
International Journal of Computer Applications (0975 – 8887)

Volume 96– No.4, June 2014

52

A Bayesian Network Model of the Particle Swarm

Optimization for Software Effort Estimation

Germanjit Singh Sandhu
Student, Department of CSE

Lovely Professional University
Phagwara, Punjab (India) – 144411

Dalwinder Singh Salaria
Assistant professor, Department of CSE

Lovely Professional University
Phagwara, Punjab (India) – 144411

ABSTRACT

Rapid growth of software industry leads to need of new

technologies. Software effort estimation is one of the areas

that need more attention. Exact estimation is always a

challenging task. Effort Estimation techniques are broadly

classified into algorithmic and non-algorithmic techniques.

An algorithmic model provides a mathematical equation for

estimation which is based upon the analysis of data gathered

from previously developed projects and Non-algorithmic

techniques are based on new approaches, such as Soft

Computing Techniques. Effective handling of cost is a basic

need for any Software Organization. This paper presents the

new hybrid Bayesian Network model of PSO for effort

estimation. we have developed a tool in MATLAB and at

last proved that Bayesian Network with PSO gives more

accurate results than other existing techniques. For sake of

ease, we use NASA 93 datasets to verify the model and also

compare the proposed model with COCOMO and Bayesian

Regulation Neural Network Model and it is found that the

developed model provides better estimation.

General Terms

Particle Swarm Optimization, Neural network, Bayesian

Network.

Keywords

COCOMO, PSO, Bayesian Network, Effort Estimation

1. INTRODUCTION
Software effort estimate is one of the noticeable & mind

catching field. But since it was started, it is challenging factor

for software industry and Academia to realize the exact

estimation of software development. In today’s fast changing

world, success in managing projects is a critical factor for the

success of the entire organization. Estimation that either

overestimated or underestimated both is very critical. In case

of Overestimating time and effort (or budget), due to a

presumed lack of resources or because the projected

completion is too late, can convince management not to

approve projects that may otherwise contribute to the

organization. On the other hand, underestimation may result

in approval of projects that will fail to deliver the expected

product within the time and budget available. There are many

factors that influence the Software estimation, some of them

are: uncertainty, level of detail of preparing the project plan,

managerial factors, lack of past data, pressure to lower

estimation and estimator experience [11]. In spite of the

critical role of accuracy, examples of incorrect estimation

abound, especially in IT projects, resulting in enormous waste

of time and money. Some techniques which were used in the

past are not in use during present time, like SLIM [3],

checkpoint [2], Seer [1]. In all the way of work time, many of

new advance roads have been suggested for effort estimation

like Genetic programming [17], Fuzzy logic [12], Neural

Network [8], data mining [5], etc. One cannot state that one

model give better accuracy above all. Each and every give

different level of accuracy in different Environment. But in

recent days, soft computing techniques like PSO [7] gains

main attention. The main focus of this paper is to investigate

the accuracy of estimation using Bayesian network approach

based on PSO and this has been done with the help of tool

generated by us in MATLAB. This paper comprises as follow:

section 2 describes the some former effort estimation models

and review of related work to PSO, section 3 includes

introduction of Bayesian Network and PSO, in section 4

problem is stated, section 5 describes methodology used,

section 6 includes experimental results and comparisons. In

last conclusion and future scope is given.

2. REVIEW OF LITERATURE
The period of Effort Estimation was started from the expert

judgments, which is based on the experiences of experts. But

it is only proceed as pillar when current project & pertinent

Past projects are similar. Choices of effort estimation

techniques footstep from COCOMO [2] to AI approaches [3].

In 1970, Larry Putnam developed the method SLIM [1], based

on the Rayleigh function and the influence used to Rayleigh

curve was Manpower Buildup Index (MBI and Productivity

Factor (PF) [2]. Linear programming was key work to drive

effort estimation in SLIM [3] and depend upon the source line

of code. In 1981 developer Barry Boehm developed

COCOMO as constructive cost model [21]. Which is one of

an easy going & understandable model, could call the effort &

time period of project. Due to some problems and some

misses found in COCOMO, later on Barry Bohem developed

the advance road of this model i.e. COCOMO 2.0 [3]. As

growth of software industry rising tremendously and previous

version was not up to need. After that, Howard Rubin

proposed the ESTIMAC model to estimate effort at

conception stage [21]. Equations used in this model are not

available, because it was a proprietary model. ESTIMAC is

high level model but doesn’t provide accurate solution [10].

