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ABSTRACT 

Due to exponential growth in the size of genomic databases, 

traditional techniques of sequence search proved to be slow. 

To address the above problem, an open source and parallel 

version of BLAST called mpiBLAST was developed by the 

programmers. In mpiBLAST, the master process distributes 

the database fragments among worker nodes to compute the 

sequence search in parallel. As merging and writing of the 

results is done sequentially by the master process, it would 

create performance bottleneck with increasing number of 

processors and varying database sizes. To handle this high 

non-search overhead, mpiBLAST-PIO was introduced. This 

paper describes the optimized and extended version of 

mpiBLAST called mpiBLAST-PIO. The goal of this research 

was to investigate the performance of parallel implementation 

of BLAST in comparison to sequential NCBI-BLAST by 

measuring Speedup and efficiency on HPC platform using 

Infiniband. Different options of mpiBLAST-PIO were 

activated that helped in understanding the optimal parameters 

for achieving highly scalable parallel BLAST implementation. 

The results found that parallel-writing of the results, can 

evolve as an efficient solution when high-performance 

parallel file system is available. 
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1. INTRODUCTION 
Today,genomic sequence search is one of the most important 

and basic problem in computational biology. Sequence 

comparison, also called sequence alignment refers to the 

procedure of comparing two or more biological sequences by 

searching for a series of characters that appear in the same 

order as in the input sequences. The goal of sequence 

comparison is to determine the regions of similarity between 

two genetic sequences. The similarities between newly 

discovered sequence and sequence of known functions can 

help in identifying functions of new sequence and find sibling 

species from a common ancestor. 

The alignment of two sequences (pairwise alignment) requires 

different types of algorithms. The algorithms used can be 

dynamic programming based or heuristic based. Dynamic 

programming based algorithms generate optimal solutions but 

are computationally intensive so impractical for a large 

number of sequence alignments. E.g. Needleman–Wunsch 

algorithm and Smith–Waterman algorithm. To reduce the time 

complexity, heuristic based algorithms are used that generate 

a near-optimal solution. Heuristics are approximation 

algorithms. E.g. BLAST, FASTA. 

1.1 BLAST Algorithm 
Basic Local Alignment Search Tool (BLAST) proposed by 

Altschul et al searches a query sequence containing 

nucleotides (DNA) or peptides (amino acids) against a 

database of known nucleotide or peptides sequences. A 

scoring matrix is usually used to estimate the statistical 

probability of the match/mismatch at each position in the 

sequence. Penalties are also assigned on introducing and 

extending gaps in the alignment. The most widely used 

scoring matrices are Percent Accepted Mutations (PAM) and 

Blocks Substitution Matrix (BLOSUM). BLAST's final result 

consists of a series of local alignments, ordered by the 

similarity score along with an e-value. Databases in BLAST 

are in fact text file in FASTA format. Factors affecting the 

BLAST performance are query batch size, database size and 

search sequence length. BLAST program can search 

sequences against database, with on-the-fly translations.  

BLAST search types are:  

i. blastn: search nucleotide database using a nucleotide 

query. 
ii. blastp: searches protein database using a protein 

query. 
iii. blastx: search protein database using a translated 

nucleotide query. 
iv. tblastn: search translated nucleotide database using a 

protein query. 
v. tblastx: search translated nucleotide database using a 

translated nucleotide query. 

With the exponential growth in the size of sequence 

database’s searching database that can not fit in the main 

memory became a serious performance issue. This prompted 

the researchers to develop a parallel algorithm to keep pace 

with the current rate of sequence acquisition. As BLAST is 

both computationally intensive and parallelizes well, many 

parallel and distributed approaches of parallelizing BLAST 

have been proposed. 

Main approaches of Genomic Sequence Search Parallelization 

are: 

i. Hardware Parallelization: It is implemented during 

the sequence alignment stage by representing search 

space as a matrix. e.g. Bioscan. Tera-BLAST. 

ii. Query Segmentation: In this, the entire database is 

replicated on each compute node local storage 

system and individual nodes concurrently search 

subsets of query against whole database. But if the 
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database to be searched is larger than core memory 

than query segmentation search suffer from 

excessive disk I/O. 

iii. Database Segmentation: Database segmentation 

permits each node to search a smaller portion of the 

database (one that fits in the main memory), 

eliminating disk I/O and vastly improving BLAST 

performance.E.g.TurboBLAST, mpiBLAST, 

Bioinformagic, BeoBLAST and parallelBLAST.  

