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ABSTRACT 

Delegating or outsourcing of computation is a prominent 

feature of cloud computing. It can be made secure through 

fully homomorphic encryption which allows processing of 

encrypted data. Verifiability of results is essential where a 

service-provider cannot be trusted. Since it is mostly used by 

lightweight devices, so mechanisms are required to verify the 

results of computations efficiently. In this paper protocols for 

VDoC are discussed, which focus on verification of aspects of 

computation other than the results, namely depth and 

complexity of delegated function which are useful when a 

user wants to verify amount charged by the service provider. 

A symmetric-key homomorphic scheme for encryption is 

being used. The protocols have a real-world relevance and the 

runtime are small enough for practical feasibility.   
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1. INTRODUCTION 
Cloud Computing with pay-per-use as its prominent feature is 

an emerging paradigm in modern computing. Its popularity 

grows as companies and users reduce their computing assets 

and turn to weaker computing devices; thereby delegating a 

number and variety of computations to cloud service 

providers. The major risk here is that the business critical 

computations are being performed remotely by untrusted 

parties that may be error-prone or even malicious. This 

motivates exploring methods for delegating computations 

reliably: a weak client delegates his computation to a 

powerful server. After the server returns the result of the 

computation, the client should be able to verify the 

correctness of that result using considerably less resources 

than required to actually perform the computation from 

scratch. Many solutions have been proposed for this purpose, 

recent ones are [1,2,3,4 and 5]. 

Due to increasing misuse of private data, IT security solutions 

for protection of sensitive data are indispensable, e.g. 

encryption. Storing private data on a Cloud in encrypted form 

is best solution only until one wishes the cloud to compute 

over the data. In that case sharing of keys may become 

mandatory. Ideally it is required that the cloud should be able 

to compute on private data without seeing (decrypting) it - 

referred to as secure outsourcing of computation. This is 

possible only through Fully Homomorphic encryption. Until 

2009, FHE was a much desired but not yet achieved 

methodology among cryptographers. With the breakthrough 

work of Gentry [6], much research has been made in this 

direction to come up with practically feasible FHE schemes. 

Yet, the problem is not completely solved. The open issue is 

of verifying these computations. There exist a few methods of 

verifying the results of outsourced computations which 

combine computational proofs with homomorphic 

schemes[1,7,8 and 9]. Still, the “money” factor is not 

resolved. Consider a situation where an online consultancy 

service charge for the suggestions provided based on the 

claim that it is performing some popular complex 

computations over the user’s input information. How will user 

be assured that the returned decisions are outcome of a 

complex operation or a simple calculation? It might be 

possible to verify the result, but what about the cost charged 

towards client? The “money” factor here should depend on 

the actual computation performed and not only on the 

correctness of result. 

In this paper it is presented here some basic terminology to 

build up the background and proceed to identification of the 

problem and justification of motivation towards it. Further it 

describes few protocols for such verification for delegated 

computations.  

2. BACKGROUND 
In this section a brief introduction of Verifiable computation 

and homomorphic encryption is given. With evolution of new 

applications depending on verifying the results of a 

computation, delegated to other party, new definitions and 

concepts have emerged in the field of Verifiable Delegation of 

Computation (VDoC). Similarly, fully homomorphic 

encryption has also received recent attention. 

2.1 Verifiable Computation 
A verifiable computation scheme VC = (KeyGen, ProbGen, 

Compute, Verify) consists of the four algorithms -  

1. KeyGen (F, λ) → (PK, SK): Based on the security 

parameter, the randomized key generation algorithm generates 

a public key that encodes the target function F, which is used 

by the worker to compute F. It also computes a matching 

secret key, which is kept private by the client. 

2. ProbGenSK (x) → (σx , τx): The problem generation 

algorithm uses the secret key SK to encode the function input 

x as a public value   which is given to the worker to compute 

with, and a secret value which is kept private by the client. 

