
International Journal of Computer Applications (0975 – 8887)

Volume 97– No.1, July 2014

30

Accelerating Enhanced Boyer-Moore String Matching

Algorithm on Multicore GPU for Network Security

Manjit Jaiswal
Department of Computer Science & Engineering

Guru Ghasidas Central University, Bilaspur, India, 495001

ABSTRACT

Graphics Processing Units (GPUs) were developed for

graphics processing and it was not highly-parallel. But to

overcome this problem developed General Purpose

Computing on GPU, this is known as GPGPU.Boyer-Moore

exact string matching algorithm are heavily used in the

application of antivirus engines, DNA sequencing, text

editors, intrusion detection etc. In this environment, the GPU

was highly-parallel, multithreaded. In this Paper extend the

GPU application into other area such as string matching

problem. This paper shows the results on adapting the

enhanced Boyer-Moore (EBM) string matching algorithm to

run on GPU paradigm and comparison with serial version and

multithreaded version on CPU.The experimental results

demonstrate that GPU version of enhanced Boyer-Moore

(EBM) string matching algorithm 10 times faster than CPU

version and 9 times faster than the multithreaded version. It

can be also see there that multithreaded version of EBM

algorithm about 12% to 13% peak performance than serial

version of EBM.Speedup of EBM algorithm is grow and 12x

to 13x than serial one.

General Terms

Pattern Recognition, Security, Algorithms etc.

Keywords

EBM, GPU, Multithreaded, Parallel, BM, GPGPU, AMD,

NVIDIA CUDA, OpenCL.

1. INTRODUCTION
Open Computing Language (OpenCL) is a framework for

writing programs that execute across heterogeneous platforms

consisting of central processing unit (CPUs), graphics

processing unit (GPUs),and other processors such as DSP and

Cell BE processors. OpenCL includes a language for writing

kernels (functions that execute on OpenCL devices), plus

application programming interfaces (APIs) that are used to

define and then control the platforms. OpenCL provides

parallel computing using task-based and data-based

parallelism. Kernels are function within the OpenCL that are

executed on the devices (GPU) of the AMD, NVIDIA and

Intel. As article [3] there have string matching implementation

on GPU using CUDA .Within the kernel there are thousands

of threads executed in parallel. Unlike CPUs that are

optimized for use on sequential code, all commodity GPUs

follow a streaming, data parallel programming model

resembling SPMD (single-program multiple-data).In string

matching algorithm to find out the location of one or many

pattern in the text string. The Boyer-Moore string searching

algorithm was developed in the mid-1970s as in [17] by Bob

Boyer and J. Strother Moore. It is an efficient string searching

algorithm that does not need to search every character in a

text string records due to the use of MovDist value

preprocessing table based on the search pattern. While use of

the preprocessing table the searching Boyer-Moore algorithm

skip the maximum number of characters as possible in the text

record. NVIDIA corporation provides the flexible

programming language CUDA (the Compute Unified Device

Architecture) on GPU-based application developing [22].This

paper shows the parallelization of the enhanced Boyer-Moore

algorithm with the OpenCL software development

environment on the GPU (AMD) and compares with serial

and multithreaded version on CPU.Algorithms attempt to find

the location of one or several strings (search patterns) in a

string or text (search record). This paper is shows that

accelerating the enhanced Boyer-Moore (EBM) algorithm by

using the GPUs. Rest of the paper is organized as follows.

Section two briefly describes the prior work in GPU based

string matching algorithm. Section three describes the

implementation and performance of string matching Boyer-

Moore algorithm on the GPU.The fourth section carries out

the various results of BM algorithm on GPU, multithreaded

and serial on CPU after then shows the enhance performance

of the EBM algorithm. Eventually section five draws the

conclusion and future direction of this work.

2. RELATED WORK
String matching is an important problem in text processing

and is commonly used to locate the appearance of one

dimensional arrays (the so-called pattern) in an array of equal

or larger size (the so-called text).The string matching problem

can be defined as: let Σ be an alphabet, given a text array T[n]

and a pattern array P[m], report all locations [i] in T where

there is an occurrence of P, i.e. [i + k] =P[k] for m ≤ n. Jacob

and Brodley were the first that tried to use the GPU as a

pattern matching engine for NIDS [21].Scalpel uses the

Boyer-Moore single pattern search algorithm as in [20].

