
International Journal of Computer Applications (0975 – 8887)

Volume 97 – No.21, July 2014

18

Implementation and Evaluation of mpiBLAST-PIO

on HPC Cluster

Nisha Dhankher

School of Electrical Engg. & IT
COAE&T, PAU
Ludhiana, India

O P Gupta
School of Electrical Engg. & IT

COAE&T, PAU
Ludhiana, India

ABSTRACT

Due to exponential growth in the size of genomic databases,

traditional techniques of sequence search proved to be slow.

To address the above problem, an open source and parallel

version of BLAST called mpiBLAST was developed by the

programmers. In mpiBLAST, the master process distributes

the database fragments among worker nodes to compute the

sequence search in parallel. As merging and writing of the

results is done sequentially by the master process, it would

create performance bottleneck with increasing number of

processors and varying database sizes. To handle this high

non-search overhead, mpiBLAST-PIO was introduced. This

paper describes the optimized and extended version of

mpiBLAST called mpiBLAST-PIO. The goal of this research

was to investigate the performance of parallel implementation

of BLAST in comparison to sequential NCBI-BLAST by

measuring Speedup and efficiency on HPC platform using

Infiniband. Different options of mpiBLAST-PIO were

activated that helped in understanding the optimal parameters

for achieving highly scalable parallel BLAST implementation.

The results found that parallel-writing of the results, can

evolve as an efficient solution when high-performance

parallel file system is available.

General Terms

Algorithms, High Performance Computing, Bioinformatics

Keywords

mpiBLAST-PIO, Parallel & Distributed Computing, High

Performance Computing, Bioinformatics

1. INTRODUCTION
Today,genomic sequence search is one of the most important

and basic problem in computational biology. Sequence

comparison, also called sequence alignment refers to the

procedure of comparing two or more biological sequences by

searching for a series of characters that appear in the same

order as in the input sequences. The goal of sequence

comparison is to determine the regions of similarity between

two genetic sequences. The similarities between newly

discovered sequence and sequence of known functions can

help in identifying functions of new sequence and find sibling

species from a common ancestor.

The alignment of two sequences (pairwise alignment) requires

different types of algorithms. The algorithms used can be

dynamic programming based or heuristic based. Dynamic

programming based algorithms generate optimal solutions but

are computationally intensive so impractical for a large

number of sequence alignments. E.g. Needleman–Wunsch

algorithm and Smith–Waterman algorithm. To reduce the time

complexity, heuristic based algorithms are used that generate

a near-optimal solution. Heuristics are approximation

algorithms. E.g. BLAST, FASTA.

1.1 BLAST Algorithm
Basic Local Alignment Search Tool (BLAST) proposed by

Altschul et al searches a query sequence containing

nucleotides (DNA) or peptides (amino acids) against a

database of known nucleotide or peptides sequences. A

scoring matrix is usually used to estimate the statistical

probability of the match/mismatch at each position in the

sequence. Penalties are also assigned on introducing and

extending gaps in the alignment. The most widely used

scoring matrices are Percent Accepted Mutations (PAM) and

Blocks Substitution Matrix (BLOSUM). BLAST's final result

consists of a series of local alignments, ordered by the

similarity score along with an e-value. Databases in BLAST

are in fact text file in FASTA format. Factors affecting the

BLAST performance are query batch size, database size and

search sequence length. BLAST program can search

sequences against database, with on-the-fly translations.

BLAST search types are:

i. blastn: search nucleotide database using a nucleotide

query.
ii. blastp: searches protein database using a protein

query.
iii. blastx: search protein database using a translated

nucleotide query.
iv. tblastn: search translated nucleotide database using a

protein query.
v. tblastx: search translated nucleotide database using a

translated nucleotide query.

With the exponential growth in the size of sequence

database’s searching database that can not fit in the main

memory became a serious performance issue. This prompted

the researchers to develop a parallel algorithm to keep pace

with the current rate of sequence acquisition. As BLAST is

both computationally intensive and parallelizes well, many

parallel and distributed approaches of parallelizing BLAST

have been proposed.

