
International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.6, June 2014 

27 

SQOPI: Semantic Query Optimization Framework 

Mohamed Mounir Hassan 
Faculty of Computers and Informatics, 

Zagazig University,  
Egypt 

 

Ahmed Mohammed Sultan 
Faculty of Computers and Informatics,  

Zagazig University,  
Egypt 

 

 
ABSTRACT 
Semantic query optimization uses semantic knowledge in 

databases to rewrite queries and logic programs for the purpose of 

more efficient query evaluation. There has been a large body of 

work in the area of semantic query optimization. But, 

unfortunately, till now no commercial application of sematic 

query optimization techniques has received wide attention. In this 

paper, we address this problem by developing a unified 

framework (Application Programming Interface) called SQOPI 

that could be used by any application developer to semantically 

optimize queries executed against relational database regardless of 

DBMS type used. Our results show that SQOPI improves both 

time and I/O efficiency. 

General Terms 

Databases, DBMS 

Keywords 

Semantic Query Optimization, Query Rewrite. 

1. INTRODUCTION 
It has become clear that relational database systems became the 

predominant technology for storing, handling, and querying data 

only after a great improvement in the efficiency of query 

evaluation in such systems. The key factor in this improvement 

was the introduction and development of query optimization 

techniques. However, the traditional types of optimization exploit 

to a limited extent the semantic information about the stored data. 

Researchers [1-5] recognized that such information could be used 

for further query optimization, and developed a set of techniques 

called semantic query optimization (SQO). SQO uses the integrity 

constraints associated with the database to improve the efficiency 

of query evaluation. The techniques most often discussed in 

literature included the following: 

 Join Elimination: for some joins the result of the query is 

known in advance. It may be efficient not to evaluate these 

queries at all. 

 Join Introduction: Adding a join can help if relation is 

small compared to original relations and highly selective. 

 Predicate Elimination: If predicate known to be always 

true, can be eliminated from query (DISTINCT clause on 

Primary Key) 

 Predicate Introduction: New predicates on indexed 

attributes can result in a much faster access plan. 

 Detecting the Empty Answer Set: If query predicates 

inconsistent with integrity constraints, the query does not 

have answer.  

 

 

 

Figure 1: SQOPI Demo Application 

SQO is a largely unutilized technique, despite the prevailing view 

that SQO is useful. It is clear that Semantic optimization could 

potentially provide much greater performance improvements than 

more traditional algebraic optimizers, but that few commercial 

products, if any, do much in the way of semantic optimization.  

In [6], the authors put forward two reasons why SQO has never 

caught on in the commercial world where most databases are 

RDBMS: 

 SQO is designed for deductive databases where the 

relatively high cost of applying complex rules (in 

comparison to much less complex rules in relational 

databases) is more likely to make the extra 

computational effort of implementing SQO worthwhile; 

 CPU speeds are not high enough for the extra 

computational cost of SQO to be acceptable. 

In [7], the authors consider the role of schema constraints in 

capturing business rules and identify four reasons for SQO 

techniques not being employed: 

 The potential for using schema constraints to capture 

business rules is only now being realized, so 

opportunities for SQO have until now seemed limited. 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.6, June 2014 

28 

 The expense of checking schema constraints at data 

insert or update time has limited the use of schema 

constraints, so opportunities for SQO have until now 

seemed limited. 

 Many semantic rules which could potentially be used as 

schema constraints are simply not discovered. 

 Even if a semantic rule is discovered there may be no 

justification for making it a schema constraint. 

2. RELATED WORK 
This section summarize and describe the related work on main 

types of SQO as they have been classified by various researchers 

[1, 4, 6, 8-12] and then put our system in context. There are four 

broad categories of Semantic Query Optimization: 

Detection of Unsatisfiable Queries 
A query is unsatisfiable if it cannot logically return any rows. The 

detection of such queries is identified as a major advantage by all 

researchers into SQO [13-17]. For example, [18] reports savings 

made by detecting unsatisfiable queries are an order of magnitude 

greater than other optimizations. The advantage arises simply 

because an unsatisfiable query need not be posed to the database 

at all, resulting in a 100% saving, neglecting the cost of detecting 

that unsatisfiability. 

Restriction Removal 
A query restriction may be deduced to be redundant and its 

elimination simplifies the query by eliminating the need to 

process that restriction.  

