
International Journal of Computer Applications (0975 – 8887)

Volume 96– No.6, June 2014

1

Reducing Run-time Execution in Query Optimization

Rashmi Singh

Galgotias College of
Engineering and

Technology
Greater Noida

Somesh Sharma
Galgotias College of

Engineering and
Technology

 Greater Noida

Saurabh Singh
Galgotias College of

Engineering and
Technology

Greater Noida

Bhawna Singh
Galgotias College of

Engineering and
Technology

Greater Noida

ABSTRACT
The main objective of query processor is to generate the most

efficient query results. Using an apt execution plan, query

minimizes cost of execution for results. The order of accessing a

source table is very important during query execution. The best

execution plan from possible ones is presented by Query

optimizer. The paper discusses various stages of query

optimization using execution plan. It gives the analysis of

indexes, type of expressions & joins used in the execution plan

of the query. The approach gets the estimate of the cost of query

joins in a query at compile time. These estimates help in the

construction of a query plan at compile time and then executed

at run-time.

Keywords
Execution plan,query optimization,compile time,run time,joins.

1. INTRODUCTION
In today’s object oriented programming languages, need of

optimization of query is increasing. Introduction of various

processing methods and constructs are being analysed. These

new methods have also shown great results in increasing the

comprehensibility of programs and the ability of programmers. In

SQL, different execution plans are present to optimize the

queries. In other programming languages, the constructs allows

queries to be written concisely and concretely. The advantages

of using query constructs in place of typical representation are

well justified. The queries written using other APIs are less clear

and concrete than explicit queries. This method provides an

avenue for developers to be more productive and work at a

higher level of abstraction.

In query processing, there are well described as stages. Firstly,

the query processor accepts SQL syntax, secondly selects a plan

for executing the syntax, and then executes the chosen plan.

Following diagram shows functioning of query processor

[1][2][5].

Fig 1: Functioning of query processor.

1.1 Parsing and Semantic Checking
For processing SQL query, the database server employs parser

to parse the query to perform syntactic and semantic checking

of the query. It is done by transforming the query into a parse

tree which is the algebraic representation of the query [6] [7] [8].

1.2 Query Rewrite
This step involves only complex query which involves joins,

predicates, grouping, etc. In this phase query is presented in the

form of an annotated parse tree. Query experiences iterative

transformations in accordance to the heuristics used. After that,

other steps like joining elimination, predicating normalization,

selecting operation are performed and at last, project operation

and many transformation rules are performed [9].

1.3 Query Pre-optimization Phase

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.6, June 2014

2

This stage involves pre-optimization phase and enumeration

phase. In pre-optimization phase, all predicates, indexes, joins

used in the access plan are studied by query analyse.

Furthermore, include designing alternative plans for the query.

In Enumeration phase, various possibilities of the access plans

for the query are collected. The most favourable access plan is

chosen utilizing join algorithm, cost estimation method, access

method, and selectivity.

1.3.1 Join Selection
Join Selection is third in a series of steps for query

optimization. In case of the query that is multi-table query or a

self- join, the query optimizer analyses join selection and

selects low cost join strategy. It evaluates the cost by using a

number of factors, expected number of reads and the amount

of memory required. The choice can be made between three

basic strategies for processing joins: nested loop joins, merge

joins, and hash joins.

 Nested Loop Joins
Nested Loop Joins are mainly for smaller tables.

Method of Iteratively scanning the rows of one table

and matching with a second table with the help of

index is called nested loop join. Hash join is used in

absence of nested join. There are 3 types of nested

Join. The search scanning an entire table or index is

called a naive nested loop join. The search using an

index, called an index nested loops join. The index is

made as part of the query plan, called a temporary

index nested loops join. In temporary index nested

loop join, the index is destroyed after execution of the

query.

 Merge Joins
Being more efficient for large tables with the key

columns sorted, merge join is used in sorting of two

inputs on the join column. In case of the inputs are

already sorted then less I/O is required to process

when the join used is one to many. Many merge join

make use of a temporary table to store rows instead

of discarding them. One of the inputs must rewind to

start of the duplicates when duplicate values from each

input. It is a fast joining method, but it can be

expensive if sort operation is required

 Hash Joins
Hashing matched a particular data item with an

already present value by division of the existing data

into groups on the basis of similar property. Hash

Bucket has the data with the same value. Hash bucket

checks with existing data to find a match. The

smaller input is taken as build input during hash

joining. The storage in buckets, also known as hash

tables, takes place in the form of linked lists, in which

each entry contains only columns from building input

that are needed. Hash joins are comparatively

effective in set- matching operations such as

intersection, union, semi-join, full outer join. The set

of columns in the equality predicate is called

hash key which contributes in the hash function.