1.2 Parallelizing BLAST using MPI 

1.2.1 mpiBLAST Algorithm 

mpiBLASTis an open-source parallelization National Center 

for Biotechnology Information (NCBI) BLAST based on 

database segmentation. It is designed to work on a computer 

cluster using MPI library and adopts a master-slave style. 

mpiBLAST provides a tool called mpiformatdb, a wrapper, 

which integrates the database formatting and partitioning of 

the tasks. The master is responsible for broadcasting query 

sequences, assigning database fragments to worker nodes, and 

merging search results from worker nodes. The workers 

process the queries and send back the results to master. 

Whenever one of the slaves completes the task and reports to 

be idle, the master assigns a new fragment to it. Once the 

master receives results from all the workers for a query 

sequence, it calls the standard NCBI BLAST output function 

to format and print results to an output file in any format 

including XML, HTML, tab-delimited text, and ASN.1. 

As more slaves are added for computation, it becomes 

difficult for the master to handle all the output results. To 

address this problem pioBLAST was introduced which greatly 

improved the performance by parallel- writing of the output 

results [8]. One of pioBLAST's main updates was the caching 

of sequences by worker nodes as they find potential 

alignments in their partial results [3]. As a result, some of its 

enhancements were added to mpiBLAST which are available 

since release of version 1.6. mpiBLAST-PIO is an optimized 

and extended version of parallel and distributed-memory 

version BLAST. The extensions include a virtual file-

manager, a “multiple master” runtime model, efficient 

fragment distribution and intelligent load balancing[2, 16]. 

In this paper, the parallel computation model is based on 

mpiBLAST-PIO algorithm (latest version), database 

segmentation, query sequence distribution and master-worker 

paradigm using MPI-IO. This paper discusses and analyzes 

the parameters of mpiBLAST-PIO on HPC Cluster to estimate 

the performance of parallel version of BLAST as compared to 

the serial NCBI-BLAST. 

2. MATERIAL & METHODOLOGY2.1 

Cluster Hardware 
All the experiments were run on a HPC Linux cluster installed 

at Data Centre of SEEIT, PAU. The cluster is composed of 40 

compute nodes, each with two hexa-cores Intel, Xeon 2.93 

GHz processors (total 480 processing cores), 12 MB cache, 50 

GB RAM. Two head nodes, each with two quad-core 

processors and 32 GB RAM are used to manage the cluster. 

The intercommunication network between the computing 

nodes consists of 40 Gbps Infiniband network, allowing for 

highly efficient message passing. The cluster consists of two 

10 Gbps Ethernet switches and five Infiniband Host channel 

adapters that supports 4 × QDR.  

 

2.2 Software 
The Operating System running on the nodes is RHEL Server 

5.6 with the 2.6.18-238.el5, 2.6.18-238.el5xen kernel. The 

cluster includes IBRIX parallel File System, the software 

component of the IBRIX is combined with the HP X9000 

series of storage systems. There are three MPI 

implementations available in HPC cluster: OpenMPI, Intel 

MPI and MPICH2. Among these Intel-MPI was chosen for 

the experiment. To manage the MPI jobs, PBS-

PROFESSIONAL 12.0.1 job-scheduler was used. All the 

mpiBLAST jobs were submitted through PBS-Scripts. The 

latest version of mpiBLAST-1.6.0 available at mpiBLAST 

website was compiled and installed. NCBI-BLAST was 

compiled from version 2.2.20, downloaded from the ftp site of 

NCBI.  

2.3 Experiment Data 
9.38 GB (in compressed form) nr database was downloaded 

from the NCBI-BLAST website. Database used in BLAST 

was in text file FASTA format. The formatting and 

partitioning of the database into 24 segments, 48 segments, 96 

segments and 192 segments of approximately equal size was 

done by the command ‘mpiformatdb’. In this experiment, 200 

nucleotide sequences of BADH were used as query file of size 

240 KB. The computational model was based on data 

parallelism, utilizing master-worker paradigm and MPI-IO 

was used for data exchange between parallel-processes which 

were scheduled to run by PBS. 

3. RESULTS & DISCUSSIONS  
All the graphs presented in this paper describe the 

performance of blastx (querying a nucleotide sequence against 

a protein database), using nucleotide BADH query file against 

the protein nr database on High Performance Linux Cluster. 

As a general goal, parallel performance parameters (execution 

time, Speedup, efficiency) were estimated experimentally. 