Restriction Introduction 
A query restriction may imply an additional (redundant) 

restriction which, when introduced, increases efficiency. This 

typically occurs when the introduced restriction involves an 

indexed attribute [10, 19]. 

Join Removal 
Join removal occurs when a redundant table join is detected and 

avoided. The Join operation in RDB is typically the most 

expensive [20, 21], so it is reasonable to expect its elimination 

could greatly increase query efficiency. 

Our system departs from the previously mentioned work in that it 

doesn’t investigate new ways for applying semantic query 

optimization. SQOPI tries to make use of all these techniques to 

provide a framework that carries the previously mentioned SQO 

techniques to the commercial domain. In [22], the authors 

comment that relational query optimizers ignore many semantic 

optimization opportunities arising from a knowledge of the 

schema semantics. In [21], the author comments that semantic 

optimization could potentially provide much greater performance 

improvements than more traditional algebraic optimizers, but that 

few commercial products, if any, do much in the way of semantic 

optimization. SQOPI comes here as a tool to bridge this gap. 

3. MOTIVATION 
Despite the negative comments provided by previous authors, 

semantic query optimization is worthwhile and should be 

revisited. We now make some observations concerning changes in 

computer hardware typically employed in the database industry. 

We argue that these changes have made SQO significantly more 

attractive than in the last decade when much foundational work in 

SQO was done.  

 First, average data volumes have increased by several 

orders of magnitude, driven by the rising use of data 

warehouses and the falling cost of disk storage. 

Therefore even small increases in query efficiency 

offered by SQO may now be worthwhile. 

 Second, available RAM has increased, typically by a 

factor of three or four, driven by the falling cost of 

RAM. In DBMS, the impact of increasing available 

main memory is seen in the increasing proportion of the 

database that runs in memory. Ultimately, when 

sufficient main memory is made available, most of the 

database runs in memory most of the time and, 

crucially, disk activity is minimized. In RDBMS, this 

equates to most queried table data plus most procedural 

and SQL code being held in cache most of the time. In 

this environment, any query optimization that reduces 

disk activity is likely to be significant. 

 Third, Distributed databases, where a single logical 

database comprises several geographically distant 

nodes, are now commonly deployed by businesses 

across their WANs. Distributed databases introduce 

delays in query answering, primarily because of the cost 

of transporting data between physical nodes. In this 

environment, data is typically partitioned across 

physical nodes according to simple semantic rules. 

These rules may then be utilized by a simple semantic 

query optimizer to minimize communication costs. For 

example, suppose the database is distributed across 

three physical nodes located in Cairo, Riyadh and 

Istanbul. Each node holds data strictly for its own Sales 

Office. A simple semantic query optimizer is 

constructed which determines which Sales Office is 

being queried and routes the query to the correct nodes 

while preventing the query from being passed to the 

remaining nodes. 

4. SQOPI ARCHITECTURE 
SQOPI extends the traditional classic relational database access 

APIs by adding the semantic query optimizer.  

Our C# version of the framework builds on the top of the 

ADO.NET [23]. Mainly because ADO.NET is an integral part of 

the .NET Framework, providing access to relational data, XML 

documents, and application data. ADO.NET supports a variety of 

development needs. And thus our framework could be used for 

creating database-client applications and middle-tier business 

objects used by applications. 

Of the tens of objects available in ADO.NET, we chose only three 

objects (i.e. Connection, Command and DataReader objects) to be 

included and extended for our framework model and to be 

exposed to the application developer. Our decision is backed by 

two reasons: first: these objects represents the core objects that 

formulates the whole framework inner workings and second, and 

second: they are fairly enough for developing complete data 

manipulation Apps. 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.6, June 2014 

29 

 

Figure 2: Proposed Framework Architecture 

SQOPI connection objects follow the same behavior as those 

provided by ADO.NET framework. Actually they inherit from 

these objects. Each SQOPI connection consumes a certain amount 

of resources on the database server and these resources are not 

infinite. Connection providers implement connection pooling. If 

you create database connections, they are held in a pool. When the 

programmer want a connection for an application, the provider 

extracts the next available connection from the pool. When the 

application closes the connection, it returns to the pool and makes 

itself available for the next application that wants a connection. 