We have used Adventure Works database. From

database we have used Sales.Customer and

Sales.SalesOrderHeader tables for demonstrating hash

join.

1.3.2 Index Selection
Association of table with an index improves the retrieval

speed of rows from table [9-11]. There are two types of

indexes: Clustered index and Non-Clustered index. Clustered

Indexes simply sort and stores the data rows in the table

centred on the column selected as the key. When there is a

clustered index in the table, the table is known as clustered

table. A table with no clustered index is called as a heap

suggesting an unordered structure. Consider the table

customer and the following query which creates an index on

Cust_id of Customer table.

Non-clustered index comprises the non-clustered index key

values and each key value entry has a pointer to the data row

that contains the key value. The following query creates non-

clustered index on Cust_Category of Customer table.

The non-clustered column has depended on the Clustered

column in the database. The Cust_category column with distinct

values will store the clustered index columns values along with

it.

1.3.3 Plan Selection
It is the fourth step in query optimization. It is decided by the

cost of a given plan, in terms of required CPU preprocessing and

I/O, and query execution time. Hence it is known as Cost- Based

plan.

The optimizer’s work involves the generation and evaluation of

many plans and choosing the lowest cost plan. It solely depended

on the plan as it will execute the query relatively fast, using the

least amount of resources, CPU and I/O. The optimizer may take

a less efficient plan in case of it will take more time to

evaluate many plans in comparison to running a less efficient

plan. For example, a simple query having a single table with no

indexes and no aggregates or calculations is present in these the

query, then the optimizer will use single, trivial plan for these

types of queries to save time that will wasted in choosing an

optimal plan. Otherwise, the optimizer will do cost based

calculation to plan selection in case of non-trivial query. For

carrying out this, optimizer depends upon on statistics of the

execution plan [11].

1.4 Detailed Plan Execution
This phase takes the top plan and made the graphical view of the

query. Graphical view is available in Interactive SQL. Graphical

View has a tree like structure where each node is a physical

operator implementing specific relational algebra operation.

1.5 Plan Execution
Best execution plans built in previous phase used in the

computation of the result of the query.

The input to the optimizer involves the query, the database

schema (table and index definitions), and the database statistics.

The execution plan is the output of the query optimizer. Query

optimizer based on the following components determines the

execution plan of the optimizer.

• Access Method: decides how to access the data. It can be

Table Scan or Index Scan etc.

• Join Method: Decides how to join tables to each other. It can

be a hash join or merge join etc.

• Order of Join: decides the sequence of joining table.

• Cardinality: Depending upon the number of rows, selection

of the access method, or join algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.6, June 2014

3

• Join Type: Execution plan also reviews the join type such

anti-join, semi-join etc.

• Partition Pruning: Query optimizer checks the partitions

required for obtaining the query result.

• Parallel Execution: Query Optimizer checks each operation

the plan which is conducted in parallel or not, the data

redistribution method used is right or not.

During dealing with query optimization, testing the execution

plan for different execution strategies is a must. The selection of

the best execution plan includes various factors such as

selection of join algorithm, the use of indexes, the order of

executing relational algebra operators etc.

2. QUERY OPTIMIZER ARCHITECTURE
In this part, a brief outlook on query optimization process in a

DBMS has been provided. The execution plans can be decided

for a database and a query, which can be used to answer the

query. Analyses of all the plans need to be made for selecting

the one with best estimated performance. This architecture can

allow one to make optimizer, in real systems. Query

optimization process has two stages: rewriting and planning.

There is only one module in the first stage, the Rewrite and

remaining modules are in the second stage.

2.1 Module Functionality
2.1.1 Rewriter
In this module, given query gets transformed and resulting in

equivalent queries that can be more efficient, e.g., replacing

views with their respective definition, attuning out of nested

queries, etc. The Rewriter transforms query, taking account of

the declarative, i.e., static, characteristics of queries without

amounting for the actual query costs for the specific DBMS and

database concerned. The original query is not processed given

the rewriting is known or assumed to always be beneficial; or

else, it is forwarded to the next stage. This stage functions at

the declarative level of understanding nature of the rewriting

transformations.