3. ComputePK (σx) → σy: Using the client’s public key and the 

encoded input, the worker computes an encoded version of the 

function’s output y = F(x). 

4. VerifySK ( τx , σy ) → y ∪ ⊥: Using the secret key SK and the 

secret “decoding”, the verification algorithm converts the 

worker’s encoded output into the output of the function, e.g., 
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y= F(x) or outputs ⊥ indicating that   does not represent the 

valid output of F on x. 

An essential property of a VC scheme is correctness. A 

scheme is correct if the problem generation algorithm 

produces values that allow an honest worker to compute 

values that will verify successfully and correspond to the 

evaluation of F on those inputs. All VC schemes should be 

secure, that is a malicious worker cannot manipulate the 

verification algorithm to accept an incorrect output. The 

efficiency condition required from a VC scheme is that the 

time to encode the input and verify the output must be smaller 

than the time to compute the function from scratch. Input 

privacy is defined based on a typical indistinguishability 

argument that guarantees that no information about the inputs 

is leaked. Public delegation allows decoupling the party who 

provides the function to be evaluated and the party who has 

the input for the computation. That is, the delegator chooses 

from the functions which are made publicly available by a 

third party. Public verifiability enables anyone to verify the 

correctness of the returned results. That is, the role of prover 

can be separated from the role of delegator, without sharing 

additional secret information. A recent survey of VC 

approaches and open problems are described in [10]. 

2.2 Fully Homomorphic Encryption 
The aim of homomorphic cryptography is to ensure privacy of 

data in communication, storage or in use by processes with 

mechanisms similar to conventional cryptography, but with 

added capabilities of computing over encrypted data, 

searching an encrypted data, etc. Formally, homomorphic 

encryption scheme is defined as a quadruple of following 

algorithms: 

Keygen –The key generation algorithm takes input the 

security parameter λ and outputs keys (pk, sk, ek), where pk is 

public key, sk is private key and ek is evaluation key. 

Enc – The encryption algorithm converts plaintext to 

ciphertext using the public key. 

Dec – The decryption algorithm converts ciphertext to 

plaintext using the private key. 

Eval – The homomorphic evaluation algorithm evaluates the 

result of a computation f on ciphertexts c1, c2,…, cl using 

evaluation key ek and/or public key pk. 

3. PROPOSED PROTOCOLS AND 

SCHEME 
Verifiable delegation of computation has immense application 

in today’s cloud computing demands. Emerging new areas 

call for newer implications of verifiability. Existing 

definitions are insufficient to address requirements of certain 

applications. Consider a situation where a user U delegates 

computation f over inputs mi to cloud P. For security reasons 

mi are encrypted into ci. P evaluates f’ over ci (homomorphic 

to f over plaintext), returns result y, which could later be 

decrypted by U to obtain x (the expected result). Assuming 

that correctness of the returned result y is ensured through the 

primitives of homomorphic encryption and some one-way 

functions, one could think that the purpose of VDoC has been 

achieved. But, in context of computation-as-a-service, it 

should be noticed that the service charge (bill amount) 

depends not on the complexity of f but of f’. U is aware only 

of f and has no way to judge the complexity of f’. Hence, a 

different perspective of verification is required. So some new 

definitions are proposed: 

Definition 1: Complexity verifiability: A computation is said 

to be complexity-verifiable if the number of gates in 

corresponding circuit and hence complexity of the 

computation can be deduced from the output. 

Definition 2: Depth verifiability: A computation is said to be 

depth-verifiable if the gate-depth of corresponding circuit can 

be deduced from the output. 

3.1 Symmetric FHE scheme 
The following symmetric fully homomorphic scheme is used, 

based on the symmetric somewhat homomorphic scheme of 

[11].  Let λ be the security parameter in context of an 

equivalent computational effort of 2λ cycles. Message to be 

encrypted is an integer from ZN, here N is η bits long. The 

relationship between these two parameters are η=O(log λ). 