3.1Parallel-write v/s Master-write  

As a significant portion of the non-search fraction of the total 

Blast runtime is dependent on the writing of the results, test 

was conducted to compare the writing performance of 

mpiBLAST on a high performance parallel file system. In 

case of master-write, the master process receives the sequence 

data from the slaves that they have cached in their buffers and 

writes the output file sequentially. When parallel-write is 

activated, the slaves become responsible for writing the output 

file in parallel, in the offsets designated by the master.  

Figure 1 shows the execution time taken by the master-write 

as compared to parallel-write option when run with 24 

database fragments. The graph in figure 1 depicts that 

parallel-write is faster than master-write as number of 

processes increases. Parallel-writing of the results by the 

slaves can evolve as an efficient solution to the problem of 

I/O. The graph below gives a clear picture that with increase 

in the number of cores the difference in execution time of 

master-write and parallel-write is significant. Parallel-write 

outperform master-write when mpiBLAST was executed up 

to 384 cores i.e. 64 processors.   
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Table 1: Execution time (in sec) of mpiBLAST with 

different writing options 

No. of cores Master write Parallel write 

24 cores 7916.64 7674.17 

48 cores 2840.03 2646.40 

96 cores 1501.87 1352.45 

192 cores 1005.02 783.264 

 

 

Fig 1: Comparison of writing performance of mpiBLAST  

 

3.2 Load Balancing   
In this test, the behavior of mpiBLAST regarding the 

distribution of its fragments among slaves was observed and 

the effects of different rates between the number of processes 

and the number of fragments were analyzed. In this study, the 

sequence-search was performed on 24 cores  up to 192 cores 

and the number of fragments was raised progressively from 

24 to 192 to find the best fragment number in which database 

be divided to achieve improved performance. In each case, the 

number of fragments was either equal to or an integral 

multiple of the number of slaves.  

From the figure 2 below, it can be observed that segmenting 

database into 24 fragments was an adequate option. It was 

observed that when the number of fragments increased, both 

the search and non-search time increased. As the size of the 

fragment to be searched per processor became very small, the 

result combination step became greater than the actual search 

time. 

Table 2:  Execution time (in sec) of mpiBLAST parallel-

write on different database  fragments. 
No.of 

fragments             
24 cores 48 cores 96 cores 192 

cores 
24 fragments 7674.17 7690.24 7741.61 7828.48 

48 fragments 2646.40 3920.56 4003.93 4741.76 

96 fragments 1352.45 1572.11

5 
1983.3 2508.38 

192 fragments 783.264 791.789 838.224 1053.5 

 

Fig 2: Execution time for different fragment size 

3.3 Query-Distribution 
mpiBLAST-PIO provides the ability to segment query 

sequence file and distribute the sequences among processes by 

using the option --use-segment-size available in mpiBLAST-

1.6 .In mpiBLAST-PIO, the master node reads the query file, 

counts the number of sequences and distributes them to the 

workers and then writes to a temporary file for each worker. 

In this test, the master process fetches five sequences at a 

time. This experiment was conducted to compare the 

performance of mpiBLAST with parallel-write and 

mpiBLAST parallel-write along with query-segmentation. 

The experiment was executed on 24, 48, 96, 192 number of 

fragments and number of processes were increased from 24 

cores to 192 cores. The graph shown below indicates the 

results obtained after running the above experiment.               

 

 

Fig 3: parallel-write v/s parallel write + query-distribution 

time with 24 fragments 
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Fig 4:  parallel-write v/s parallel write + query-

distribution time with 48 fragments 

 

 

Fig 5: parallel-write v/s parallel write + query-distribution 

time with 96 fragments 

 

 

Fig 6: parallel-write v/s parallel write + query-distribution 

time with 192 fragments 

After analyzing the above given four graphs, it was found that 

query-segmentation improved the performance only when the 

number of cores became equal to or greater than the number 

of fragments. The test results conclude that the execution time 

of query-distribution was more in comparison to the parallel-

write till the number of cores was less than number of 

fragments after this point execution time started decreasing.  

3.4 Multiple Masters 
By activating the --partition-size flag of mpiBLAST-PIO, 

performance of hierarchical scheduling with multiple 

masters33 was evaluated. A second level of management was 

introduced, in which the number of workers can be limited for 

the master by creating groups of nodes containing one master 

for each group working on separate query sequences. So as to 

prevent the groups from waiting for the queries from the 

SuperMaster, a minimum number of queries to distribute 

among the group masters were set using the option –query-

segment-size. In this experiment, the query-segment-size was 

set to 5. Values of the tables given below are plotted in graph 

Figure 7 for analysis. 

