
International Journal of Computer Applications (0975 8887)
Volume 96 - No. 9, June 2014

Ant Colony Optimization (ACO) and a Variation of Bee
Colony Optimization(BCO) in Solving TSP Problem, a

Comparative Study

Muhammed Basheer Jasser*
Faculty of Computer Science and Information Technology

Universiti Putra Malaysia
43400 UPM Serdang, Selangor, Malaysia

Mohamad Sarmini*
Faculty of Electrical And Elecronic Engineering

University Of Aleppo

Rauf Yaseen
Faculty of Electrical And Elecronic Engineering

University Of Aleppo

ABSTRACT
Traveler sales man problem is known research problem which has
a lot of industrial applications. A lot of algorithms has been pro-
posed to solve TSP, some of Ant Colony Optimization (ACO) and
Bee Colony Optimization (BCO) algorithms. BCO algorithm has
variations and enhancements to improve the performance. In this
paper, a experimental comparison study between the basic Ant
Colony Optimization and enhanced Bee Colony Optimization al-
gorithms is done. Both ACO and enhanced BCO have been imple-
mented using MATLAB. The comparison study includes compar-
ing the time consumed, solution quality and algorithmic complex-
ity in order to prove the effictivness and efficiency of each. The
experimental study showed that the basic ACO outperforms the en-
hanced BCO in the required consumed time to get the solution path,
while enhanced BCO proved to provide better solution quality.

General Terms:
Swarm Intelligence, Evolutionary Computing

Keywords:
ACO, BCO, TSP

1. INTRODUCTION
Traveler sales man problem (TSP) [1] is very popular in the re-
search community. TSP stands for finding the Hamiltonian path
with the minimum cost. It has a lot of applications, this includes:
enhancing transportations, finding the best route in network and
enhancing routing algorithm. So many algorithms have been pro-
posed to solve TSP problem, some of these algorithms are derived
from animal behavior like ant colony and bee colony optimization
algorithms (ACO, BCO). These algorithms are considered optimiz-
ing in which each system evolution cycle the solution is enhanced
and improved. In ACO [4], Ant starts searching for food source
randomly, when finding a source, it deposits chemical acid on its

way returning to the nest. When new ant starts the searching pro-
cess it follows the acid trails left by other ants to minimize the cost
and enhance solution. Similarly for BCO algorithm[11] where bee
searches for flower nectars, returns back to the hive and do waggle
dancing in order to guide other bees in their journey. This type of
behavior for both ant and bees is optimizing, means that better so-
lution and minimum cost is guaranteed in the future. BCO has a lot
of variations to enhance the performance and solution quality. One
of these variations is integrating the original BCO with 2-opt lo-
cal search heuristic so that better solutions can be obtained for TSP
problem[14]. In this work, both original ACO and enhanced BCO
algorithms are implemented using Matlab, so the objective of this
paper is to analyze the algorithm complexity and solution quality of
both in the form of comparative study. The structure of this paper
is as follows: section2 will discuss about background of TSP, ACO
and BCO, section3 explains the enhanced BCO, section4 shows the
experimental results, Discussion of the experimental results and al-
gorithmic complexity analysis are explained in section5 and finally
section6 concludes the work.

2. BACKGROUND
Traveler Sales Man problem (TSP)[1] is known research problem, a
lot of algorithms could be tested against this problem. In TSP prob-
lem, a sales man is supposed to visit a set of cities and return back
to the starting point without repetition. For any algorithm employed
to solve this problem, the aim here is to obtain the shortest journey
length with the minimal algorithm and running time. Many Algo-
rithms families have been proposed to solve TSP, some of called
swarm intelligence algorithms, other called evolutionary computa-
tion. ACO[4] and BCO[11] algorithms are considered swarm intel-
ligence algorithms. Evolutionary computation family includes al-
gorithms like genetic algorithm[13].