Main approaches of Genomic Sequence Search Parallelization

are:

i. Hardware Parallelization: It is implemented during

the sequence alignment stage by representing search

space as a matrix. e.g. Bioscan. Tera-BLAST.

ii. Query Segmentation: In this, the entire database is

replicated on each compute node local storage

system and individual nodes concurrently search

subsets of query against whole database. But if the

International Journal of Computer Applications (0975 – 8887)

Volume 97 – No.21, July 2014

19

database to be searched is larger than core memory

than query segmentation search suffer from

excessive disk I/O.

iii. Database Segmentation: Database segmentation

permits each node to search a smaller portion of the

database (one that fits in the main memory),

eliminating disk I/O and vastly improving BLAST

performance.E.g.TurboBLAST, mpiBLAST,

Bioinformagic, BeoBLAST and parallelBLAST.

1.2 Parallelizing BLAST using MPI

1.2.1 mpiBLAST Algorithm

mpiBLASTis an open-source parallelization National Center

for Biotechnology Information (NCBI) BLAST based on

database segmentation. It is designed to work on a computer

cluster using MPI library and adopts a master-slave style.

mpiBLAST provides a tool called mpiformatdb, a wrapper,

which integrates the database formatting and partitioning of

the tasks. The master is responsible for broadcasting query

sequences, assigning database fragments to worker nodes, and

merging search results from worker nodes. The workers

process the queries and send back the results to master.

Whenever one of the slaves completes the task and reports to

be idle, the master assigns a new fragment to it. Once the

master receives results from all the workers for a query

sequence, it calls the standard NCBI BLAST output function

to format and print results to an output file in any format

including XML, HTML, tab-delimited text, and ASN.1.

As more slaves are added for computation, it becomes

difficult for the master to handle all the output results. To

address this problem pioBLAST was introduced which greatly

improved the performance by parallel- writing of the output

results [8]. One of pioBLAST's main updates was the caching

of sequences by worker nodes as they find potential

alignments in their partial results [3]. As a result, some of its

enhancements were added to mpiBLAST which are available

since release of version 1.6. mpiBLAST-PIO is an optimized

and extended version of parallel and distributed-memory

version BLAST. The extensions include a virtual file-

manager, a “multiple master” runtime model, efficient

fragment distribution and intelligent load balancing[2, 16].

In this paper, the parallel computation model is based on

mpiBLAST-PIO algorithm (latest version), database

segmentation, query sequence distribution and master-worker

paradigm using MPI-IO. This paper discusses and analyzes

the parameters of mpiBLAST-PIO on HPC Cluster to estimate

the performance of parallel version of BLAST as compared to

the serial NCBI-BLAST.

2. MATERIAL & METHODOLOGY2.1

Cluster Hardware
All the experiments were run on a HPC Linux cluster installed

at Data Centre of SEEIT, PAU. The cluster is composed of 40

compute nodes, each with two hexa-cores Intel, Xeon 2.93

GHz processors (total 480 processing cores), 12 MB cache, 50

GB RAM. Two head nodes, each with two quad-core

processors and 32 GB RAM are used to manage the cluster.

The intercommunication network between the computing

nodes consists of 40 Gbps Infiniband network, allowing for

highly efficient message passing. The cluster consists of two

10 Gbps Ethernet switches and five Infiniband Host channel

adapters that supports 4 × QDR.

2.2 Software
The Operating System running on the nodes is RHEL Server

5.6 with the 2.6.18-238.el5, 2.6.18-238.el5xen kernel. The

cluster includes IBRIX parallel File System, the software

component of the IBRIX is combined with the HP X9000

series of storage systems. There are three MPI

implementations available in HPC cluster: OpenMPI, Intel

MPI and MPICH2. Among these Intel-MPI was chosen for

the experiment. To manage the MPI jobs, PBS-

PROFESSIONAL 12.0.1 job-scheduler was used. All the

mpiBLAST jobs were submitted through PBS-Scripts. The

latest version of mpiBLAST-1.6.0 available at mpiBLAST

website was compiled and installed. NCBI-BLAST was

compiled from version 2.2.20, downloaded from the ftp site of

NCBI.

2.3 Experiment Data
9.38 GB (in compressed form) nr database was downloaded

from the NCBI-BLAST website. Database used in BLAST

was in text file FASTA format. The formatting and

partitioning of the database into 24 segments, 48 segments, 96

segments and 192 segments of approximately equal size was

done by the command ‘mpiformatdb’. In this experiment, 200

nucleotide sequences of BADH were used as query file of size

240 KB. The computational model was based on data

parallelism, utilizing master-worker paradigm and MPI-IO

was used for data exchange between parallel-processes which

were scheduled to run by PBS.

3. RESULTS & DISCUSSIONS
All the graphs presented in this paper describe the

performance of blastx (querying a nucleotide sequence against

a protein database), using nucleotide BADH query file against

the protein nr database on High Performance Linux Cluster.