Table 3: Execution time (in sec) of mpiBLAST-PIO with 

multiple masters on 24 cores 
No. of database 

fragments 
partition-size= 12 partition-size= 24 

24 fragments 6948.69 7913.56 

 

Table 4: Execution time (in sec) of mpiBLAST-PIO with 

multiple masters on 48 cores 
No. of database 

fragments 
partition-size= 24 partition-size= 48 

24 fragments 2646.39 3005.39 

 

Table 5: Execution time (in sec) of mpiBLAST-PIO with 

multiple masters on 96 cores 
No. of database 

fragments 
partition-size= 48 partition-size= 96 

24 fragments 1209.01 1387.65 

 

Table 6: Execution time (in sec) of mpiBLAST-PIO with 

multiple masters on 192 cores 

No. of database 

fragments 
partition-size= 96 partition-size= 

192 

24 fragments 684.809 687.195 

 

 

Fig 7: execution time of mpiBLAST when number of 

database fragments =24 
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After analyzing the figure 7, it was observed that the 

performance of mpiBLAST-PIO was improved when the 

partition-size was set to half the number of cores. The 

execution time increased when partition-size was equal to 

number of cores (MPI processes) as larger partition sizes 

overburden the master process with increasing loads of 

scheduling and output coordination, and incurs higher parallel 

overhead. 

3.5 Speedup 

The Speed-up is defined and evaluated as the ratio of the time 

for executing the sequential code of NCBI-BLAST on single 

core to the time of execution of parallel algorithm 

mpiBLAST-PIO with parallel-write enabled.  

 

 

Fig 8: Speedup 

With this graph in figure 8, it is possible to observe that 

execution of mpiBLAST-PIO on 24 fragments was super-

linear. The performance gain significantly improved when 

number of processes were raised from 96 to 192 (32 number 

of processes). The diagram presents that mpiBLAST scaled 

well up to 192 processes. 

3.6 Efficiency 
Table 7: Efficiency  

p 24 frag 48 frag 96 frag 192 frag 

24 
cores 

0.352204 0.351468 0.349136 0.345262 

48 
cores 

0.510669 0.344705 0.337528 0.285008 

96 
cores 

0.499626 0.429815 0.340704 0.269384 

192 
cores 

0.431348 0.4267038 0.4030657 0.3207018 

 

The above given Table 7 shows the maximum efficiency 

achieved, in case of 24 database fragments searched on 48 

numbers of cores. Afterwards, it started decreasing. In case of 

searching 48 database fragments, best efficiency was achieved 

on 96 cores. In 192 fragments, efficiency improved up to 192 

cores. From the table, it can be concluded that performance 

was enhanced when number of fragments to be searched were 

executed on double the number of processing cores. 

 

4. CONCLUSION 
In this research, several experiments of mpiBLAST-PIO were 

performed with different options activated, to achieve high 

performance parallel BLAST implementation. As a general 

goal, parallel performance parameters like execution time, 

speed-up and efficiency were estimated experimentally. Tests 

were conducted to compare the writing performance of 

mpiBLAST using IBRIX parallel file-system. The results 

showed that, option –use-parallel-write provided performance 

gain as compared to master-write. This study also investigated 

that large number of database fragments executed on different 

number of processors degraded the performance of sequence-

search, where number of fragments were equal to or integral 

multiple of the number of slaves. In this study, extensive 

performance evaluation was carried out on hierarchical 

architecture using different partition-size on different number 

of processes. Different techniques of handling I/O by using 

MPI I/O interface, efficient database distribution, query-

segmentation, load-balancing and multiple-masters strategy 

showed improvements. This study demonstrated that 

mpiBLAST-PIO scaled well up to 192 MPI processes (32 

processors). In this research, maximum efficiency achieved 

was 51% when 24 fragments were searched on 48 cores. 

5. ACKNOWLEDGMENTS 
Authors are indebted to express deep gratitude  to Mr Sanjiv 

Tiwari of Locuz Enterprise and Mr Inderjit Singh Yadav of 

Biotechnology department of PAU for their support. We 

would like to thank the teachers of our department viz Mr 

Amarjeet Singh, Mr Arun Kumar who helped in maintaining 

the HPC system work smoothly. 

6. REFERENCES 
[1] Borovska P, Gancheva V and Markov S 2011. Parallel 

performance evaluation of sequence nucleotide 

alignment on the Supercomputer BlueGene/P. In 

Proceedings of the European Computing Conference, 

Wisconsin, USA. Pp 462-467. 