The scheme consists of following primitives: 

Key generation: Generate the secret key p, a prime numbers 

of length λ bits. Select q as refresh key such that q = p*s, s is 

any random number of length kη bits and s = kN for some 

small k. Thus, the refresh key is some multiple of the secret 

key, thus containing the secret key without revealing it. Also, 

the condition s = kN implies q has essentially more than two 

factors making it difficult to factorize. 

Encryption: Encryption is simply a mapping Enc: ZN → N, 

thus converting the message into an integer. The mapping is 

not deterministic or one-to-one, that is a message may have 

several encryptions. This is possible through a random 

number involved in the encryption process. Encryption 

involves following steps: 

Step 1: Choose m’ such that m≡m' mod N 

Step 2: Choose a random number r of length λ^2 bits 

Step 3: Output c = m’ + pr 

The larger size of the random number r as compared to the 

key p is necessary for the homomorphism in operations.  

Decryption: The decryption needs to be inversion of the 

encryption process, a mapping Dec: N →ZN. It is a very 

simple and efficient operation producing output, the message 

as m = c mod p mod N. 

Homomorphic Operations: Addition of two messages in ZN, 

that is m1+m2 mod N is homomorphic to direct addition of 

two ciphertexts (integers). Multiplication of two messages in 

ZN, that is m1*m2 mod N is homomorphic to integer 

multiplication of two ciphertexts.  

Refresh procedure: The noise in ciphertext grows with the 

number of operations applied to it. To make it suitable for 

decryption even after several operations, it is required to 

refresh the ciphertext, thus reducing noise in it.  The refresh 

procedure is very simple and efficient one-step procedure. 

The refreshed ciphertext is outputted as c’ = c mod q. 

To include the depth of circuit for verification, it is considered 

that the data objects to be computed over as tuples containing 

the ciphertext and a number indicating current depth level. 

The initial data begins at depth 0, which is then cascaded as 

input to next levels. At every level the depth of all input 

objects are compared, selecting highest, it is forwarded after 

incrementing, as shown in Fig 3. Let the actual circuit to be 

computed be converted into that consisting only of AND and 

XOR gates, as in Fig 1. For homomorphic calculation using 

the proposed scheme, corresponding homomorphic circuit as 

shown in Fig 2 can be drawn, by replacing AND operations 



International Journal of Computer Applications (0975 – 8887) 

Volume 97– No.15, July 2014 

37 

with multiplication and XOR operations with addition. For 

calculation complexity for verification, the tuple contains 

ciphertext and a number indicating number of operations it 

has already been processed through. The initial value of this 

number is 0. At every operation the numbers of operations of 

input data tuples are added together. This is incremented and 

forwarded as input to next operation. The final complexity 

count output from the function represents the total number of 

operations performed over the input data. The procedure is 

illustrated in Fig 4 over an example circuit. 

 

 

Figure 1: Circuit containing only XOR and AND gates, 

operating on plaintexts 

 

 

Figure 2: Circuit homomorphic to circuit of Figure 1, 

operating on ciphertexts 

 

 

Figure 3: Circuit of Figure 2 modified to calculate depth 

along with computation 

 

 

Figure 4: Circuit of Figure 2 modified to calculate 

complexity along with computation 

 

3.2 Protocol for Depth Verification 
For depth verification a non-interactive protocol is suggested: 

Step 1: Delegator selects evaluation function f and prepares its 

equivalent function g with known depth d. 

Step 2: Delegator sends encrypted input, function g and the 

refresh key to the worker as 〈cin, g, rk〉. 

Step 3: Worker computes the function and returns the 

calculated result and depth as 〈g(cin,), d’〉. 

Step 4: Worker raises the bill with charged amount Amt. 

Step 5: Verify d’=d. If yes, accept Amt else reject.  

The preparation of function g can be done either by the 

delegator itself, or by a third party in case of limited 

resources. 

3.3 Protocol for Complexity Verification 
For complexity verification a non-interactive protocol is 

suggested: 

Step 1: Delegator selects evaluation function f and prepares its 

equivalent function g with known complexity τ. 