This means that opening and closing a database connection is no 

longer an expensive operation. If you close a connection, it does 

not mean you disconnect from the database. It just returns the 

connection to the pool. If you open a connection, it means it's 

simply a matter of obtaining an already open connection from the 

pool. 

The Command object is used to execute a single query against a 

database. The query can perform actions like creating, adding, and 

retrieving, deleting or updating records. If the query is used to 

retrieve data, the data will be returned as a DataReader object. 

This means that the retrieved data can be manipulated by 

properties, collections, methods, and events of the DataReader 

object. The major feature of the Command object is the ability to 

use stored queries and procedures with parameters. 

It’s worthy to mention that semantic query optimization 

subcomponent of the framework is not exposed to the application 

developer and has no corresponding API objects for working with 

it. Although the whole framework is dependent on this 

component, we decided to make it invisible form the application 

programmer point of view. Since the optimizer produces an 

equivalent query with hopefully less execution cost, it would be 

better to call it implicitly and automatically for every query. 

However, the application developer can set a binary flag 

(            ) to switch the semantic optimization on or off 

for test and debugging purposes. 

5. PROGRAMMING PATTERN 
The programming pattern of our framework APIs follows the 

same line as ADO.NET. We intended to design it this way and 

make it compatible, because it would much easier to convert the 

data access code to SQOPI-enabled code by just renaming the 

core objects names. This in fact may encourage developers to take 

this step without worrying about redesigning their software. 

Below is a sample code for calling query against the TPCD 

database and getting the results back via the SQOPIDataReader 

object, looping through the records returned by and displaying 

each record as String (actually comma separated string). 

void executeQuery(DateTime date) {  
using( SQOPIConnection con =  
 new SSQOPIConnection (CONN_STRING) ) {  
 con.Open();  
 SQOPICommand cmd = con.CreateCommand();  
 cmd.CommandText =  

@"select l_returnflag, sum(l_quantity) as 
amount  
from tpcd.lineitem,  tpcd-orders,  
where l_orderkey = O_orderkey  
and l_partkey = p_partkey  
and l_suppkey  = s_suppkey  
and l_shipdate >= @date  
group by l_returnflag  
order by amount desc; ";  

 cmd.Parameters.Add("@date",date);  
 SQOPIDataReader r = cmd.ExecuteReader();  
 while(r.Read()) {  
 Console.WriteLine(r.ToString());  
} } }  
 

While this code sample depends on the SQOPI version developed 

in C# and utilizes ADO.NET, our framework model and 

programming pattern applies to any other relational database 

access API like JDBC.  

6. EXPERIMENTAL RESULTS 
All of our experiments were done on Oracle RBMS.  

Experimental Setup 
We do not simply measure elapsed time in order to judge the cost 

of a query batch. Rather, we use the Oracle system itself to take 

its own measurements, which are very precise. We use a software 

tool, TKPROF, to take these measurements and this enables us to 

look at the query cost in a number of different ways. For example, 

we may look at the CPU time separately from the number of disk 

blocks physically fetched from disk, or the number of query rows 

fetched.  We use three query metrics (Table 1) inspired by authors 

in [24] to measure the true query cost. The metrics we use are all 

statistics output by the Oracle database tool TKPROF. The 

software tool TKPROF reports each SQL statement executed 

along with the resources it has consumed, the number of times it 

was called, and the number of rows which it processed. This 

information may be automatically accumulated in an operating 

system file over an arbitrary period of time and may include the 

resources utilized by one or many simultaneous sessions accessing 

the target database. TKPROF is the main method by which 

computational cost is measured in our own. 

Oracle further distinguishes between three phases or calls when an 

SQL statement is processed: PARSE, EXECUTE and FETCH. 

SQOPI Connection 

SQOPI Command 

SQOPI DataReader 

SQOPI Framework 

Semantic Query Optimizer SQOPI Framework 

ADO .NET .NET Framework 

Oracle My 

SQL 

SQL 

Server 

User Application 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.6, June 2014 

30 

 PARSE Translates the SQL statement into an execution 

plan, including checks for proper security authorization 

and checks for the existence of tables, columns and 

other referenced objects. 

 EXECUTE Actual execution of the statement by 

Oracle. For INSERT, UPDATE, and DELETE 

statements, this modifies the data. For SELECT 

statements, this identifies the selected rows. 

 FETCH Retrieves rows returned by a query. Fetches 

are only performed for SELECT statements. 