2.1 Ant Colony Optimization Algorithim
ACO algorithm was suggested by Marco Dorigo in his Ph.D thesis
at 1992. ACO algorithm [4] simulates the ant behavior in searching

1

International Journal of Computer Applications (0975 8887)
Volume 96 - No. 9, June 2014

for food source and depends on ant population where each ant rep-
resents on solution and communicates with other ants to enhance
the obtained solution. An ant starts randomly searching for food
source, if a food source has been found, the ant leaves Formic acid
tail on its way to the nest which attracts nearby ants so that they fol-
low this tail. When returning back to the nest these ants also leave
acid on the same way so that the concentration increases. If more
than path is found between the nest and the food source, the shorter
distance is chosen. The Acid concentration increases on the shortest
path so that it becomes more attractive to ants. Over time the acid
concentration decreases on the longer distances. Figure 1 shows
how the pheromone is updated during time where yellow, green
and red represents the acid concentration from lowest to highest.

Fig. 1. ACO Pheromone Trail Update

The general pseudo code of ACO algorithm is shown in Figure 2. It
starts with generating initial random solutions, then perform some
actions in order to find better solutions and update the pheromone
which means modify the solution space obtained for better future
solutions enhancements. All these actions are performed iteratively
for fixed times or until some solution quality level is obtained.

Fig. 2. ACO Algorithm Pseudo Code

2.2 Bee Colony Optimization Algorithm
Similar to ACO algorithm, BCO algorithm [11] is also considered
of the family of swarm intelligence algorithm. BCO simulates the
bees behavior in nature during the search process of flower nec-
tar. Figure 3 shows the pseudo code of BCO algorithm where it
is noticed that BCO requires a different number of parameters: n
is the number of bees assigned to search for food (search for solu-
tion), m is the number of sites to visited by n bees, in TSP problem
m represents the cities to be visited, and e which represents the
best sites out of m sites. BCO algorithm starts by initializing the
population with random solutions, then iteratively evaluates each
solution fitness and obtains better solution from the neighborhood.
BCO algorithm continues until no better solution can be obtained
or considering other stopping criteria.

Fig. 3. Basic BCO Algorithm Pseudo Code

2.3 Related Work
A lot of consideration has been given to solve TSP research
problem. F.H Khan et al. [7] proposed a new technique to represent
chromosomes in genetic algorithms using binary matrix and new
fitness criteria in order to find the optimal solution for TSP. M.
Mi et al. [9] proposes a new evolutionary algorithm similar to
Genetic algorithm, but with different crossover technique in order
to enhance the performance in finding the best solution. Z.Y.
Quan. et al. [15]proposed a new swarm optimization algorithm
called Discrete Glowworm swarm optimization algorithm. In
their proposed algorithm, a new encoding and decoding schemas
are introduced to represent the TSP problem characteristics. X.
Geng et. al [5] proposes a local search algorithm based on greedy
search and simulated annealing to solve the TSP, in order to obtain
more accurate solutions, a combination of three mutation types
are adopted with the basic simulated annealing algorithm. E.
lizarraga et. al [8] proposes ant partition approach for Ant Colony
Optimization (ACO) which uses different variations of ACO to
evaluate the different partitions of ant set in the same iteration,
this work is based on the divide and conquer idea with a stopping
criterion if some solutions set is not performing well.

Several experimental studies have been carried out to com-
pare the algorthims introduced to solve the TSP problem in order
to evaluate the effectivness and efficiency of the different algo-
rithms and approaches. W. Hui et. al [6] presents an experimental
study to compate three different algorithms in solding TSP: basic
genetic algorithm, Hopfield neural network and basic ant colony