[2] Borovska P, Nakov O, Gancheva  V and Georgiev I 

2010. Parallel genome sequence searching on 

supercomputer BlueGene/P. In Proceedings of ECS'10/ 

ECCTD'10/ ECCOM'10/ ECCS'10. Pp: 27-31. 

[3] Correa J C and Silva G P 2011. Parallel BLAST analysis 

and performance evaluation. In Proceedings of the 

BICOB-2011, University of Houston, New Orleans, 

Louisiana, USA 

[4] Darling A E, Carey L and Feng W 2003. The Design, 

implementation and evaluation of mpiBLAST. 

ClusterWorld Conference & Expo and the 4th 

International Conference on Linux Clusters: The HPC 

Revolution 2003.  

[5] Feng W 2003. Green Destiny + mpiBLAST = 

Bioinformagic. 10th InternationalConference on Parallel 

Computing: Bioinformatics Symposium. 

[6] Gardner M K, Feng W, Archuleta J, Lin H and Ma X 

2006. Parallel genomic sequence  searching on an Ad-

Hoc grid: Experiences, Lessons Learned and 

Implications. SC'06 Proceedings of ACM/IEEE 

conference on supercomputing, Tampa, Florida, USA. 

[7] Kent W J 2002. “Blat- The BLAST-Like Alignment 

Tool”, Genome Research. Volume no. 12 Pp: 656-664. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 97 – No.21, July 2014 

23 

[8] Lin H, Ma X, Chandramohan P, Geist A and Samatova N 

2005. Efficient data access for Parallel BLAST. 19th 

IEEE International Parallel and Distributed Processing 

Symposium, April 3-8, 2005 in Denver, Colorado. 

Volume no. 01 Pp: 72-82. 

[9] Lin H, Ma X, Feng W and Samatova N F 2011. 

“Coordinating computation and I/O in massively parallel 

sequence search”. In IEEE Transactions on Parallel & 

Distributed SystemsVolume no. 22 Pp: 529-543 

[10] Mathog R D 2003. “Parallel BLAST on split databases”, 

Oxford University Press. Volume no. 19 Pp: 1865-

1866.Brown, L. D., Hua, H., and Gao, C. 2003. A widget 

framework for augmented interaction in SCAPE.  

[11] Mulhem M A and Shaikh R A 2013. “Performance 

modelling of parallel BLAST using Intel and PGI 

compilers on an infiniband-based HPC cluster”, 

International Journal of  Bioinformatics Research and 

Applications, Volume no. 9, pp 534 (Abstr). 

[12] Muralidhara B L 2013. “Parallel two master method to 

improve BLAST algorithm’s performance”, International 

Journal of Computer Applications, Volume no. 63 pp: 

0975-8887. 

[13] Pedretti K T, Braun R C, Casavant T L, Scheetz T E, 

Birkett C L and Roberts C A 2001. Parallelization of 

local BLAST service on workstation clusters. In Future 

Generation Computer Systems. Volume no. 17 pp : 745-

754. 

[14] Rangwala H,  Lantz E, Musselman R, Pinnow K, Smith 

B and Wallenfelt B 2005. Massively Parallel BLAST for 

the Blue Gene/L. High Availability and Performance 

Computing Conference. 

[15] Sait S M, Mulhem M A and Shaikh R A 2011. 

Evaluating BLAST runtime using NAS based high 

performance clusters. In Proceedings of the CIMSIM'11, 

Langkawi, Malaysia Pp: 51-56. 

[16] Sosa C P, Thorsen O, Smith B, Jiang K, Lin H, Peters A 

and Feng W C 2007. Parallel genomic sequence search 

on a massively parallel system. CF'07,Ischia, Italy.Pp:59-

68 

[17] Sousa D X D, Lifschitz S and Valduriez P 2008. BLAST 

parallelization on partitioned databases with primary 

fragments. High Performance Computing for 

Computational Science- VECPAR 2008, Toulouse, 

France Volume no. 5336 pp: 544-554.  

[18] Yang C T and Kuo Y L 2003. “Apply Parallel 

bioinformatics applications on Linux PC Clusters”, 

Tunghai Science. Pp: 125-141.  

[19] Zomaya A Y (ed) 2006. Parallel Computing For 

Bionformatics and Computational Biology, John Wiley 

& Sons Inc, New Jersey. Pp 221-226. 

[20] mpiBLAST website, http://www.mpiblast.org 

[21] National Centre for Bioinformatics website:   

http://www.ncbi.nlm.nih.gov. 

 

IJCATM : www.ijcaonline.org 