Boyer-Moore [14], BMH [13], and BMHS [11] have

developed pattern matching algorithms Central to these

algorithms is a bad character function for P that specifies how

many characters to shift P right before reexamining pairs of

characters from P and S for a match. Serial version of

enhanced BM algorithm shows that how to performance

calculates by BM algorithm. The program’s string-matching

kernel executes parallelized searching of string matching

algorithms using global memory. The parallel

implementations were presented of the Naive, Knuth-Morris-

Pratt, Boyer-Moore-Horspool and the Quick-Search on-line

exact string matching algorithms using the CUDA toolkit as

in [3].

http://en.wikipedia.org/wiki/Heterogeneous_computing
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Parallel_computing

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.1, July 2014

31

3. IMPLEMENTATION AND

PERFORMANCE

3.1 Parallel Enhanced Boyer-Moore

algorithm (EBM)
EBM algorithm based on single-string matching BM

algorithm as in [5]-[12]. The pseudo code of parallel

Enhanced BM algorithm is given below in Fig 1.

Fig 1: GPU based EBM algorithm

Before pattern matching; there is a preprocessing phase which

is calculated only once time for further use by kernel source

and it creates an index table with entry according to refer to

2.Preprocessing phase have time complexity O (m+∑).

3.2 Problem of Direct implementation of

Boyer-Moore algorithm on GPU
In this paper, we study the use of parallel computation on

GPUs for accelerating string matching. A direct

implementation of Boyer-Moore parallel computation on

GPUs is to divide an input stream into multiple segments,

each of which is processed by a parallel thread for string

matching .But in this method it we cannot detect the boundary

condition i.e. we cannot find out occurring of the pattern on

the boundary of the adjacent segments. For example in the

Fig. 2 assume that using a single thread to find out pattern

PQR in the text takes 16 cycles as [1]. If we divide the single

thread into four threads and allocate each segment a thread to

find out the same pattern simultaneously then four threads

takes only four cycle to detect same pattern.

 Fig 2: Single and multiple threads

However in this method there it cannot detect the occurring in

the boundary of adjacent segment. For example in Fig. 3

shows such type of problem. The pattern PQR appeared in the

segment 3 and 4.In this condition thread 2 and 3 cannot find

out pattern. To overcome these problems as in fig.4 with any

despite the boundary detection problem can be resolve by

using refer to (1).We divide the text record into threads such

as that number of character in the each threads stimulated by

refer to (1).

 NCT=nt/tn + (mp-1)

Where

NCT=total number of character in the each threads

nt=text length

mp= pattern length

 tn = number of threads

Fig: 3 Boundary detection problems

Fig:4 Solution of Boundary detection problem

In this paper it proposed a parallel enhanced Boyer-Moore

algorithm (EBM) which is accelerated the string matching

problem.OpenCl SDK uses to port the enhanced Boyer-Moore

string searching algorithm to execute in parallel on the GPU.

The GPU is used to implement the Boyer-Moore in the

following manner:

1. Pre-compute Boyer-Moore index value table on the CPU

for the search pattern. All the character is initialized with -

1 and that type of character which is appeared in the

pattern then initialized with maximum index value of the

pattern by refer to 2.

 J, if j of c in the pattern P is the last

occurred position value where 0≤ j≤m-1

- - 1, otherwise

2. Transfer the index value table from CPU to GPU.

3. Transfer the pattern string from CPU to GPU global

memory.

4. Transfer the text record from the CPU to GPU global

memory.

 EBM (P, T)

1. Preprocessing phase //execution on CPU

2. Index[c] refers to 2.

3. End of preprocessing phase

4. Kernel function EBM (T , P, Index[c])

//execution on GPU

5. While(i<n){

6. if(Index[T[i]]]==-1)

7. i++}

8. else

9. break

10. i=i+m-1

11. j=j-1

12. do{

13. while(T[i]==P[j]){

14. i=i-1

15. j=j-1}

16. While(i<n-1){

17. If(Index[T[i+1]==-1]

18. i++}

19. i=i+m-Min (j, 1+Index [T[i]])

20. j=m-1;

21. }while(i<n)

22. End of do-while loop

23. End of the kernel function.

 MMMMMMMMMPQRMMRM

 (a): Single thread method

 MMMM MMMM MPQR MMRM

 (b): Multiple threads method

MMMM MMMP QRMM MMMM

Thread1 Thread2 Thread3 Thread4

Th read1 Thread2 Thread3 Thread4

MMMMMMMPQRMMMMMM

Index[c] =

(2)

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.1, July 2014

32

5. Run the enhanced Boyer-Moore algorithm for search

the pattern string on the OpenCL kernel GPU global

memory for all the text record.