2.1.2 Planner
Being a main module of the ordering stage, it chooses the best

execution plan, to be used to generate the answer of the

original query, by analysing all other plans which are generated

in the previous stage. It utilizes a search strategy; examining the

space of execution plans in a descriptive way. The Algebraic

Space and the Method-Structure Space are two other modules to

decide the space. Additionally, these two modules and the

search strategy also optimize the cost, i.e., running time. The

Planner compares various execution plans on the basis of their

estimated cost so that the cheapest may be chosen. These costs

are decided upon by the last two modules of the optimizer, the

Cost Model and the Size- Distribution Estimator.

2.1.3 Algebraic Space
This module decides execution action orders that are to be

considered by the Planner. The actions present same result,

differing on one parameter, i.e. performance and are represented

in relational algebra as formulas or in tree form. Given the

involvement of the algorithmic side of the objects produced in

module and eventually forwarded to the Planner, the whole

planning stage is seen as operating at the procedural level.

2.1.4 Method Structure Space
This module defines the choices made to implement the

processing of each ordered series of actions decided by the

Algebraic Space. This choice is made in accordance with the

present join methods for each join (e.g., nested loops, merge scan,

and hash join), if supported data structures are built on the y,

if/when duplicates are eliminated, and other implementation

characteristics of this sort, which are predetermined by the

DBMS implementation. This choice is decided by available

indices for involving each relation, which is controlled by the

physical representation of each database present in its

catalogues. This module generates complete execution plans

using an algebraic formula or tree from the Algebraic Space,

which specify the implementation of each algebraic operator and

the use of any indices.

2.1.5 Cost Model
This module presents the arithmetic formulas that are

deployed for cost – estimation of execution plans. Each different

join method, each different index type access, and in general

each distinct kind of step have a cost finding formula. Most of

these formulas are simply approximations of what the system

actually does and are based on certain assumptions regarding

issues like buffer management, disk-CPU overlap, sequential vs.

random I/O, etc. The essential input parameters to a formula are

the size of the buffer pool used by the corresponding step, the

sizes of relations or indices accessed, and possibly various

distributions of values in these relations. First one is decided by

the DBMS for each query; the other two are estimated by the

Size-Distribution Estimator.

2.1.6 Size Distribution Estimator
This module determines the sizes (and possibly frequency

distributions of attribute values) of database relations and

estimation of indices as well as (sub) query results. The Cost

Model needs these estimates. The module adopts an estimation

approach to determine the form of statistics for maintaining

catalogs of each database, if any.

2.2 Plan Guide
Plan guides are used for performance optimization of queries

when we may not to want to change the text of the query

directly. Plan guides decide optimization of queries by attaching

query hints or a fixed query plan to them. Plan guides can

be created to match queries that are executed in the following

contexts:

An OBJECT plan guide matches queries that are executed in

accordance of Transact-SQL stored procedures, user-defined

scalar functions, multi-statement user-defined table-valued

functions, and DML triggers.

An SQL plan guide matches queries executed in the context of

stand-alone Transact-SQL statements and batches that are not

part of a database object. SQL-based plan guides can also be

used to match queries that parameterize to a specified form.

A TEMPLATE plan guide matches stand-alone queries that

parameterize to a specified form. These plan guides are used

to override the current PARAMETERIZATION database SET

option of a database for a class of queries.

Plan guide uses any combination of valid query hints. The

OPTION clause given in the hints clause is added to the query

before it compiles and optimizes during the matching of query in

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.6, June 2014

4

plan guide. In a few cases, a query that was matched to a plan

guide already has an OPTION clause; the plan guide’s query

hints replace those in the query. For a plan guide to match a

query that already has an OPTION clause, you must include the

OPTION clause which specifies the query’s text to match in the

sp_create_plan_guide statement. If the hints that are specified

in the plan guide to be added to the hints that is already present

in the query, then instead of replacing them, both the original

hints and the additional hints are specified in the OPTION

clause of the plan guide.

Some plan guides apply a fixed query plan when aware of an

existing execution plan to perform better than the one selected

by the optimizer for that query. Taking note of the fact that

fixing a plan to a query suggests that adapting the plan by the

query optimizer cannot longer change in statistics and index

of query. When considering plan guides using fixed query plans,

the advantages of applying a fixed plan with the inability to

adapt the plan automatically as data distribution and available

indexes change are compared.

3. ADVANCED TYPE OF OPTIMIZATION
In this section, a brief description of advanced types of

optimization is provided that have been given over the past few

years [12]. A lot of interesting work has been done on them, e.g.,

nested query optimization, rule-based query optimization, query

optimizer generators, object-oriented query optimization,

optimization with materialized views, heterogeneous query

optimization, recursive query optimization, aggregate query

optimization, optimization with the expensive selection

predicates, and query optimizer validation [13].