2

International Journal of Computer Applications (0975 8887)
Volume 96 - No. 9, June 2014

algorithm. These algorithms are compared for time complexity,
space complexity and the difficulty level of realization, the results
showed that the time complexity of the basic genetic algorithm is
the highest and the lowest time complexity is ant colony optimiza-
tion, and the space complexity is the highest for the basic genetic
algorithm and same for both Hopfield networks and ant colony
algorithms. N.A.M. Zin et. al [16] performed an experimental
study to compare exhaustive, heuristic and genetic algorithms
where 25 cities are considered and the solution is written in prolog.
The comparison has been made in the perspective of time taken
to find the solutions and the optimal solutions obtained by each
type of algorithm. It has been found that heuristic algorithms
gives the solutions with very good time while genetic algorithm
appeared to be promising in the perspective of the shortest path
obtained among other algorithms. E. Osaba et. al [10] introduces
a comparison study between a Tabu search based and memetic
algorithm, according to this experimental study it has been found
that Tabu search based algorithm gives the solution in better
execution time while memetic algorithm provides a better solution
quality in the term of path length, so if the running time is more
important than the solution quality tabu search algorithm must be
chosen otherwise if the solution quality is more important, memetic
algorithm must be chosen. A. Chikhalikar et. al [3] introduces a
comparative study between basic ACO and BCO algorithms, it was
found that ACO requires more computational time compared to
BCO, and ACO is more suitable for application where the search
space is not so big while BCO is more suitable for larger search
spaces. R. Sagayam et. al [12] performed a comparison study
between ACO and BCO algorithms in solving spam host detection
problem, it was found that ACO outperforms BCO in obtaining
the optimal solution, that’s why it was concluded in this study
that ACO is better to be used in detecting spam host than BCO.
M.K. Bedi et. al [2] discussed both ACO and BCO application in
fault detection problem, the experimental study showed that BCO
gives better solution quality than ACO in solving fault detection
problem.

3. ENHANCED BCO ALGORITHM
According to the model proposed by L.P.Wong et. Al[14], A bee
is allowed to explore complete tour path. Before leaving the hive,
it observes other bees waggle dances in order to know which set
of moves to follow in its expected journey, this path is called the
preferred path which will guide the bee during its journey and
represents one possible solution R. A solution R is a possible
permutation of the cities to be visited.
During bee journey, a bee travel from one city to another until
reaching the destination, this depends on decision made by the bee
in each move which is based on heuristic rule. This rule consists
of two factors arc fitness and heuristic distance. The factor arc
fitness is computed for all the cities that can be visited by a bee
at specific journey step, where higher fitness value is assigned to
the arc which is part of the preferred path. On the other hand, bee
tends to visit the next city which is closer to current one depending
on heuristic distance factor.

BCO algorithm has been integrated with local search opti-
mization technique to improve original algorithm performance.
This is explained in the next following steps:

—1) Producea pseudorandom feasible solution, R.
—2) Performa transformation on R to produce R’.
—3) ReplaceR with R’ if R’ is found to be better than R.

—4) Repeatstep 2 until no improvement is observed. At this
stage, R is said to be locally optimal.

—5) Repeatstep 1 to step 3 until a pre-defined computation time
is exceeded or when a satisfactory result is gained.

R represents permutation of arcs connecting all cities in TSP prob-
lem. Applying previous steps guarantees that R will locally opti-
mal means that a better solution can be obtained earlier than orig-
inal BCO when using local search technique. The enhanced BCO
model pseudo code is shown in Figure 4 where first, initial pop-
ulation is generated with equipped random preferred paths. This
is because when the algorithm starts, no bee has ever did journey
means that no waggle dance to be observed by other bees. The al-
gorithm will be executed for a fixed number of times depending on
some criteria which may be: no solution improving or limited time
of iterations. This model has been implemented using MATLAB
for further analysis in this experimantal study.

Fig. 4. Enhanced BCO Algorithm Pseudo Code

4. EXPERIMENTAL RESULTS
Both ACO and enhanced BCO algorithms have been implemented
using array data structure where the journey paths, set of moves,
pheromone trails and waggle dances are represented using two
dimensional arrays. Matlab is used to implement these algorithms
since its main data structure used is array. For each model,
diagrams are constructed which represents the solution of each
iteration, best journey path and best time. These experiments has
been carried out on an Intel Core i3- 2350M laptop with 2.30 GHz
and a RAM of 4GB DDR3. Figure 5 shows an example of one
iteration solution where it is represented by nodes (cities) and arc
(edges).