As a general goal, parallel performance parameters (execution

time, Speedup, efficiency) were estimated experimentally.

3.1Parallel-write v/s Master-write

As a significant portion of the non-search fraction of the total

Blast runtime is dependent on the writing of the results, test

was conducted to compare the writing performance of

mpiBLAST on a high performance parallel file system. In

case of master-write, the master process receives the sequence

data from the slaves that they have cached in their buffers and

writes the output file sequentially. When parallel-write is

activated, the slaves become responsible for writing the output

file in parallel, in the offsets designated by the master.

Figure 1 shows the execution time taken by the master-write

as compared to parallel-write option when run with 24

database fragments. The graph in figure 1 depicts that

parallel-write is faster than master-write as number of

processes increases. Parallel-writing of the results by the

slaves can evolve as an efficient solution to the problem of

I/O. The graph below gives a clear picture that with increase

in the number of cores the difference in execution time of

master-write and parallel-write is significant. Parallel-write

outperform master-write when mpiBLAST was executed up

to 384 cores i.e. 64 processors.

International Journal of Computer Applications (0975 – 8887)

Volume 97 – No.21, July 2014

20

Table 1: Execution time (in sec) of mpiBLAST with

different writing options

No. of cores Master write Parallel write

24 cores 7916.64 7674.17

48 cores 2840.03 2646.40

96 cores 1501.87 1352.45

192 cores 1005.02 783.264

Fig 1: Comparison of writing performance of mpiBLAST

3.2 Load Balancing
In this test, the behavior of mpiBLAST regarding the

distribution of its fragments among slaves was observed and

the effects of different rates between the number of processes

and the number of fragments were analyzed. In this study, the

sequence-search was performed on 24 cores up to 192 cores

and the number of fragments was raised progressively from

24 to 192 to find the best fragment number in which database

be divided to achieve improved performance. In each case, the

number of fragments was either equal to or an integral

multiple of the number of slaves.

From the figure 2 below, it can be observed that segmenting

database into 24 fragments was an adequate option. It was

observed that when the number of fragments increased, both

the search and non-search time increased. As the size of the

fragment to be searched per processor became very small, the

result combination step became greater than the actual search

time.

Table 2: Execution time (in sec) of mpiBLAST parallel-

write on different database fragments.
No.of

fragments
24 cores 48 cores 96 cores 192

cores
24 fragments 7674.17 7690.24 7741.61 7828.48

48 fragments 2646.40 3920.56 4003.93 4741.76

96 fragments 1352.45 1572.11

5
1983.3 2508.38

192 fragments 783.264 791.789 838.224 1053.5

Fig 2: Execution time for different fragment size

3.3 Query-Distribution
mpiBLAST-PIO provides the ability to segment query

sequence file and distribute the sequences among processes by

using the option --use-segment-size available in mpiBLAST-

1.6 .In mpiBLAST-PIO, the master node reads the query file,

counts the number of sequences and distributes them to the

workers and then writes to a temporary file for each worker.

In this test, the master process fetches five sequences at a

time. This experiment was conducted to compare the

performance of mpiBLAST with parallel-write and

mpiBLAST parallel-write along with query-segmentation.

The experiment was executed on 24, 48, 96, 192 number of

fragments and number of processes were increased from 24

cores to 192 cores. The graph shown below indicates the

results obtained after running the above experiment.

Fig 3: parallel-write v/s parallel write + query-distribution

time with 24 fragments

International Journal of Computer Applications (0975 – 8887)

Volume 97 – No.21, July 2014

21

Fig 4: parallel-write v/s parallel write + query-

distribution time with 48 fragments

Fig 5: parallel-write v/s parallel write + query-distribution

time with 96 fragments

Fig 6: parallel-write v/s parallel write + query-distribution

time with 192 fragments

After analyzing the above given four graphs, it was found that

query-segmentation improved the performance only when the

number of cores became equal to or greater than the number

of fragments. The test results conclude that the execution time

of query-distribution was more in comparison to the parallel-

write till the number of cores was less than number of

fragments after this point execution time started decreasing.