We use      to report the sum of these three calls as a single 

metric.      is calculated as following: 

     
 

 
 
       

 

        
 

 

   

 

Note that      represents each of the three cost metrics we have 

shown in the Table 1. 

Table 1 : Query Evaluation Metrics 

                     
       
        

 

CPU 

Total CPU time in seconds for all 

parse, execute, or fetch calls for the 

statement. 

     

ELAPSED 

Total elapsed time in seconds for all 

parse, execute, or fetch calls for the 

statement. 

         

DISK 

Total number of data blocks physically 

read from the data files on disk for all 

parse, execute, or fetch calls. 

      

COMBINED 

The average of the other three metrics. 

This metric is only ever reported as a 

ratio 

     

 

Results 
Keeping in mind that SQOPI is data manipulation framework 

targeted primarily to database application developers, assessing 

the usability SQOPI should include the evaluation of many factors 

like developer friendliness, scalability, usability and performance. 

Among all evaluation factors, performance is considered a key 

factor in judging the usability of this framework. Here we present 

the detailed evaluation of SQOPI performance based on the 

metrics discussed previously. We built a demo application (Figure 

1) for this purpose. The application takes a batch of queries from 

input files, executes them one by one and reports back the results 

in output file. Instead of picking a random batches of queries, we 

preferred to report our results on a set of queries where a variety 

of query optimization techniques could be applied and tested. 

Ultimately we settled on the same queries (Table 2) used in work 

by [6] on the TPC benchmark [25].  

For a 1GB database Scale Factor (SF) we got the following 

experimental results. Figure 3 presents the total CPU time 

profiling for all parse, execute, or fetch calls of the queries. We 

can see that, on average, the optimized query is 2x better than the 

original query. Figure 4 and Figure 5 show the ELAPSED cost 

and the DISK cost respectively. Noticeably, there isn’t any major 

cost saving in both factors except for Queries Q3, Q6 since they 

are optimized using the empty answer set detection technique. The 

total cost savings are summarized in Figure 6. 

To assess the confidence in our results we performed the same 

experiments on a larger database with as scale factor of 10GB. 

Figures Figure 7, Figure 8 and Figure 9 show the corresponding 

CPU, ELAPSED and DISK costs respectively, while Figure 10 

shows the total cost saving.  The results reveal a very similar 

pattern with the exception of cost savings associated with Q5. The 

cost savings for Q5 increased when we moved to 10G Scale. A 

potential cause of this is that a less percentage of the newly 

generated data conformed to the predicates of the generated 

optimized query. 

Table 2: Queries 

1 SELECT  
LINEITEM.L_RETURNFLAG,SUM(LINEITEM.L_QUANTITY) 
AS AMOUNT 
FROM  lineitem,orders,PART,supplier 
WHERE  L_ORDERKEY    = O_ORDERKEY 
AND L_PARTKEY   = P_PARTKEY 
AND L_SUPPKEY   = S_SUPPKEY 
AND L_SHIPDATE >= TO_DATE('01/01/1993','dd/mm/yyyy') 
GROUP BY  L_RETURNFLAG 
ORDER BY  amount DESC; 

2 SELECT  o_orderstatus, SUM(o_totalprice)  
AS price 
FROM  orders, customer 
WHERE  o_custkey = c_custkey 
AND o_orderdate >= to_date('1/1/1993','dd/mm/yyyy') 
AND o_orderpriority = '2-HIGH' 
GROUP BY  o_orderstatus 
ORDER BY  price DESC; 

3 SELECT  C_CUSTKEY, C_NAME, C_ACCTBAL 
FROM  SUPPLIER, CUSTOMER, ORDERS, LINEITEM 
WHERE  C_CUSTKEY = O_CUSTKEY 
AND O_ORDERDATE >= TO_DATE('1/1/1993','dd/mm/yyyy') 
AND O_ORDERKEY   = L_ORDERKEY 
AND L_RETURNFLAG = 'R' 
AND S_NAME = C_NAME; 

4 SELECT  SUM( L_EXTENDEDPRICE * (1-L_DISCOUNT))  
AS revenue 
FROM  LINEITEM 
WHERE  L_EXTENDEDPRICE <=1000 
AND L_DISCOUNT    <= 0.05 
AND L_RECEIPTDATE <= 
to_date('1/1/1997','dd/mm/yyyy'); 