3.1 Semantic Query Optimization
As a form of optimization, Semantic query optimization is

mostly related to the Rewriter module.

The core theme deals with usage of integrity constraints present

in the database for rewriting a given query into semantically

equivalent ones. Further, Planner optimizes them as regular

queries and generated the efficient plan to solve the original

query. Stating an example, using a hypothetical SQL- like syntax,

consider the following integrity constraint:

assert sal-constraint on emp:

sal>100K where job = \Sr. Programmer"

Also consider the following query:

select name, oor from emp,dept

where emp.dno = dept.dno and job = \Sr. Programmer".

Using the above integrity constraint, the query can be

rewritten into a semantically equivalent one to include a

selection on sal:

 select name, oor from emp, dept

where emp.dno = dept.dno and job = \Sr. Programmer" and

sal>100K.

The extra selection can assist greatly to find a better plan to

answer the query, even during the case of only index in the

database being a B+-tree on emp.sal. On t h e second

side, it would make of no use if required index is absent. Owing

to all these issues, all proposals for semantic query optimization

present and deciding various heuristics or rules making

rewritings beneficial and should be applied.

3.2 Global Query Optimization

Till now, optimizing individual queries were discussed. Still,

many a times during optimization, multiple queries are present

simultaneously like queries with unions, queries from multiple

concurrent users, queries embedded in a single program, or

queries in a deductive system. Optimizing each query alone is a

heavy task, one have to devise a global plan to solve this,

although possibly suboptimal for each individual query, is ideal

for the execution of all of them as a group. Numerous

techniques have been mentioned for global query optimization.

As a simple example of the problem of global optimization

consider the following two queries:

select name, oor from emp, dept

where emp.dno = dept.dno and job = \Sr. Programmer",

select name from emp, dept

where emp.dno = dept.dno and budget > 1M.

Depending on the sizes of the emp and dept relations and the

selectivities of the selections, it will be favourable that

computation of the entire join once and processing separately

the two selections to get the results of the two queries is more

efficient than performing the join twice by taking the time of

the corresponding selection in consideration. Planner modules

are so developed that can analyse all the available global

plans and give the optimal one, ultimately it is the objective

of global/multiple query optimizers.

3.3 Dynamic/Parametric Query Optimization
As mentioned earlier, optimization of embedded takes place

once at compile time and are executed multiple times at run

time. Owing to the temporal separation between optimization

and execution, various parameter’s value may be very different

during execution from those during the optimization time. This

may cause the invalidation of the chosen plan (e.g., if indices

used in the plan are no longer available) or simply making it

optimal. To resolve this issue, many techniques [14,15,16]

have been mentioned that utilize search strategies (e.g.,

randomized algorithms or the strategy of volcano) to optimize

queries along with taking care of all likely values that

concerned parameters have during runtime. These techniques

deploy usage of the true parameter values at runtime, and then

take the optimal plan with little or no overhead. Of a drastically

different case, plan switching may take place during query

execution through our technique of Rdb/VMS [17], whereby

dynamically monitoring how the probability distribution of plan

costs changes.

4. EXPERIMENTAL EVALUATION
In this section, the performance of the query proposed is

evaluated. Several experiments were conducted over certain

queries and joins. Following were the observations:

A query can be optimized using HINT query by reducing the

cost of performing the join operation. For example,

SELECT OC.Customer, OA.AddressID FROM

SalesLT.Customer AS OC JOIN SalesLT.CustomerAddress AS

OA ON OC.CustomerID=OA.CustomerID;

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.6, June 2014

5

Fig 2: Query cost of join method selected by SQL server.

After using HINT query for the join (Merge Join),

SELECT OC.Customer, OA.AddressID FROM

SalesLT.Customer AS OC JOIN SalesLT.CustomerAddress AS

OA ON OC.CustomerID=OA.CustomerD

OPTION (MERGE JOIN);

Fig 3: Query cost of merge join using HINT

Now, using HINT queries for implementing Nested

Loop Join,

SELECT OC.Customer, OA.AddressID

FROM SalesLT.Customer AS OC JOIN

SalesLT.CustomerAddress AS OA ON

OC.CustomerID=OA.CustomerID OPTION(LOOP JOIN);

Fig 4: Query cost of nested loop join using HINT

This shows that the cost incurred in using other type of

join method using HINT query is reduced, thereby

reducing the time taken for execution of the query at run-

time.

