
International Journal of Computer Applications (0975 – 8887)

Volume 97– No.15, July 2014

35

Verifiable Delegation of Computation through Fully

Homomorphic Encryption

Alpana Vijay

M. Tech (p)
Department of Computer Science

Rajasthan Institute of Engineering & Technology
Jaipur, India

Vijay Kumar Sharma
Assistant Professor

Department of Computer Science
Rajasthan Institute of Engineering & Technology

Jaipur, India

ABSTRACT

Delegating or outsourcing of computation is a prominent

feature of cloud computing. It can be made secure through

fully homomorphic encryption which allows processing of

encrypted data. Verifiability of results is essential where a

service-provider cannot be trusted. Since it is mostly used by

lightweight devices, so mechanisms are required to verify the

results of computations efficiently. In this paper protocols for

VDoC are discussed, which focus on verification of aspects of

computation other than the results, namely depth and

complexity of delegated function which are useful when a

user wants to verify amount charged by the service provider.

A symmetric-key homomorphic scheme for encryption is

being used. The protocols have a real-world relevance and the

runtime are small enough for practical feasibility.

General Terms

Cryptography, outsourcing computation.

Keywords

Homomorphic encryption, symmetric FHE, cloud computing,

verifiable delegation of computation, outsourcing

computation.

1. INTRODUCTION
Cloud Computing with pay-per-use as its prominent feature is

an emerging paradigm in modern computing. Its popularity

grows as companies and users reduce their computing assets

and turn to weaker computing devices; thereby delegating a

number and variety of computations to cloud service

providers. The major risk here is that the business critical

computations are being performed remotely by untrusted

parties that may be error-prone or even malicious. This

motivates exploring methods for delegating computations

reliably: a weak client delegates his computation to a

powerful server. After the server returns the result of the

computation, the client should be able to verify the

correctness of that result using considerably less resources

than required to actually perform the computation from

scratch. Many solutions have been proposed for this purpose,

recent ones are [1,2,3,4 and 5].

Due to increasing misuse of private data, IT security solutions

for protection of sensitive data are indispensable, e.g.

encryption. Storing private data on a Cloud in encrypted form

is best solution only until one wishes the cloud to compute

over the data. In that case sharing of keys may become

mandatory. Ideally it is required that the cloud should be able

to compute on private data without seeing (decrypting) it -

referred to as secure outsourcing of computation. This is

possible only through Fully Homomorphic encryption. Until

2009, FHE was a much desired but not yet achieved

methodology among cryptographers. With the breakthrough

work of Gentry [6], much research has been made in this

direction to come up with practically feasible FHE schemes.

Yet, the problem is not completely solved. The open issue is

of verifying these computations. There exist a few methods of

verifying the results of outsourced computations which

combine computational proofs with homomorphic

schemes[1,7,8 and 9]. Still, the “money” factor is not

resolved. Consider a situation where an online consultancy

service charge for the suggestions provided based on the

claim that it is performing some popular complex

computations over the user’s input information. How will user

be assured that the returned decisions are outcome of a

complex operation or a simple calculation? It might be

possible to verify the result, but what about the cost charged

towards client? The “money” factor here should depend on

the actual computation performed and not only on the

correctness of result.

In this paper it is presented here some basic terminology to

build up the background and proceed to identification of the

problem and justification of motivation towards it. Further it

describes few protocols for such verification for delegated

computations.

2. BACKGROUND
In this section a brief introduction of Verifiable computation

and homomorphic encryption is given. With evolution of new

applications depending on verifying the results of a

computation, delegated to other party, new definitions and

concepts have emerged in the field of Verifiable Delegation of

Computation (VDoC). Similarly, fully homomorphic

encryption has also received recent attention.

2.1 Verifiable Computation
A verifiable computation scheme VC = (KeyGen, ProbGen,

Compute, Verify) consists of the four algorithms -

1. KeyGen (F, λ) → (PK, SK): Based on the security

parameter, the randomized key generation algorithm generates

a public key that encodes the target function F, which is used

by the worker to compute F. It also computes a matching

secret key, which is kept private by the client.

2. ProbGenSK (x) → (σx , τx): The problem generation

algorithm uses the secret key SK to encode the function input

x as a public value which is given to the worker to compute

with, and a secret value which is kept private by the client.

3. ComputePK (σx) → σy: Using the client’s public key and the

encoded input, the worker computes an encoded version of the

function’s output y = F(x).

