustrate this

methodology, explaining the generation of chunk or

information with respect to slicing criteria.

To extract relative chunk and information from UML

Sequence diagram following technique has been proposed:

4.1 Creation of Sequence diagram from a user requirement

specification. There are several software tools such as Visual

paradigm for UML, Rational rose and Magic-draw etc. to

generate diagram.

4.2 Next step is to create XML from the specified UML

Sequence diagram. Visual paradigm for UML 10.2 version

provides the in-built functionality to export the diagrams into

XML format.

As shown in Fig 3, XML document represents all the

information regarding sequence diagram like the object name

with distinct ids, the messages which they are using to transfer

the data or to call the object of other classes, their attributes,

etc. The purpose of converting the UML diagram into XML

file is yield platform independency.

4.3 Document Object Model (DOM) parser parse the XML

code and generate an output file with .txt extension containing

Object name, identifier, message name, message to & fro

information.

4.4 Apply slicing criteria that is a .java program which act as

slicer on output of step 3 for getting the relative/required

chunk of information in a separate .txt file. Slicer will ask user

to define the slicing criteria at run time to generate the

chunk/slice as per specified requirements. In this example

user define the ‘a’ variable as slicing criteria.

4.5 Converting object id with relative object name among

which message is passing so that information can be recover

easily.

4.6 Test cases are generated of the computed slice of

information obtain in step5 as shown in figure 4. Test cases

are generated corresponding to the conditional coverage.

5. CONCLUSION AND FUTURE WORK
This work presented a way to generate test cases of the sliced

sequence diagram. This methodology predominantly uses the

visual paradigm for UML 10.2 for generating diagram. And

discover the conditional predicates linked with messages in

the sequence diagram and create slice with respect to each

conditional predicate. In this work, test cases are generated

manually with respect to each constructed slice by satisfying

slice condition. The slicing approach was beneficial, when the

number of messages in the sequence diagram is large. One

needs to consider only the slice for finding test cases instead

of entire sequence diagram. If one can knows the location of

error then it becomes a huge simplification and saves lots of

time and resources. In this technique, test cases are manually

created that can be explored further by making it

automatically and generate test cases by slicing of

combination of any two models.

Creation

of UML

sequence

diagram

XML

Generation

XML

parsing

using DOM

parser

Slicing criteria

using

conditional

predicate

Java program for

converting object

id with relative

object name

Generating

test cases

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

32

Fig 2: Example Sequence diagram

Fig 3: XML file of Sequence diagram

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

33

Figure 4: Generation of Test Cases corresponding to the computed slice

6. REFERENCES
[1] Mark Weiser, "Program slicing",1981. Proceedings of

the 5th International Conference on Software

Engineering, IEEE Computer Society Press, pages 439–

449, March 1981.

[2] Jianjun Zhao, “Applying slicing technique to software

architectures,” 1998. In Fourth IEEE International

Conference on Engineering of Complex Computer

Systems, pp.87 –98.

[3] J.T. Lallchandani and R. Mall, “Slicing UML

architectural models,” 2008. ACM SIGSOFT Software

Engineering Notes, vol.33, No.3, pp. 1–9.

[4] Grady Booch, Ivar Jacobson & James Rumbaugh, “OMG

Unified Modeling Language Specification”, 1998.

Publisher: Addison Wesley, Version 1.3, First Edition:

October 20, 1998.

[5] Jianjun Zhao, "Slicing Software Architecture," Nov

1997. Technical Report 97-SE-117, pp.85-92,

Information Processing Society of Japan.

[6] Hyeon-Jeong Kim , Doo-Hwan Bae, Vidroha Debroy, W.

Eric Wong, “Deriving Data Dependence from UML

State Machine Diagrams,”2011. In Proceeding 5th IEEE

International Conference on Secure Software Integration

and Reliability Improvement, pp.118-126.

[7] B. Korel, I. Singh, L. Tahat, and B. Vaysburg, “Slicing

of State Based Models”, 2003. In Proceeding of

International Conference of Software Maintenance,

pp.34-43.

[8] [8] “Automatic test case generation from UML

communication diagrams”, 2007. Information and
Software Technology (ELSEVIER), vol.44, No. 2, pp.158-
171.

[9] H. Kagdi, J.I. Maletic, and A. Sutton, “Context-Free

Slicing of UML Class Models”, 2005. In Proceeding of

21st IEEE International Conference on Software

Maintenance, pp. 635-638.