3.4 Multiple Masters
By activating the --partition-size flag of mpiBLAST-PIO,

performance of hierarchical scheduling with multiple

masters33 was evaluated. A second level of management was

introduced, in which the number of workers can be limited for

the master by creating groups of nodes containing one master

for each group working on separate query sequences. So as to

prevent the groups from waiting for the queries from the

SuperMaster, a minimum number of queries to distribute

among the group masters were set using the option –query-

segment-size. In this experiment, the query-segment-size was

set to 5. Values of the tables given below are plotted in graph

Figure 7 for analysis.

Table 3: Execution time (in sec) of mpiBLAST-PIO with

multiple masters on 24 cores
No. of database

fragments
partition-size= 12 partition-size= 24

24 fragments 6948.69 7913.56

Table 4: Execution time (in sec) of mpiBLAST-PIO with

multiple masters on 48 cores
No. of database

fragments
partition-size= 24 partition-size= 48

24 fragments 2646.39 3005.39

Table 5: Execution time (in sec) of mpiBLAST-PIO with

multiple masters on 96 cores
No. of database

fragments
partition-size= 48 partition-size= 96

24 fragments 1209.01 1387.65

Table 6: Execution time (in sec) of mpiBLAST-PIO with

multiple masters on 192 cores

No. of database

fragments
partition-size= 96 partition-size=

192

24 fragments 684.809 687.195

Fig 7: execution time of mpiBLAST when number of

database fragments =24

International Journal of Computer Applications (0975 – 8887)

Volume 97 – No.21, July 2014

22

After analyzing the figure 7, it was observed that the

performance of mpiBLAST-PIO was improved when the

partition-size was set to half the number of cores. The

execution time increased when partition-size was equal to

number of cores (MPI processes) as larger partition sizes

overburden the master process with increasing loads of

scheduling and output coordination, and incurs higher parallel

overhead.

3.5 Speedup

The Speed-up is defined and evaluated as the ratio of the time

for executing the sequential code of NCBI-BLAST on single

core to the time of execution of parallel algorithm

mpiBLAST-PIO with parallel-write enabled.

Fig 8: Speedup

With this graph in figure 8, it is possible to observe that

execution of mpiBLAST-PIO on 24 fragments was super-

linear. The performance gain significantly improved when

number of processes were raised from 96 to 192 (32 number

of processes). The diagram presents that mpiBLAST scaled

well up to 192 processes.

3.6 Efficiency
Table 7: Efficiency

p 24 frag 48 frag 96 frag 192 frag

24
cores

0.352204 0.351468 0.349136 0.345262

48
cores

0.510669 0.344705 0.337528 0.285008

96
cores

0.499626 0.429815 0.340704 0.269384

192
cores

0.431348 0.4267038 0.4030657 0.3207018

The above given Table 7 shows the maximum efficiency

achieved, in case of 24 database fragments searched on 48

numbers of cores. Afterwards, it started decreasing. In case of

searching 48 database fragments, best efficiency was achieved

on 96 cores. In 192 fragments, efficiency improved up to 192

cores. From the table, it can be concluded that performance

was enhanced when number of fragments to be searched were

executed on double the number of processing cores.

4. CONCLUSION
In this research, several experiments of mpiBLAST-PIO were

performed with different options activated, to achieve high

performance parallel BLAST implementation. As a general

goal, parallel performance parameters like execution time,

speed-up and efficiency were estimated experimentally. Tests

were conducted to compare the writing performance of

mpiBLAST using IBRIX parallel file-system. The results

showed that, option –use-parallel-write provided performance

gain as compared to master-write. This study also investigated

that large number of database fragments executed on different

number of processors degraded the performance of sequence-

search, where number of fragments were equal to or integral

multiple of the number of slaves. In this study, extensive

performance evaluation was carried out on hierarchical

architecture using different partition-size on different number

of processes. Different techniques of handling I/O by using

MPI I/O interface, efficient database distribution, query-

segmentation, load-balancing and multiple-masters strategy

showed improvements. This study demonstrated that

mpiBLAST-PIO scaled well up to 192 MPI processes (32

processors). In this research, maximum efficiency achieved

was 51% when 24 fragments were searched on 48 cores.

5. ACKNOWLEDGMENTS
Authors are indebted to express deep gratitude to Mr Sanjiv

Tiwari of Locuz Enterprise and Mr Inderjit Singh Yadav of

Biotechnology department of PAU for their support. We

would like to thank the teachers of our department viz Mr

Amarjeet Singh, Mr Arun Kumar who helped in maintaining

the HPC system work smoothly.