4. VerifySK (τx , σy) → y ∪ ⊥: Using the secret key SK and the

secret “decoding”, the verification algorithm converts the

worker’s encoded output into the output of the function, e.g.,

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.15, July 2014

36

y= F(x) or outputs ⊥ indicating that does not represent the

valid output of F on x.

An essential property of a VC scheme is correctness. A

scheme is correct if the problem generation algorithm

produces values that allow an honest worker to compute

values that will verify successfully and correspond to the

evaluation of F on those inputs. All VC schemes should be

secure, that is a malicious worker cannot manipulate the

verification algorithm to accept an incorrect output. The

efficiency condition required from a VC scheme is that the

time to encode the input and verify the output must be smaller

than the time to compute the function from scratch. Input

privacy is defined based on a typical indistinguishability

argument that guarantees that no information about the inputs

is leaked. Public delegation allows decoupling the party who

provides the function to be evaluated and the party who has

the input for the computation. That is, the delegator chooses

from the functions which are made publicly available by a

third party. Public verifiability enables anyone to verify the

correctness of the returned results. That is, the role of prover

can be separated from the role of delegator, without sharing

additional secret information. A recent survey of VC

approaches and open problems are described in [10].

2.2 Fully Homomorphic Encryption
The aim of homomorphic cryptography is to ensure privacy of

data in communication, storage or in use by processes with

mechanisms similar to conventional cryptography, but with

added capabilities of computing over encrypted data,

searching an encrypted data, etc. Formally, homomorphic

encryption scheme is defined as a quadruple of following

algorithms:

Keygen –The key generation algorithm takes input the

security parameter λ and outputs keys (pk, sk, ek), where pk is

public key, sk is private key and ek is evaluation key.

Enc – The encryption algorithm converts plaintext to

ciphertext using the public key.

Dec – The decryption algorithm converts ciphertext to

plaintext using the private key.

Eval – The homomorphic evaluation algorithm evaluates the

result of a computation f on ciphertexts c1, c2,…, cl using

evaluation key ek and/or public key pk.

3. PROPOSED PROTOCOLS AND

SCHEME
Verifiable delegation of computation has immense application

in today’s cloud computing demands. Emerging new areas

call for newer implications of verifiability. Existing

definitions are insufficient to address requirements of certain

applications. Consider a situation where a user U delegates

computation f over inputs mi to cloud P. For security reasons

mi are encrypted into ci. P evaluates f’ over ci (homomorphic

to f over plaintext), returns result y, which could later be

decrypted by U to obtain x (the expected result). Assuming

that correctness of the returned result y is ensured through the

primitives of homomorphic encryption and some one-way

functions, one could think that the purpose of VDoC has been

achieved. But, in context of computation-as-a-service, it

should be noticed that the service charge (bill amount)

depends not on the complexity of f but of f’. U is aware only

of f and has no way to judge the complexity of f’. Hence, a

different perspective of verification is required. So some new

definitions are proposed:

Definition 1: Complexity verifiability: A computation is said

to be complexity-verifiable if the number of gates in

corresponding circuit and hence complexity of the

computation can be deduced from the output.

Definition 2: Depth verifiability: A computation is said to be

depth-verifiable if the gate-depth of corresponding circuit can

be deduced from the output.

3.1 Symmetric FHE scheme
The following symmetric fully homomorphic scheme is used,

based on the symmetric somewhat homomorphic scheme of

[11]. Let λ be the security parameter in context of an

equivalent computational effort of 2λ cycles. Message to be

encrypted is an integer from ZN, here N is η bits long. The

relationship between these two parameters are η=O(log λ).

The scheme consists of following primitives:

Key generation: Generate the secret key p, a prime numbers

of length λ bits. Select q as refresh key such that q = p*s, s is

any random number of length kη bits and s = kN for some

small k. Thus, the refresh key is some multiple of the secret

key, thus containing the secret key without revealing it. Also,

the condition s = kN implies q has essentially more than two

factors making it difficult to factorize.

Encryption: Encryption is simply a mapping Enc: ZN → N,

thus converting the message into an integer. The mapping is

not deterministic or one-to-one, that is a message may have

several encryptions. This is possible through a random

number involved in the encryption process. Encryption

involves following steps:

Step 1: Choose m’ such that m≡m' mod N

Step 2: Choose a random number r of length λ^2 bits

Step 3: Output c = m’ + pr

The larger size of the random number r as compared to the

key p is necessary for the homomorphism in operations.