Step 2: Delegator sends encrypted input, function g and the 

refresh key to the worker as 〈cin, g, rk〉. 

Step 3: Worker computes the function and returns the 

calculated result and complexity as 〈g(cin,), τ’〉. 

Step 4: Worker raises the bill with charged amount Amt. 

Step 5: Verify τ’= τ. If yes, accept Amt else reject.  

The preparation of function g can be done either by the 

delegator itself, or by a third party in case of limited 

resources. 

3.4 Modifications required in FHE scheme 
Modified Evaluation algorithms for depth verifiable 

computation: 

ADD (〈c1, n1〉, 〈c2, n2〉): Takes input ciphertexts along with a 

number associated to it, which is by default 0. Outputs 

ciphertext as sum of the input ciphertext and a number 

associated to it. 

Step 1: c = c1 + c2 

Step 2:  If n1 > n2, n = n1 + 1 else n = n2 + 1 

Step 3: Output 〈c, n〉 

MULTIPLY (〈c1, n1〉, 〈c2, n2〉): Takes input ciphertexts along 

with a number associated to it, which is by default 0. Outputs 

ciphertext as sum of the input ciphertext and a number 

associated to it. 

Step 1: c = c1 * c2 

Step 2:  If n1 > n2, n = n1 + 1 else n = n2 + 1 

Step 3: Output 〈c, n〉 

Modified Evaluation algorithms for complexity verifiable 

computation: 

ADD (〈c1, n1〉, 〈c2, n2〉): Takes input ciphertexts along with a 

number associated to it, which is by default 0. Outputs 

ciphertext as sum of the input ciphertext and a number 

associated to it. 

Step 1: c = c1 + c2 

Step 2:  n = n1 + n2 + 1 

Step 3: Output 〈c, n〉 

MULTIPLY (〈c1, n1〉, 〈c2, n2〉): Takes input ciphertexts along 

with a number associated to it, which is by default 0. Outputs 
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ciphertext as sum of the input ciphertext and a number 

associated to it. 

Step 1: c = c1 * c2 

Step 2:  n = n1 + n2 + 1 

Step 3: Output 〈c, n〉   

3.5 Results and Implementation 
The implementation of the protocol was done in the form of 

functions in Java on a 3.40 GHz Intel Core i3-2130 processor. 

For comparison of run-times, each function is designed in four 

versions: 

1. Function f – this is the plain function as known to the 

delegator. It operates on plaintexts. 

2. Function f’ – This is homomorphic to f, operating on 

ciphertexts and gives the result as ciphertext only. This 

corresponds to input/output verifiable computation. 

3. Function f’’ – This is f’ modified to include calculation of 

depth of the circuit. This corresponds to depth verifiable 

computation. 

4. Function f’’’ – This is f’ modified to include calculation of 

complexity of the circuit. This corresponds to complexity 

verifiable computation. 

Table 1 shows the run-time for different parameters (depth 

and complexity) of the circuits which consist only of XOR 

gates and Table 2 shows the same for circuits with only AND 

gates. Fig 5 and Fig 6 show the graph derived from the values 

of Table 1 and Table 2 respectively. Here it can be seen the 

growth of cost of modified homomorphic versions for depth 

and complexity verification is parabolic, that is O(d2), while 

the growth of simple homomorphic function and the plain 

function is only a degree lower, that is O(d). It can easily be 

observed that time taken for AND operations is much larger 

than XOR operations. Hence, some arbitrary circuits are 

required that contain both XOR and AND gates to see the 

effect of FHE and Verifiable computation. The time of 

execution recorded for arbitrary circuits of various depths and 

complexity is shown in Table 3, for all four versions. The 

growth of verifiable computations against depth of circuit is 

shown in Fig 7. Since the roles of delegator and worker are 

implemented as separate threads of same Java program, the 

recorded run-times do not include any communication cost, 

and hence indicate purely computational cost of the 

algorithms and protocols proposed. 