6. REFERENCES
[1] Borovska P, Gancheva V and Markov S 2011. Parallel

performance evaluation of sequence nucleotide

alignment on the Supercomputer BlueGene/P. In

Proceedings of the European Computing Conference,

Wisconsin, USA. Pp 462-467.

[2] Borovska P, Nakov O, Gancheva V and Georgiev I

2010. Parallel genome sequence searching on

supercomputer BlueGene/P. In Proceedings of ECS'10/

ECCTD'10/ ECCOM'10/ ECCS'10. Pp: 27-31.

[3] Correa J C and Silva G P 2011. Parallel BLAST analysis

and performance evaluation. In Proceedings of the

BICOB-2011, University of Houston, New Orleans,

Louisiana, USA

[4] Darling A E, Carey L and Feng W 2003. The Design,

implementation and evaluation of mpiBLAST.

ClusterWorld Conference & Expo and the 4th

International Conference on Linux Clusters: The HPC

Revolution 2003.

[5] Feng W 2003. Green Destiny + mpiBLAST =

Bioinformagic. 10th InternationalConference on Parallel

Computing: Bioinformatics Symposium.

[6] Gardner M K, Feng W, Archuleta J, Lin H and Ma X

2006. Parallel genomic sequence searching on an Ad-

Hoc grid: Experiences, Lessons Learned and

Implications. SC'06 Proceedings of ACM/IEEE

conference on supercomputing, Tampa, Florida, USA.

[7] Kent W J 2002. “Blat- The BLAST-Like Alignment

Tool”, Genome Research. Volume no. 12 Pp: 656-664.

International Journal of Computer Applications (0975 – 8887)

Volume 97 – No.21, July 2014

23

[8] Lin H, Ma X, Chandramohan P, Geist A and Samatova N

2005. Efficient data access for Parallel BLAST. 19th

IEEE International Parallel and Distributed Processing

Symposium, April 3-8, 2005 in Denver, Colorado.

Volume no. 01 Pp: 72-82.

[9] Lin H, Ma X, Feng W and Samatova N F 2011.

“Coordinating computation and I/O in massively parallel

sequence search”. In IEEE Transactions on Parallel &

Distributed SystemsVolume no. 22 Pp: 529-543

[10] Mathog R D 2003. “Parallel BLAST on split databases”,

Oxford University Press. Volume no. 19 Pp: 1865-

1866.Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[11] Mulhem M A and Shaikh R A 2013. “Performance

modelling of parallel BLAST using Intel and PGI

compilers on an infiniband-based HPC cluster”,

International Journal of Bioinformatics Research and

Applications, Volume no. 9, pp 534 (Abstr).

[12] Muralidhara B L 2013. “Parallel two master method to

improve BLAST algorithm’s performance”, International

Journal of Computer Applications, Volume no. 63 pp:

0975-8887.

[13] Pedretti K T, Braun R C, Casavant T L, Scheetz T E,

Birkett C L and Roberts C A 2001. Parallelization of

local BLAST service on workstation clusters. In Future

Generation Computer Systems. Volume no. 17 pp : 745-

754.

[14] Rangwala H, Lantz E, Musselman R, Pinnow K, Smith

B and Wallenfelt B 2005. Massively Parallel BLAST for

the Blue Gene/L. High Availability and Performance

Computing Conference.

[15] Sait S M, Mulhem M A and Shaikh R A 2011.

Evaluating BLAST runtime using NAS based high

performance clusters. In Proceedings of the CIMSIM'11,

Langkawi, Malaysia Pp: 51-56.

[16] Sosa C P, Thorsen O, Smith B, Jiang K, Lin H, Peters A

and Feng W C 2007. Parallel genomic sequence search

on a massively parallel system. CF'07,Ischia, Italy.Pp:59-

68

[17] Sousa D X D, Lifschitz S and Valduriez P 2008. BLAST

parallelization on partitioned databases with primary

fragments. High Performance Computing for

Computational Science- VECPAR 2008, Toulouse,

France Volume no. 5336 pp: 544-554.

[18] Yang C T and Kuo Y L 2003. “Apply Parallel

bioinformatics applications on Linux PC Clusters”,

Tunghai Science. Pp: 125-141.

[19] Zomaya A Y (ed) 2006. Parallel Computing For

Bionformatics and Computational Biology, John Wiley

& Sons Inc, New Jersey. Pp 221-226.

[20] mpiBLAST website, http://www.mpiblast.org

[21] National Centre for Bioinformatics website:

http://www.ncbi.nlm.nih.gov.

IJCATM : www.ijcaonline.org