To carry out the experiments, an array of 30 rows and 2 columns
was used which represents 30 cities including its Coordinates X
and Y. Depending on this array the distances array is generated
and calculated which has 30 rows and columns. The experiments
were executed three times for both algorithms, this covers iteration
10,50 ,200 and 1000. In each execution, best length obtained and
execution time were registered in order to serve the comparison
procedure. Figure 6 shows the experiments results.

Figures 7, 8 show the best obtained solution for BCO and ACO
resepctively for iteration number equal to 200 where it is noticed
that Enhanced BCO gave better solution than ACO.

3

International Journal of Computer Applications (0975 8887)
Volume 96 - No. 9, June 2014

Fig. 5. An Example of Solution

Fig. 6. Experimental Results

Fig. 7. EnhancedBCO Solution

Figure 9, 10 shows the graph of best obtained journey path length
for each iteration for both EBCO and ACO respectively.

5. DISCUSSION
It is noticed from Figure 6 that enhanced BCO produces better so-
lution quality in the term of journey path length compared to ACO,

Fig. 8. ACO Solution

Fig. 9. EBCO Journey Paths Lengths Graph

Fig. 10. ACO Journey Paths Lengths Graph

comparing to what has been found in the experimental study in
[12] where ACO outperformed BCO in obtaining better solution
quality in solving spam host detection problem, that’s why in our
experiment ACO is compared with the enhanced BCO where en-
hanced BCO outperforms ACO in finding the solution quality for

4

International Journal of Computer Applications (0975 8887)
Volume 96 - No. 9, June 2014

solving the TSP problem. ACO execution time is less than its ri-
val means that it costs less time than BCO for small number of
iterations, but as the number of iterations is increasing the execu-
tion time difference between ACO and enhanced BCO decreases,
in other words, for big search space/ cities number and iterations,
both algorithms are approximately equal in the computational time,
while for smaller search space/ cities number and less interations
number ACO gives better execution time than enhanced BCO. So
it is possible to say that if it’s wanted to get better solution quality
from ACO, more iterations must be considered means that more
computational time which may be the same or more than the com-
putational time required from enhanced BCO to find a better qual-
ified solution. This means if the objective is to get better execution
time for small search space without giving too much care about
the solution quality, then ACO must be chosen, otherwise for big
search space, enhanced BCO gives approximately the same com-
putational time and better solution quality so enhanced BCO must
be chosen. Figures 7, 8 show the solution obtained by enhanced
BCO and ACO respectively, this solution as obvious is represented
by a set of nodes connected by a set of arcs. The solution best path
length is calculated by summing arcs length. Journey paths lengths
are calculated for each iteration and a graph representing the how
the solution is improved is shown in Figures 9, 10. It is noticed in
Figure 9, which represents the solution improvement rate for en-
hanced BCO, that the best solution is found at the early iterations,
this is explained by the local optimal solution obtained by BCO
model, this is considered as disadvantage of this model in a way of
not being able to improve the solution in future system evolution.
On the contrary, it is obvious in Figure 10 that ACO starts with
a solution with high path length and improves with iteration, this
actually reflects optimization concept in these models.

5.1 Algorithmic Complexity Analysis
In this section, big-theta for ACO and enhanced BCO will be
analyzed depending on the number of execution for each algorithm
step. To get the most accurate big-o analysis, matlab profiling
function has been used to find lines of code hit calls and the
running time, this will help in reflecting theoretical analysis in
the real algorithm implementation using specific processor and
memory.

The complexity in this situation mostly affected by three
main factors which are: The number of bees or ants m, the
number of cities n and the number of iterations nc. Considering
m equals n, two factors remain in the analysis: m and nc. Since
the implementation of ACO and EBCO depends on the iteration
number in improving the solution, the number of execution will be
the same for each experiment, in other words, there is no need to
consider the big-omega algorithmic. Some optimization algorithms
implementation depends on stopping criteria when the solution
obtained is better than a specific limit, while in this case, a number
of iteration nc is tested for each experiment no matter if the best
solution is obtained or not.