Decryption: The decryption needs to be inversion of the

encryption process, a mapping Dec: N →ZN. It is a very

simple and efficient operation producing output, the message

as m = c mod p mod N.

Homomorphic Operations: Addition of two messages in ZN,

that is m1+m2 mod N is homomorphic to direct addition of

two ciphertexts (integers). Multiplication of two messages in

ZN, that is m1*m2 mod N is homomorphic to integer

multiplication of two ciphertexts.

Refresh procedure: The noise in ciphertext grows with the

number of operations applied to it. To make it suitable for

decryption even after several operations, it is required to

refresh the ciphertext, thus reducing noise in it. The refresh

procedure is very simple and efficient one-step procedure.

The refreshed ciphertext is outputted as c’ = c mod q.

To include the depth of circuit for verification, it is considered

that the data objects to be computed over as tuples containing

the ciphertext and a number indicating current depth level.

The initial data begins at depth 0, which is then cascaded as

input to next levels. At every level the depth of all input

objects are compared, selecting highest, it is forwarded after

incrementing, as shown in Fig 3. Let the actual circuit to be

computed be converted into that consisting only of AND and

XOR gates, as in Fig 1. For homomorphic calculation using

the proposed scheme, corresponding homomorphic circuit as

shown in Fig 2 can be drawn, by replacing AND operations

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.15, July 2014

37

with multiplication and XOR operations with addition. For

calculation complexity for verification, the tuple contains

ciphertext and a number indicating number of operations it

has already been processed through. The initial value of this

number is 0. At every operation the numbers of operations of

input data tuples are added together. This is incremented and

forwarded as input to next operation. The final complexity

count output from the function represents the total number of

operations performed over the input data. The procedure is

illustrated in Fig 4 over an example circuit.

Figure 1: Circuit containing only XOR and AND gates,

operating on plaintexts

Figure 2: Circuit homomorphic to circuit of Figure 1,

operating on ciphertexts

Figure 3: Circuit of Figure 2 modified to calculate depth

along with computation

Figure 4: Circuit of Figure 2 modified to calculate

complexity along with computation

3.2 Protocol for Depth Verification
For depth verification a non-interactive protocol is suggested:

Step 1: Delegator selects evaluation function f and prepares its

equivalent function g with known depth d.

Step 2: Delegator sends encrypted input, function g and the

refresh key to the worker as 〈cin, g, rk〉.

Step 3: Worker computes the function and returns the

calculated result and depth as 〈g(cin,), d’〉.

Step 4: Worker raises the bill with charged amount Amt.

Step 5: Verify d’=d. If yes, accept Amt else reject.

The preparation of function g can be done either by the

delegator itself, or by a third party in case of limited

resources.

3.3 Protocol for Complexity Verification
For complexity verification a non-interactive protocol is

suggested:

Step 1: Delegator selects evaluation function f and prepares its

equivalent function g with known complexity τ.

Step 2: Delegator sends encrypted input, function g and the

refresh key to the worker as 〈cin, g, rk〉.

Step 3: Worker computes the function and returns the

calculated result and complexity as 〈g(cin,), τ’〉.

Step 4: Worker raises the bill with charged amount Amt.

Step 5: Verify τ’= τ. If yes, accept Amt else reject.

The preparation of function g can be done either by the

delegator itself, or by a third party in case of limited

resources.

3.4 Modifications required in FHE scheme
Modified Evaluation algorithms for depth verifiable

computation:

ADD (〈c1, n1〉, 〈c2, n2〉): Takes input ciphertexts along with a

number associated to it, which is by default 0. Outputs

ciphertext as sum of the input ciphertext and a number

associated to it.

Step 1: c = c1 + c2

Step 2: If n1 > n2, n = n1 + 1 else n = n2 + 1

Step 3: Output 〈c, n〉

MULTIPLY (〈c1, n1〉, 〈c2, n2〉): Takes input ciphertexts along

with a number associated to it, which is by default 0. Outputs

ciphertext as sum of the input ciphertext and a number

associated to it.

Step 1: c = c1 * c2

Step 2: If n1 > n2, n = n1 + 1 else n = n2 + 1

Step 3: Output 〈c, n〉

Modified Evaluation algorithms for complexity verifiable

computation:

ADD (〈c1, n1〉, 〈c2, n2〉): Takes input ciphertexts along with a

number associated to it, which is by default 0. Outputs

ciphertext as sum of the input ciphertext and a number

associated to it.