 

 

Table 1. Performance over Circuits consisting only XOR gates 

Circuit Parameters Time of Execution (in milliseconds) 

Depth Complexity 
Plain 

Computation 

Homomorphic 

computation 

Depth verifiable 

computation 

Complexity verifiable 

computation 

1 1 0.604 5.13 5.98 5.888 

2 3 0.905 6.035 11.165 11.16 

3 5 1.207 6.639 13.278 12.998 

4 8 1.207 7.544 14.183 14.786 

5 10 1.509 7.544 16.295 17.544 

6 14 1.509 8.147 17.804 18.204 

7 18 1.508 9.354 20.52 20.632 

8 21 1.509 10.561 25.649 25.647 

9 26 1.81 11.768 29.874 29.968 

10 30 1.809 13.579 35.608 35.812 

 

 

Table 2. Performance over Circuits consisting only AND gates  

Circuit Parameters Time of Execution (in milliseconds) 

Depth Complexity 
Plain 

Computation 

Homomorphic 

computation 

Depth verifiable 

computation 

Complexity verifiable 

computation 

1 1 1.508 4.526 10.863 10.854 

2 3 1.509 5.431 13.881 13.578 

3 5 1.81 7.242 17.582 17.589 

4 8 1.811 9.053 21.727 21.689 

5 10 2.414 11.165 25.951 25.458 

6 14 2.414 13.579 29.271 29.91 

7 18 3.017 14.786 35.608 34.927 

8 21 3.32 15.088 41.039 41.067 

9 26 4.527 17.804 43.454 43.821 

10 30 4.828 20.52 52.205 52.187 
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Figure 5: Growth of run-time for all four versions with 

varying depth of circuits containing only XOR gates 

 

 

Figure 6: Growth of run-time for all four versions with 

varying depth of circuits containing only AND gates 

Table 3. Performance over arbitrary circuits 

Circuit Parameters Time of Execution(in milliseconds) 

Depth Complexity 
Plain 

Computation 

Homomorphic 

computation 

Depth verifiable 

computation 

Complexity verifiable 

computation 

1 1 1.056 4.828 8.472 8.371 

2 3 1.207 5.733 12.568 12.401 

3 5 1.561 6.952 15.752 15.284 

4 8 1.602 8.259 18.034 18.237 

5 10 1.904 9.357 21.264 21.501 

6 14 1.962 10.863 23.547 24.001 

7 18 2.263 12.07 28.011 27.799 

8 21 2.428 12.875 33.523 33.357 

9 26 3.154 14.786 37.162 36.891 

10 30 3.326 18.742 42.961 43.015 

 

 

Figure 7: Growth of run-time for all four versions with 

varying depth of arbitrary circuits 

4. CONCLUSION 
Cloud computing has presented an easy means for delegating 

computationally heavy tasks over to the service providers. 

Increasing use of lightweight devices is making such 

delegation more essential part of upcoming applications. What 

makes FHE schemes a winner in context of cloud computing 

is, that it allows one to compute over encrypted data. But such 

easiness of computation makes it more difficult to verify, 

since the function delegated to worker for computation and its 

homomorphic equivalent may differ in terms of depth or 

complexity. Thus, actual computational effort put in by a 

worker cannot be measured directly or clearly. Proposal given 

in this paper includes three such protocols which imply 

input/output verifiability, depth verifiability and complexity 

verifiability for delegated computations. The proposal also 

includes these definitions as was identified by us a 

requirement in new applications of VDoC. The results 

obtained through implementation of the scheme and protocols 

vouch for its efficiency and feasibility in practical 

applications.  

The proposed protocols work only for those computations 

which can be converted into Boolean circuits. Extending it to 

work for arithmetic circuits could be a possible scope. Many 

delegation applications include processes like compression, 

file conversion etc, which cannot be immediately seen as an 

arithmetic computation. Verifiability in context of such 

applications needs to be defined and explored appropriately. 
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