The interest here is the code part of the algorithm implemen-
tation, means that the complexity of other functions calls like open
GUIs or functions that do the same functionality with the same
calls number for both ACO and EBCO is not considered, because
it wont affect the comparison analysis and its complexity can be
accumulated later.

In ACO algorithm, analysis of the main while iteration loop

is analyzed considering m equals to 30 and NCmax equals to 10.
Table 1 shows the ACO statements call hit of the main algorithm
code. It is noticed from the table that the execution in most of its
parts is straight forward, means that the statement has a fixed time
to be executed . In other words, there is no big-omega algorithmic
complexity to be considered.
Discarding the small complexity parts and considering only
the major parts results in concluding that big-o for ACO is
O(NCmax*m∧3). Similarly for enhanced BCO, Tables 2 3 shows
EBCO statements call hit of the main algorithm code.
Similar to ACO, the major part of complexity is only considered,
this results the complexity of BCO is O(NCmax*m ∧ 3).

6. CONCLUSION
In this work, two algorithms have been compared from three dif-
ferent viewpoints: the solution quality, algorithm complexity and
running time. Its meant by solution quality the algorithm ability
to obtain the best solution, in TSP problem it is represented by
the shortest route. It has been found that the enhanced bee algo-
rithm produces better solution especially at the early iterations. On
the other hand it is found also that ACO algorithm costs less time
compared to enhanced BCO when the search space and iteration
numbers are small, but when the search space and iteraations num-
ber increase, the computational time for both ACO and enhanced
BCO becomes aproximately similar. Regarding the algorithm com-
plexity it is found that both algorithms have the same O(n) function.
This result was obtained by theoretical analysis of each line of code
and compare it with the results obtained from Matlab. In both algo-
rithms, the array data structure has been used in the representation
of individuals journey. The experiments were carried out for small
number of cities, in this work 30 cities, in future greater number
of cities and bigger search space may be tested and considered for
deeper analysis.

7. ACKNOWLEDGEMENT
This work was funded by Malaysian Technical Cooperation
Program (MTCP) fund from the malaysian government, refer-
ence number KPT.B.600-5/3 JILID 3. Corresponding authors:
Muhammed Basheer Jasser, Mohamad Sarmini .

8. REFERENCES
[1] David L Applegate. The traveling salesman problem: a com-

putational study. Princeton University Press, 2006.
[2] Mandeep Kaur Bedi and Sheena Singh. Fault detection tech-

niques prioritization using bee colony optimization and then
comparison with ant colony optimization. International Jour-
nal of Computer Applications, 69(17), 2013.

[3] Aditi Chikhalikar and Avanti Darade. Swarm intelligence
techniques: Comparative study of aco and bco. self, 4:5, 1995.

[4] Marco Dorigo and Luca Maria Gambardella. Ant colony sys-
tem: a cooperative learning approach to the traveling sales-
man problem. Evolutionary Computation, IEEE Transactions
on, 1(1):53–66, 1997.

[5] Xiutang Geng, Zhihua Chen, Wei Yang, Deqian Shi, and Kai
Zhao. Solving the traveling salesman problem based on an
adaptive simulated annealing algorithm with greedy search.
Applied Soft Computing, 11(4):3680–3689, 2011.

[6] Wang Hui. Comparison of several intelligent algorithms for
solving tsp problem in industrial engineering. Systems Engi-
neering Procedia, 4:226–235, 2012.

5

International Journal of Computer Applications (0975 8887)
Volume 96 - No. 9, June 2014