6. Transfer the result of the OpenCL kernel from GPU to

CPU.The results includes the total number of occurrences

of the pattern in the text otherwise pattern did not find.

7. The moving distances (MovDist) value find out by refer to

3.

 MovDist= {i+m-MIN (j, 1+Index [T[i]])} (3)

Where m=pattern length

j=m-1

i=n-1

T[i] = text record

It is calculated by multiple threads simultaneously. The above

steps number 1, 2, 3, 4 are initialized steps and execute once

for particular pattern. Step 5 is executed in SIMD manner

depending upon text data. Step 6 is transfer the results from

GPU to CPU.Maximum number of thread in each block that

will be execute simultaneously by the GPU depending upon

requirement for different data file.

4. EXPERIMENT RESULTS AND

COMPARISONS

4.1 Environment of Hardware

Serial, multithreaded and parallel platform are show below in

the table 1.The hardware specification of the serial and

multithreaded show in the table 1.

Table 1. Hardware specification of CPU

CPU version Intel core™ i3

Frequency of CPU core 3 GHz

Max power consumption 73 Watt

Total RAM 4GB

OS 32-bit Window 7

Number of core in Intel i3 2 core and 4 threads

The hardware specification of the parallel platform show in

the table 2.

Table 2. Hardware specification of parallel platform

GPU version AMD 6850

RAM of CPU 4GB DDR3

CPU version Intel core™ i3

Engine frequency 775MHz

Frequency of CPU core 3 GHz

Max power consumption 500 watt

Memory of GPU 1 GB 256 bit GDDR5

Core frequency 1000 MHz

Number of cores in GPU 192

OS 32-bit window 7

4.2 Software
The following software installed on the system device. The

OpenCL SDK version 4.1 installed. The OpenCL toolkit

includes sample application that demonstrates various features

of the OpenCL programming environment.

4.3 GPU vs. CPU vs. Multithreaded on

CPU
The experiments contain three parts, serial string-matching,

multithreaded string matching and parallel string-matching.

We take 50 MB, 100 MB, 150 MB, 200 MB, and 250 MB text

string and 4 byte and 8 byte of pattern string. We Compare the

GPU version, serial version and multithreaded version on

CPU of enhanced BM algorithm show in the table 3 and 4.

We can see there that GPU based enhanced BM (EBM)

algorithm is approximately 10 times peak than CPU version

and 9 times peak performance than multithreaded CPU

version. But multithreaded version of CPU takes less times

and about peak performance than serial version. Results are

show below in the table 3.We can also compares speedup and

see there that GPU based enhanced BM algorithm almost 12x

for 4 byte pattern and almost 14x for 8 byte search pattern.

Although different type of memory has different accessing

speed and size. We put the text and pattern into the global

memory and find out the pattern into text. The speedup results

are also show in the table 3 and 4 for different pattern size and

text records. Speedup is defined by the following formula

refer to 4:

SP ==

 (4)

 Where,

 p is the number of processors.

 T1 is the execution time of the sequential algorithm.

 Tp is the execution time of the parallel algorithm
with p processors.

Table 3 and Fig. 4 shows consequently the result of the data

record with 24% of the text records containing matches for the

search patter and their resulting graph. Similarly table 4 shows the

result of the data record with 35% of the text records containing

matches for the search pattern and Fig 5 shows their graph of

execution time. The results shown in Tables 3 and 4 only include

the times for executing the searches on both the GPU and CPU.

These numbers do not include any time required for

preprocessing Index table calculations and data transfers to and

from the GPU.As a result of Speedup when run the EBM

algorithm successfully on the GPU of AMD 6850 and calculate

the speedup by formula refer to 4 then finally it gets the almost

13x almost speedup on the GPU of AMD 6850 and this will be
change go high when use many more core type of the GPU.