[10] Philip Samuel, Rajib Mall, “Slicing-Based Test Case

Generation from UML Activity Diagrams,” 2009. ACM

SIGSOFT Software Engineering Notes, vol. 34, No. 6.

[11] Nisansala Yatapanage, Kirsten Winter and Saad Zafar,

“Slicing behavior tree models for verification”, 2010. In

IFIP Advances in Information and Communication

Technology, pp.125–139.

[12] Kevin Lano Crest, “Slicing of UML State Machines”,

2009. In Proceedings of the 9th WSEAS International

Conference on Applied Informatics and

Communications, pp.63-69.

[13] A. Shaikh, R. Clarisó, U.K. Wiil, and N. Memon.,

“Verification-driven slicing of UML/OCL models”,

2010. In Proceedings of the IEEE/ACM International

Conference on Automated software engineering, pages

185–194.

[14] Asadullah Shaikh, Uffe Kock Wiil, and Nasrullah

Memon, "UOST: UML/OCL aggressive slicing

technique for efficient verification of models", 2010. In

6th International Workshop on System Analysis and

Modeling, pp. 173–192.

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.5, July 2014

34

[15] Asadullah Shaikh, Uffe Kock Wiil, and Nasrullah

Memon, "Evaluation of tools and slicing techniques for

efficient verification of UML/OCL class diagrams",

2011. Advances in Software Engineering, vol.18, pp 173-

192.

[16] Kunihiro Noda, Takashi Kobayashi, Kiyoshi Agusa,

Shinichiro Yamamoto, “Sequence Diagram Slicing”,

2009. In Proceeding of 16th Asia-Pacific Software

Engineering Conference, IEEE, pp.291-298.

[17] Ranjita Kumari Swain , Vikas Panthi, Prafulla Kumar

Behera, “Test Case Design Using Slicing of UML

Interaction Diagram”, 2012. In Proceeding 2nd

International Conference on communication, computing

and security, Elsevier, pp.136-144.

[18] Monalisa Sarma, Debasish Kundu, Rajib Mall,

“Automatic Test Case Generation from UML Sequence

Diagrams,”2007. 15th IEEE International Conference on

Advanced Computing and Communications, pp. 60-65.

[19] Mathieu Acher, Philippe Collet, Philippe Lahire, and

Robert France, “Slicing feature models,” 2011. In

Proceeding 26th IEEE/ACM International Conference on

Automated Software Engineering, pp. 424-427.

[20] Mathieu Acher, Philippe Collet, Philippe Lahire, and

Robert France, “Separation of Concerns in Feature

Modeling: Support and Applications,” 2012. In

Proceedings of the Aspect-Oriented Software

Development (AOSD'12), pp.1-12, ACM, March 2012.

[21] Zoltán Ujhelyi, Ákos Horváth, and Dániel Varró,

“Towards dynamic backward slicing of model

transformations,” 2011. In Proceeding 26th IEEE/ACM

International Conference on Automated Software

Engineering, pp.404–407.

[22] Zoltán Ujhelyi, Ákos Horváth, and Dániel Varró,

“Dynamic Backward Slicing of Model Transformations”,

2012. In Proceeding IEEE 5th International Conference

on Software Testing, Verification and Validation, pp. 1-

10.

[23] A. Blouin, B. Combemale, B. Baudry, O. Beaudoux,

“Modeling model slicers,” 2011. In Proceedings of the

14th IEEE/ACM International conference on Model

driven engineering languages and systems, pp.62-76.

[24] A. Blouin, B. Combemale, B. Baudry, O. Beaudoux,

“Kompren Modeling and Generating Model Slicers,”

2012. Journal of Software and System Modeling,

Springer.

[25] Davide Falessi, Shiva Nejati, Mehrdad Sabetzadeh,

Lionel Briand, and Antonio Messina, “SafeSlice: A

model slicing and design safety inspection tool for

SysML”, 2011. In Proceeding 19th ACM SIGSOFT

Symposium on the Foundations of Software Engineering

and 13rd European Software Engineering Conference.

[26] Jaiprakash T. Lallchandani, R. Mall, "Static Slicing of

UML Architectural Models", 2009. Journal of Object

Technology, vol. 8, No. 1, pp.159-188.

[27] J. Lallchandani and R. Mall, “A Dynamic Slicing

Technique for UML Architectural Models”, 2011. IEEE

Transaction on Software Engineering, vol. 37, No. 6.

IJCATM : www.ijcaonline.org