Table 1. ACO Algorithmic Analysis
Statement Calls Hit Value Time/Sec
while NC¡=NCmax NCmax+1 11
Randpos=[] NCmax 10
for i=1:(ceil(m/CityNum)) NCmax 10
Randpos=[Randpos,randperm(CityNum)] NCmax 10
end NCmax 10 0.01
Tabu(:,1)=(Randpos(1,1:m))’ NCmax 10
for j=2:CityNum (The comparison operation) NCmax * m 300
for i=1:m (The comparison operation) NCmax *(m-1)*(m+1) 8990
visited=Tabu(i,1:(j-1)); NCmax *(m-1)*m 8700 0.04
J=setdiff(1:CityNum,visited) NCmax *(m-1)*m 8700 2.7
P=J; NCmax *(m-1)*m 8700 0.01
for k=1:length(J)(The comparison operation) NCmax*(m-1)*m*(m+1)/2 134850 0.01
P(k)=(Tau(visited(end),J(k))∧ Alpha)*(Eta(visited(end),J(k))∧ Beta) NCmax*(m-1)*m*(m)/2 130500 0.08
end NCmax*(m-1)*m*(m)/2 130500 0.03
P=P/(sum(P)) NCmax *(m-1)*m 8700 0.12
Pcum=cumsum(P) NCmax *(m-1)*m 8700 0.02
Select=find(Pcum¿=rand) NCmax *(m-1)*m 8700 0.05
tovisit=J(Select(1)) NCmax *(m-1)*m 8700 0.01
Tabu(i,j)=tovisit NCmax *(m-1)*m 8700 0.01
end NCmax *(m-1)*m 8700 0.01
end NCmax * (m-1) 290 0.01
if NC¿=2 NCmax 10
Tabu(1,:)=Rbest(NC-1,:) NCmax-1 9
end NCmax-1 9
L=zeros(m,1) NCmax 10
for i=1:m (The comparison operation) NCmax * (m+1) 310
R=Tabu(i,:) NCmax * m 300
L(i)=CalDist(D,R); NCmax * m 300 0.01
end NCmax*m 300 0.01
Lbest(NC)=min(L) NCmax 10
pos=find(L==Lbest(NC)) NCmax 10
Rbest(NC,:)=Tabu(pos(1),:) NCmax 10
Lave(NC)=mean(L) NCmax 10 0.01
drawTSP(C,Rbest(NC,:),Lbest(NC),NC,0) NCmax 10 1.17
NC=NC+1 NCmax 10
DeltaTau=zeros(CityNum,CityNum) NCmax 10
for i=1:m NCmax * (m+1) 310
for j=1:(CityNum-1)(The comparison operation) NCmax * m * m 9000 0.01
DeltaTau(Tabu(i,j),Tabu(i,j+1))=DeltaTau(Tabu(i,j),Tabu(i,j+1))+Q/L(i) NCmax * m * (m-1) 8700 0.01
end NCmax * m * (m-1) 8700 0.01
DeltaTau(Tabu(i,CityNum),Tabu(i,1))=DeltaTau(Tabu(i,CityNum),Tabu(i,1))+Q/L(i) NCmax * m 300 0.01
end NCmax * m 300 0.01
Tau=(1-Rho).*Tau+DeltaTau NCmax 10
Tabu=zeros(m,CityNum) NCmax 10
tauji(NC)=Tau(1,2) NCmax 10
end NCmax 10 0.01
Pos=find(Lbest==min(Lbest)) 1
ShortestRoute=Rbest(Pos(1),:) 1
ShortestLength=Lbest(Pos(1)) 1
Lbestant=Lbest 1

[7] Fozia Hanif Khan, Nasiruddin Khan, Syed Inayatullah, and
Shaikh Tajuddin Nizami. Solving tsp problem by using ge-
netic algorithm. International Journal of Basic & Applied Sci-
ences, 9(10), 2009.

[8] Evelia Lizárraga, Oscar Castillo, and José Soria. A method
to solve the traveling salesman problem using ant colony

optimization variants with ant set partitioning. In Recent
Advances on Hybrid Intelligent Systems, pages 237–246.
Springer, 2013.