 T1

T2

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Central_processing_unit

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.1, July 2014

33

Table 3. Comparisons of performance with 24% of Records Matching

Text

Records

Pattern size GPU(s) Serial on

CPU(s)

Multithreaded on CPU(s) No of occurrences of pattern

50MB 4 bytes 0.007 0.070 0.062 2355994

100MB 4 bytes 0.012 0.141 0.128 4711989

150MB 4 bytes 0.020 0.231 0.174 7067983

200MB 4 bytes 0.027 0.310 0.227 9423976

250MB 4 bytes 0.031 0.402 0.261 11779969

Table 4. Comparisons of performance with 35% of Records Matching

Text

Records

Pattern size GPU(s) Serial on CPU(s) Multithreaded on

CPU(s)

No of occurrences of pattern

50MB 8 byte 0.00621 0.066 0.052 2355994

100MB 8 byte 0.0095 0.123 0.104 4711989

150MB 8 byte 0.0144 0.181 0.141 7067983

200MB 8 byte 0.019 0.252 0.20 9423976

250MB 8 byte 0.025 0.303 0.244 11779969

Fig 5: Execution time performance of all three EBM versions for 4 byte pattern size

Fig 6: Speedup performance for 4 byte pattern

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.1, July 2014

34

Fig 7: Execution time performance of all three EBM versions for 8 byte pattern size

 Fig 8: Speedup performance for 8 byte pattern

5. CONCLUSION
In this paper we have presented the enhanced Boyer-Moore

algorithm based on the GPU.The enhanced Boyer-Moore

algorithm accelerated the pattern searching process about 10x

than serial version on CPU and almost 9x faster than the

multithreaded version on CPU.As future work and it can try to

do more research and more suitable application on the GPU

such as text editor and virus scanning by the enhanced Boyer-

Moore algorithm. The biggest challenge in any next step

would be to scale the GPU application to handle larger data

loads. Another challenge is the efficient use of the small on-

chip memories.

6. ACKNOWLEDGMENT
This work was totally supported by the Guru Ghasidas Central

University; Bilaspur (India).Special thanks are to be Dr.

Manish Shrivastava. He gave to many suggestions.

7. REFERENCES
[1] Cheng-Hung Lin, Sheng-Yu Tsai, Chen-Hsiung Liu,

Shih Chieh Chang, Jyuo-Min Shyu,” Accelerating string

matching using multi-threaded algorithm on GPU”,

IEEE Globecom 2010.

[2] Kenneth Ryan VeriSign Labs, “An Evaluation of GPUs

for Accelerating a Selected String Searching

Algorithm”,21345 ridge top circle,Dulles,VA 20152.

[3] Charalampos S. Kouzinopoulos and Konstantinos

G.Margaritis,” String Matching on a multicore GPU

International Journal of Computer Applications (0975 – 8887)

Volume 97– No.1, July 2014

35

using CUDA”, 2009 13th Pan-Hellenic Conference on

Informatics.

[4] Jiangfeng Peng,Hu Chen,”CUgrep:A GPU-based high

Performance Multi-String Matching System”2010

IEEE:V1-77 to V1-81

[5] Lingling yuan,”An improved algorithm for Boyer-

Moore string Matching Chinese Information Processing”

, IEEE.pp. 182-184,2011.

[6] Zhengda Xiong,”A composite Boyer-Moore Algorithm

for the string Matching Problem” IEEE.pp. 492-

496,2010.

[7] Xingxing Wang,” A BM algorithm oriented on Network

Security Audit System” IEEE.978-1-4244-5895, 2010.

[8] Yang Tong, Qiao Xiang-dong, “Analyze and

Improvement of BM Algorithm” IEEE: 978-1-4244-

3693, 2009.

[9] Prasad JC, Dr.K.S.M. Panicker,”Single Pattern Search

Implementations in a Cluster Computing Environment” ,

IEEE.pp391-396,2010.

[10] Knuth,D.E,Morries,Jr.,J.H.,and pratt,V.B.” fast pattern

matching in string SIAM J.comptng.6,2(1977),pp323-

350.

[11] Yuting Han, Guoai Xu “Improved algorithm of pattern

matching based on BMHS”, IEEE.pp238-241,2010.

[12] Zhu Yong giang,”Two enhanced BM algorithm in

pattern matching”, IEEE.pp341-346,2011.

[13] Yihui SHAN, Yuming JIANG, Shiyuan TIAN,

“Improved Pattern Matching Algorithm of BMHS for

Intrusion Detection”. Computer Engineering, vol.35,

2009, pp.170-173

[14] Zhanjun REN, Quanzhu YAO, Xiaofeng WANG,

Youjiao ZOU,“Application of Pattern Matching

Algorithm in Intrusion Detection Technique”. Modern

electronic technology, vol.2, 2009, pp.63-67

[15] Baishuhong. Eason, An Improvement on BM Algorithm

for Chinese, fujiandiannao, pp. 90–91, October. 2009.

IJCATM : www.ijcaonline.org