SQL Server evaluates some constant expressions early to

improve query performance, referred to as foldable

expressions. This includes

 Arithmetic expressions

 Logical expressions, that contain only

constants.

 Built-in functions that are considered

foldable by SQL Server. Generally, an intrinsic

function is foldable if it is a function of its

inputs only and not other contextual

information, such as SET options, language

settings, database options, and encryption keys.

5. CONCLUSION
Given the declarative nature of SQL, there are numerous

alternative ways with performance level to execute a given

query. When query is submitted to the database, evaluation of

different possible plans for executing the query is done by

optimizer and generates the best alternative.

In Query Analysis phase, optimizer will find search type of

expression and Joins. In Index Selection phase, optimizer

chooses the best index to use for each table. In join reordering

phase, optimizer computes cost. In plan selection, optimizer will

select the best plan suitable for a given query.

So while processing the query, a cost based query optimizer in

SQL server gives the effective access path to reduce the total time

of execution of the query during runtime.

6. REFERENCES
[1] RamezElmasri and Shamkant B. Navathe. Fundamentals

of Database Systems, second edition. Addison-Wesley

Publishing Company, 1994.

[2] AviSilbershatz, Hank Korth and S. Sudarshan. Database

System Concepts,4th Edition. McGraw-Hill, 2002

[3] Henk Ernst Blok, DjoerdHiemstra and Sunil Choenni,

Franciska de Jong, Henk M. Blanken and Peter M.G. Apers.

Predicting the cost- quality trade-off for information

retrieval queries: Facilitatiing database design and query

optimization. Proceedings of the tenth international

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.6, June 2014

6

conference on Information and knowledge management,

October 2001, Pages 207-214.

[4] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and JafarAdibi.

Optimization of Sequence Queries in Database Systems. In

Proceedings of the twentieth ACM SIGMOD-

SIGACTSIGART symposium on Principles of database

systems, May 2001, Pages 71-81.

[5] G. Antoshenkov, “Dynamic Query Optimization in

RdblVMS”, Proc. IEEE Int ‘1. Conf on Data Eng., Vienna,

Austria, April 1993,538.

[6] C. Mohrm, D. Haderle, Y. Wang, and J. Cheng, “Single

Table Access Using Multiple Indexes: Optimization,

Execution and Concurrency Control Techniques”, Lecture

Notes in Comp. Sci. 416 (March 1990), 29, Springer Verlag,

[7] K. Ono and G, M, Lehman, “Measuring the Complexity of

Join Enumeration in Query Optimization”, Proc. Int ‘1.

Con$ on Ve~Large Data Bases, Brisbane, Australia, August

1990,314.

[8] G. Graefe and W. J. McKenna, “The Volcano Optimizer

Generato~ Extensibility and Efficient Search”, Proc. IEEE

Int ‘1. Con$ on Data Eng., Vienna, Austria, April 1993,209.

[9] W. Hasan and H. Pirahesh, “Query Rewrite Optimization in

Starburst”, Comp. Sci. Res. Rep., SanJose, CA, August

1988.

[10] T.Sellis, ”Multiple query optimization”, IEEE transactions

on knowledge and data Engineering , Vol-2, June-1990

[11] K. Shim, T.Sellis ,D.Nau, “Improvements on algorithms

for multiple query optimization“ ,IEEE transactions on

knowledge and data Engineering , 12, 1994, pp.197-222.

[12] M. M. Astrahan et al. System R: A relational approach to

data management. ACM Transactions on

DatabaseSystems, 1(2):97{137, June 1976

[13] P.G.Selinger,M.M.Astrahan,D.D.Chamberlin,R.A.Lorie,and

T.G.Price.Access path selection in a relational database

management system. In Proc.ACM- SIGMOD Conf. on the

Management of Data, pages 23{34, Boston, MA, June,1979

[14] G. Graefe and K. Ward. Dynamic query evaluation

plans.InProc.ACM-SIGMOD Conference on the

Management of Data, pages 358{366, Portland, OR, May

1989.

[15] Y. Ioannidis, R. Ng, K. Shim, and T. K. Sellis. Parametric

query optimization. In Proc.18thInt.VLDBConference, pages

103{114, Vancouver, BC, August 1992.

[16] R. Cole and G. Graefe. Optimization of dynamic query

evaluation plans. In Proc.ACM-

SIGMODConferenceontheManagementofData, pages

150{160, Minneapolis,MN, June 1994.

IJCATM : www.ijcaonline.org