[9] Mei Mi, Xue Huifeng, Zhong Ming, and Gu Yu. An improved
differential evolution algorithm for tsp problem. In Intelligent
Computation Technology and Automation (ICICTA), 2010 In-

6

International Journal of Computer Applications (0975 8887)
Volume 96 - No. 9, June 2014

Table 2. Enhanced BCO Algorithmic Analysis
Statement Calls Hit Value Time/Sec
while(i¡=m)(The comparison operation) m+1 31
rand=randint(1,1,[1,n]); The best case m / average 4m 30/120 0.07
found=ismember(rand,prefTabu(:,1)); The best case m / average 4m 30/120 0.04
if found == 0 The best case m / average 4m 30/120 0.01
prefTabu(i,1)= rand m 30
i=i+1; m 30
end; m 30
end The best case m / average 4m 30/120 0.01
for i=1:m m+1 31
j=2 m 30
while(j¡=n)(The comparison operation) m*(m+1) 930
rand=randint(1,1,[1,n]) 3617 2.53
found=ismember(rand,prefTabu(i,:)) 3617 0.51
if found == 0 3617 0.01
prefTabu(i,j)= rand 870 0.01
j=j+1 870
end 870 0.01
end 3617 0.01
end m 30
Tabu(:,1)=prefTabu(:,1) 1
while NC¡=NCmax (The comparison) NCmax+1 11
PFcolony=0; NCmax 10
PF=zeros(1,n) NCmax 10
LTrack=zeros(1,n) NCmax 10
LpTrack=zeros(1,n) NCmax 10
for i=1:m (The comparison) NCmax * (m+1) 310
Tau=zeros(n) NCmax * m 300
P=zeros(n) NCmax * m 300 0.01
for j=2:n (The comparison) NCmax * m * m 9000
visited=Tabu(i,1:(j-1)) NCmax * m * (m-1) 8700 0.03
J=setdiff(1:n,visited) NCmax * m * (m-1) 8700 2.76
if length(J)==1 NCmax * m * (m-1) 8700 0.02
Tau(Tabu(i,j-1),J(length(J)))=1 NCmax * m 300 0.01
P(Tabu(i,j-1),J(length(J)))=1 NCmax * m 300
else NCmax * m * (m-2) 8400 0.01
for K=1:length(J)(The comparison) NCmax * m * (m-2)*(m+2)/2 134400 0.01
if J(K)==prefTabu(i,j) NCmax * m * (m-2)*(m+1)/2 8009 0.17
Tau(Tabu(i,j-1),prefTabu(i,j))=lambda NCmax * m * (m-2)*(m+1)/2 8009 0.01
else 122191
Tau(Tabu(i,j-1),J(K))=(1 lambda)/(length(J)-1) 122191 0.09
end 122191 0.04
end NCmax * m * (m-2)*(m+1)/2 130200 0.05
sum=0 NCmax * m * (m-2) 8400 0.01
for k2=1:length(J)(The comparison) NCmax * m * (m-2)*(m+2)/2 134400 0.02
sum=sum+((Tau(Tabu(i,j-1),J(k2))∧Alpha)*(Eta(Tabu(i,j-1),J(k2))∧Beta)) NCmax * m * (m-2)*(m+1)/2 130200 0.21
end NCmax * m * (m-2)*(m+1)/2 130200 0.19
for k2=1:length(J)(The comparison) NCmax * m * (m-2)*(m+2)/2 134400 0.01
if (Tabu(i,j-1) = J(k2)) NCmax * m * (m-2)*(m+1)/2 130200 0.17
num=((Tau(Tabu(i,j-1),J(k2))∧Alpha)*(Eta(Tabu(i,j-1),J(k2))∧Beta)) NCmax * m * (m-2)*(m+1)/2 130200 0.29
P(Tabu(i,j-1),J(k2))=num/sum NCmax * m * (m-2)*(m+1)/2 130200 0.11
end NCmax * m * (m-2)*(m+1)/2 130200 0.02
end NCmax * m * (m-2)*(m+1)/2 130200 0.03
end NCmax * m * (m-2)*(m+1)/2 130200 0.01
[row,col]=find(P==max(P(Tabu(i,j-1),:))) NCmax * m * (m-1) 8700 0.12
Tabu(i,j)=col(1) NCmax * m * (m-1) 8700 0.01
end 8700 0.01
for j=1:n-1 (The comparison) NCmax * m * m 9000 0.02
LTrack(i)=LTrack(i)+D(Tabu(i,j),Tabu(i,j+1)) NCmax * m * (m-1) 8700 0.02
LpTrack(i)=LpTrack(i)+D(prefTabu(i,j),prefTabu(i,j+1)) NCmax * m * (m-1) 8700 0.01
end NCmax * m * (m-1) 8700 0.01
if (LTrack(i) ¡ LpTrack(i)) NCmax * m 300 0.01
PF(i)=1/LTrack(i) m 30
PFcolony=PFcolony+(PF(i)/m) m 30
wagdur(i)=PF(i)/PFcolony;end m 30
if (PF(i)¡0.95*PFcolony) NCmax * m 300 0.01
elseif (0.95*PFcolony¡=PF(i)¡0.975*PFcolony) NCmax * m 300
elseif (0.975*PFcolony¡=PF(i)¡0.99*PFcolony) NCmax * m 300
elseif (PF(i)¿0.99*PFcolony) NCmax * m 300
PFfollow(i)=0 m 30
end m 30
end NCmax * m 300 0.01