Step 1: c = c1 + c2

Step 2: n = n1 + n2 + 1

Step 3: Output 〈c, n〉

MULTIPLY (〈c1, n1〉, 〈c2, n2〉): Takes input ciphertexts along

with a number associated to it, which is by default 0. Outputs

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.15, July 2014

38

ciphertext as sum of the input ciphertext and a number

associated to it.

Step 1: c = c1 * c2

Step 2: n = n1 + n2 + 1

Step 3: Output 〈c, n〉

3.5 Results and Implementation
The implementation of the protocol was done in the form of

functions in Java on a 3.40 GHz Intel Core i3-2130 processor.

For comparison of run-times, each function is designed in four

versions:

1. Function f – this is the plain function as known to the

delegator. It operates on plaintexts.

2. Function f’ – This is homomorphic to f, operating on

ciphertexts and gives the result as ciphertext only. This

corresponds to input/output verifiable computation.

3. Function f’’ – This is f’ modified to include calculation of

depth of the circuit. This corresponds to depth verifiable

computation.

4. Function f’’’ – This is f’ modified to include calculation of

complexity of the circuit. This corresponds to complexity

verifiable computation.

Table 1 shows the run-time for different parameters (depth

and complexity) of the circuits which consist only of XOR

gates and Table 2 shows the same for circuits with only AND

gates. Fig 5 and Fig 6 show the graph derived from the values

of Table 1 and Table 2 respectively. Here it can be seen the

growth of cost of modified homomorphic versions for depth

and complexity verification is parabolic, that is O(d2), while

the growth of simple homomorphic function and the plain

function is only a degree lower, that is O(d). It can easily be

observed that time taken for AND operations is much larger

than XOR operations. Hence, some arbitrary circuits are

required that contain both XOR and AND gates to see the

effect of FHE and Verifiable computation. The time of

execution recorded for arbitrary circuits of various depths and

complexity is shown in Table 3, for all four versions. The

growth of verifiable computations against depth of circuit is

shown in Fig 7. Since the roles of delegator and worker are

implemented as separate threads of same Java program, the

recorded run-times do not include any communication cost,

and hence indicate purely computational cost of the

algorithms and protocols proposed.

Table 1. Performance over Circuits consisting only XOR gates

Circuit Parameters Time of Execution (in milliseconds)

Depth Complexity
Plain

Computation

Homomorphic

computation

Depth verifiable

computation

Complexity verifiable

computation

1 1 0.604 5.13 5.98 5.888

2 3 0.905 6.035 11.165 11.16

3 5 1.207 6.639 13.278 12.998

4 8 1.207 7.544 14.183 14.786

5 10 1.509 7.544 16.295 17.544

6 14 1.509 8.147 17.804 18.204

7 18 1.508 9.354 20.52 20.632

8 21 1.509 10.561 25.649 25.647

9 26 1.81 11.768 29.874 29.968

10 30 1.809 13.579 35.608 35.812

Table 2. Performance over Circuits consisting only AND gates

Circuit Parameters Time of Execution (in milliseconds)

Depth Complexity
Plain

Computation

Homomorphic

computation

Depth verifiable

computation

Complexity verifiable

computation

1 1 1.508 4.526 10.863 10.854

2 3 1.509 5.431 13.881 13.578

3 5 1.81 7.242 17.582 17.589

4 8 1.811 9.053 21.727 21.689

5 10 2.414 11.165 25.951 25.458

6 14 2.414 13.579 29.271 29.91

7 18 3.017 14.786 35.608 34.927

8 21 3.32 15.088 41.039 41.067

9 26 4.527 17.804 43.454 43.821

10 30 4.828 20.52 52.205 52.187

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.15, July 2014

39

Figure 5: Growth of run-time for all four versions with

varying depth of circuits containing only XOR gates

Figure 6: Growth of run-time for all four versions with

varying depth of circuits containing only AND gates

Table 3. Performance over arbitrary circuits

Circuit Parameters Time of Execution(in milliseconds)

Depth Complexity
Plain

Computation

Homomorphic

computation

Depth verifiable

computation

Complexity verifiable

computation

1 1 1.056 4.828 8.472 8.371

2 3 1.207 5.733 12.568 12.401

3 5 1.561 6.952 15.752 15.284

4 8 1.602 8.259 18.034 18.237

5 10 1.904 9.357 21.264 21.501

6 14 1.962 10.863 23.547 24.001

7 18 2.263 12.07 28.011 27.799

8 21 2.428 12.875 33.523 33.357

9 26 3.154 14.786 37.162 36.891

10 30 3.326 18.742 42.961 43.015

Figure 7: Growth of run-time for all four versions with

varying depth of arbitrary circuits

4. CONCLUSION
Cloud computing has presented an easy means for delegating

computationally heavy tasks over to the service providers.