5 SELECT  LINEITEM.L_RETURNFLAG, INEITEM.L_LINESTATUS, 
SUM(LINEITEM.L_QUANTITY) AS SUM_L_QUANTITY 
FROM LINEITEM, ORDERS 
WHERE LINEITEM.L_ORDERKEY =ORDERS.O_ORDERKEY 
AND ORDERS.O_ORDERDATE  >= 
to_date('1/10/1995','dd/mm/yyyy') 
AND LINEITEM.L_SHIPDATE 
<=to_date('7/10/1995','dd/mm/yyyy') 
GROUP BY LINEITEM.L_RETURNFLAG, 
LINEITEM.L_LINESTATUS 
ORDER BY  LINEITEM.L_RETURNFLAG, 
INEITEM.L_LINESTATUS; 

6 SELECT ORDERS.o_orderkey, ORDERS.O_ORDERDATE, 
  ORDERS.o_shippriority 
FROM ORDERS, LINEITEM 
WHERE  ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY 
AND ORDERS.o_totalprice >= 65000 
AND ORDERS.O_ORDERDATE  > 
to_date('01/01/1994','dd/mm/yyyy') 
AND LINEITEM.L_COMMITDATE < 
to_date('01/07/1993','dd/mm/yyyy') 
ORDER BY  ORDERS.O_ORDERDATE;  

7 SELECT ORDERS.o_orderkey, ORDERS.O_ORDERDATE, 
  ORDERS.o_shippriority 
FROM  ORDERS, LINEITEM 
WHERE  ORDERS.O_ORDERKEY = LINEITEM.L_ORDERKEY 
AND ORDERS.o_totalprice  >= 65000 
AND ORDERS.O_ORDERDATE   > 
to_date('01/01/1994','dd/mm/yyyy') 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.6, June 2014 

31 

AND LINEITEM.L_COMMITDATE < 
to_date('01/07/1993','dd/mm/yyyy') 
ORDER BY 
  ORDERS.O_ORDERDATE;  

 

Figure 3: CPU Cost for queries 1G 

 

Figure 4:Elapsed Cost for queries 1G 

 

Figure 5:Disk Cost for queries 1G 

 

Figure 6 : Total Cost Saving 1G 

 

 

Figure 7:CPU Cost for queries 10G 

 

Figure 8: Elapsed Cost for queries 10G 

 

Figure 9: Disk Cost for queries 10G 

0 

5 

10 

15 

20 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

CPU Cost 

Optimized Query Original Query 

0 

200 

400 

600 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Elapsed Cost 

Optimized Query Original Query 

0 

50000 

100000 

150000 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Disk Cost 

Optimized Query Original Query 

0 

50 

100 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Cost Savings 

R-Cost Improvement 

-10 

10 

30 

50 

70 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

CPU Cost 

Optimized Query Original Query 

0 

2000 

4000 

6000 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Elapsed Cost 

Optimized Query Original Query 

0 

500000 

1000000 

1500000 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Disk Cost 

Optimized Query Original Query 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.6, June 2014 

32 

 

Figure 10: Total Cost Saving 10G 

7. CONCLUSIONS AND FUTURE WORK 
In this paper we discussed the design and implementation of the 

SQOPI Semantic Query Optimization framework. We showed the 

detailed architecture and discussed the rationale behind each 

subcomponent. SQOPI integrates easily with existing data 

manipulation Apps. Actually it takes nothing more than adding 

SQOPI as a library to the project code and changing data 

manipulation classes to refer to different (but similar and 

compliant) SQOPI classes. The experimental results reveals a 

promising saving in the query execution cost after using SQOPI. 

Our experimental considered the oracle DBMS. For future work, 

we seek investigating the usability and performance of our 

framework on other commercial DBMS like SQL Server. 

8. REFERENCES 
[1] U. S. Chakravarthy, J. Grant, and J. Minker, "Logic-based 

approach to semantic query optimization," ACM 

Transactions on Database Systems (TODS), vol. 15, pp. 162-

207, 1990. 

[2] M. Hammer and S. B. Zdonik, "Knowledge-based query 

processing," in Proceedings of the sixth international 

conference on Very Large Data Bases-Volume 6, 1980, pp. 

137-147. 