7

International Journal of Computer Applications (0975 8887)
Volume 96 - No. 9, June 2014

Table 3. Enhanced BCO Algorithmic Analysis
Statement Calls Hit Value Time/Sec
[Lbest(NC,1),pos]=min(LTrack) NCmax 10 0.01
Rbest(NC,:)=Tabu(pos,:) NCmax 10
Lave(NC,1)=mean(LTrack) NCmax 10 0.01
drawTSP(C,Rbest(NC,:),Lbest(NC,1),NC,0) NCmax 10 1.16
NC=NC+1 NCmax 10
if NC¿=2 NCmax 10
prefTabu=Tabu NCmax 10
end NCmax 10
mcc=NC/NCmax NCmax 10
end NCmax 10
[ShortestLength,Pos]=min(Lbest) 1
ShortestRoute=Rbest(Pos,:) 1
bee=Lbest 1
Lbestbee=Lbest 1

ternational Conference on, volume 1, pages 544–547. IEEE,
2010.

[10] Eneko Osaba and Fernando Dı́az. Comparison of a memetic
algorithm and a tabu search algorithm for the traveling sales-
man problem. In Computer Science and Information Systems
(FedCSIS), 2012 Federated Conference on, pages 131–136.
IEEE, 2012.

[11] DT Pham, A Ghanbarzadeh, E Koc, S Otri, S Rahim, and
M Zaidi. The bees algorithm-a novel tool for complex opti-
misation problems. In Proceedings of the 2nd Virtual Inter-
national Conference on Intelligent Production Machines and
Systems (IPROMS 2006), pages 454–459, 2006.

[12] R Sagayam and Mrs K Akilandeswari. Comparison of ant
colony and bee colony optimization for spam host detection.

[13] SN Sivanandam and SN Deepa. Genetic Algorithm Optimiza-
tion Problems. Springer, 2008.

[14] Li-Pei Wong, Malcolm Yoke Hean Low, and Chin Soon
Chong. Bee colony optimization with local search for trav-
eling salesman problem. International Journal on Artificial
Intelligence Tools, 19(03):305–334, 2010.

[15] Yong-Quan Zhou, Zheng-Xin Huang, and Hong-Xia Liu. Dis-
crete glowworm swarm optimization algorithm for tsp prob-
lem. Dianzi Xuebao(Acta Electronica Sinica), 40(6):1164–
1170, 2012.

[16] Nur Ariffin Mohd Zin, Siti Norul Huda Sheikh Abdullah,
Noor Faridatul Ainun Zainal, and Esmayuzi Ismail. A com-
parison of exhaustive, heuristic and genetic algorithm for trav-
elling salesman problem in prolog. International Journal on
Advanced Science, Engineering and Information Technology,
2(6):49–53, 2012.

8

	Introduction
	Background
	Ant Colony Optimization Algorithim
	Bee Colony Optimization Algorithm
	Related Work

	Enhanced BCO algorithm
	Experimental results
	Discussion
	Algorithmic Complexity Analysis

	Conclusion
	Acknowledgement
	References