Increasing use of lightweight devices is making such

delegation more essential part of upcoming applications. What

makes FHE schemes a winner in context of cloud computing

is, that it allows one to compute over encrypted data. But such

easiness of computation makes it more difficult to verify,

since the function delegated to worker for computation and its

homomorphic equivalent may differ in terms of depth or

complexity. Thus, actual computational effort put in by a

worker cannot be measured directly or clearly. Proposal given

in this paper includes three such protocols which imply

input/output verifiability, depth verifiability and complexity

verifiability for delegated computations. The proposal also

includes these definitions as was identified by us a

requirement in new applications of VDoC. The results

obtained through implementation of the scheme and protocols

vouch for its efficiency and feasibility in practical

applications.

The proposed protocols work only for those computations

which can be converted into Boolean circuits. Extending it to

work for arithmetic circuits could be a possible scope. Many

delegation applications include processes like compression,

file conversion etc, which cannot be immediately seen as an

arithmetic computation. Verifiability in context of such

applications needs to be defined and explored appropriately.

5. REFERENCES
[1] R. Gennaro, C. Gentry, and B. Parno. “Non-interactive

verifiable computing: Outsourcing computation to

untrusted workers.” In Tal Rabin, editor, CRYPTO,

volume 6223 of Lecture Notes in Computer Science,

pages 465-482. Springer, 2010.

[2] S. Goldwasser, H. Lin and A. Rubinstein. “Delegation of

Computation without Rejection Problem from

Designated Verifier CS-Proofs.” IACR Cryptology

ePrint Archive, 2012:455, 2012.

[3] D. Fiore and R. Gennaro. “Publicly verifiable delegation

of large polynomials and matrix computations, with

applications.” IACR Cryptology ePrint Archive,

2012:281, 2012

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.15, July 2014

40

[4] Ran Canetti, Ben Riva, Guy N. Rothblum: Two

Protocols for Delegation of Computation. Information

Theoretic Security - 6th International Conference, ICITS

2012, Montreal, QC, Canada, August 15-17, 2012.

Proceedings. Springer 2012 Lecture Notes in Computer

Science. pg 37-61

[5] M. Backes, D.Fiore and R.M. Reischuk. “Verifiable

Delegation of Computation on Outsourced Data.” IACR

Cryptology ePrint Archive, 2013:469, 2013.

[6] C. Gentry. “A Fully Homomorphic Encryption scheme.”

Dissertation. Sep 2009. Available at

https://crypto.stanford.edu/craig/craig-thesis.pdf.

[7] K.-M. Chung, Y. Kalai, and S. P. Vadhan. “Improved

delegation of computation using fully homomorphic

encryption.” In T. Rabin, editor, Advances in Cryptology

– CRYPTO 2010, volume 6223 of Lecture Notes in

Computer Science, pp 483–501, Springer.

[8] Fangyuan Jin; Yanqin Zhu; Xizhao Luo, "Verifiable

Fully Homomorphic Encryption scheme," Consumer

Electronics, Communications and Networks (CECNet),

21-23 April 2012 2nd International Conference

Proceedings, pp.743,746.

[9] M. Barbosa and P. Farshim. “Delegatable Homomorphic

Encryption with Applications to Secure Outsourcing of

Computation.” Proceedings of The Cryptographers’

Track at the RSA Conference 2012, San Francisco, CA,

USA, February 27 – March 2, 2012. pg 296-312.

[10] A. Vijay, T Sharma and R Modi. “Verifiable Delegation

of Computation to Untrusted Clouds: Approaches and

Open Problems.” 1st Interntaional Conference on

Emerging Trends in Engineering and Applied Science,

2013.

[11] M. van Dijk, C. Gentry, S. Halevi, and V.

Vaikuntanathan. “Fully homomorphic encryption over

the integers”, Proceedings of Eurocrypt-10, Lecture

Notes in Computer Science, vol 6110,. Springer, pp 24-

43, 2010.

IJCATM : www.ijcaonline.org