[3] M. Jarke, J. Clifford, and Y. Vassiliou, "An optimizing 

prolog front-end to a relational query system," ACM 

SIGMOD Record, vol. 14, pp. 296-306, 1984. 

[4] J. J. King, "Quist: A system for semantic query optimization 

in relational databases," in Proceedings of the seventh 

international conference on Very Large Data Bases-Volume 

7, 1981, pp. 510-517. 

[5] S. T. Shenoy and Z. M. Ozsoyoglu, "Design and 

implementation of a semantic query optimizer," Knowledge 

and Data Engineering, IEEE Transactions on, vol. 1, pp. 

344-361, 1989. 

[6] Q. Cheng, J. Gryz, F. Koo, T. C. Leung, L. Liu, X. Qian, et 

al., "Implementation of two semantic query optimization 

techniques in DB2 universal database," in VLDB, 1999, pp. 

687-698. 

[7] P. Godfrey, J. Gryz, and C. Zuzarte, "Exploiting constraint-

like data characterizations in query optimization," in ACM 

SIGMOD Record, 2001, pp. 582-592. 

[8] J. Chomicki, "Querying with intrinsic preferences," in 

Advances in Database Technology—EDBT 2002, ed: 

Springer, 2002, pp. 34-51. 

[9] B. G. Lowden and J. Robinson, "Improved data retrieval 

using semantic transformation," in Database and Expert 

Systems Applications, 2004, pp. 391-400. 

[10]B. G. Lowden and J. Robinson, "Constructing inter-relational 

rules for semantic query optimisation," in Database and 

Expert Systems Applications, 2002, pp. 587-596. 

[11]J. Grant, J. Gryz, J. Minker, and L. Raschid, "Semantic query 

optimization for object databases," in Data Engineering, 

1997. Proceedings. 13th International Conference on, 1997, 

pp. 444-453. 

[12]H. H. Pang, H. J. Lu, and B. C. Ooi, "An efficient semantic 

query optimization algorithm," in Data Engineering, 1991. 

Proceedings. Seventh International Conference on, 1991, pp. 

326-335. 

[13]S.-C. Yoon, L. J. Henschen, E. Park, and S. Makki, "Using 

domain knowledge in knowledge discovery," in Proceedings 

of the eighth international conference on Information and 

knowledge management, 1999, pp. 243-250. 

[14]B. Genet and G. Dobbie, "Is semantic optimisation 

worthwhile," in Proceedings of the 21st Australasian 

Computer Science Conference, pp. 245-256. 

[15]X. Zhang and Z. M. Ozsoyoglu, "Implication and referential 

constraints: A new formal reasoning," Knowledge and Data 

Engineering, IEEE Transactions on, vol. 9, pp. 894-910, 

1997. 

[16]C.-N. Hsu and C. A. Knoblock, "Discovering robust 

knowledge from databases that change," Data Mining and 

Knowledge Discovery, vol. 2, pp. 69-95, 1998. 

[17]P. Godfrey, J. Gryz, and J. Minker, Semantic query 

optimization for bottom-up evaluation: Springer, 1996. 

[18]A. Sayli and B. Lowden, "The use of statistics in semantic 

query optimization," CYBERNETICS AND SYSTEMS 

RESEARCH, pp. 991-996, 1996. 

[19]S. T. Shenoy and Z. M. Ozsoyoglu, A system for semantic 

query optimization vol. 16: ACM, 1987. 

[20]D. K. Burleson, Practical application of object-oriented 

techniques to relational databases: Wiley-QED Publishing, 

1994. 

[21]C. J. Date, An Introduction To Database Systems, 8/E: 

Pearson Education India, 2006. 

[22]A. C. Bloesch and T. A. Halpin, "Conceptual queries using 

ConQuer-II," in Conceptual Modeling—ER'97, ed: Springer, 

1997, pp. 113-126. 

[23]"ADO.NET Framework," http://msdn.microsoft.com/en-

us/library/aa286484.aspx. 

[24]B. H. Genet and A. Hinze, "Open issues in semantic query 

optimization in relational DBMS," 2004. 

[25]T. P. P. Council, "‘TPC Benchmark B," Standard 

Specification, Waterside Associates, Fremont, CA, 1990.

 

0 

50 

100 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 

Cost Savings 

R-Cost Improvement 

IJCATM : www.ijcaonline.org 