Six critical estimation dimensions identified by Rubin for this

model are: effort hour, staff size, cost, hardware resource

requirement, risk, portfolio impact [2]. But these methods

(COCOMO, SLIM, ESTIMAC) are based on Line of code

(LOC). The main problems in Line of Code methods are: lack

of universally accepted definition for exactly what line code

really is? Other side line of code is language dependence. So,

in 1979 at IBM, developer Allan Albrecht developed

measurement method called Function point [10] in order to

reduce the issues related with LOC methods. Function point

defines the complexity of software system in terms of

functions that system delivers to user. It comprise linear

combination of five basic software components (input, output,

master files, interfaces, inquiries) consider to be low, average,

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.4, June 2014

53

high [10]. In 1990, GC Low and DR. Jeffery also concluded

in their paper that Function point method is more consistent

then the line of code measure [9]. But on the other side,

function point method is unable to deal with Uncertain,

imprecise and incomplete data. Many researcher collaborate

PSO with different types of techniques for effort estimation.

Some of PSO collaborate models are given below:

Table 1. Summary of PSO Effort Estimation Approaches with Their Pros and Cons

Author’s

Name

Year

MODEL

name

dataset

Comparison

With

Conference/

Journal

advantages

disadvantages

Alaa Sheta

et al.,

2008

COCOMO-

PSO

COCOMO

81

Fuzzy

Logic and

Halstead

IEEE

accuracy Don’t handle

missing data

Prasad

Reddy

2010

PSO with

Fuzzy

COCOMO

81

COCOMO

-PSO and

Fuzzy

IJSE

Uses

linguistic

Variable

Rules are not

very direct

Prasad

Reddy et al.,

2011

PSO with

Inertia Weight

NASA

Not

mention

IJSE

Better tuned Difficult to

compute

Srinivasa

Rao T. et

al.,

2013

PSO with K-

Mean

COCOMO

81

COCOMO

and Fuzzy

IJSE

faster

Fails for

nonlinear data

sets

Zhang Dan

2013

PSO-ANN-

COCOMO II

COCOMO I

and

NASA93

ANN-

COCOMO

IEEE

Powerful

tool

complex

Rao et al.,

2014

MPSO

COCOMO

81

COCOMO

SPRINGER

Better

results

Poor to

handle missing

datasets

Artificial Neural Network Model Based on PSO

Sheta, Alaa proposed a collaboration of artificial neural

network (ANN) and Constructive Cost Model

(COCOMO)[20] [3], which expanded by Particle Swarm

Optimization (PSO). PSO-ANN-COCOMO II model

accurately estimate the cost of Software development. This

revised model not only raised the speed of artificial neural

network but also resolve the problem of dependency of initial

weight in learning ability of artificial neural network. With

keeping the advantages of COCOMO model, this model get

better the learning capability of original model. PSO-ANN-

COCOMO II has an progress of 3.27% in software effort

estimation precision than the original artificial neural network

Constructive Cost Model (ANN-COCOMO II), this

consequence is supported by two data set (COCOMO I and

NASA93).There are three critical factors in software

development process: Time, Cost and Manpower. By

appraising these parameters at early phase of project, we can

get an effective development process. As original ANN-

COCOMO II model provide good solution to vagueness of

data and uncertainty found in software attributes, but every

model have some cons also, low speed convergence and high

dependency on network for initial weight are some short-

coming in ANN-COCOMO II model. Particle swarm

optimization algorithm solves these problems.

 PSO Fuzzy Software Cost Estimation Models

In 1969, PVGD et.al is presented Particle Swarm

Optimization Algorithm (PSOA) to fine tune the fuzzy

estimate for the development of software projects [13][6][18].

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.4, June 2014

54

Efficiency is tested by using three datasets: 10 NASA

software projects, 18 NASA projects and COCOMO 81

database, which was based on a range of criterions for

assessment of software cost estimation. By comparison of all

the models, discussed in this paper, it proved that model

developed by using particle swarm optimization algorithm is

better than all.

The PSO-tuned COCOMO model

Bohem developed the simple COCMO model in 1981 [1]. For

the better software effort estimation Sheta et.al used the PSO

model along with simple COCOMO model in 2008.

Generalization of computation is achieved for all the projects

by using PSO model [22].

PSO with Inertia Weight model

In 2010 PVGD et.al used PSO with initial weights in order to

tune the parameters. For the continue moving of particles in

the same direction a nonzero inertia weight is introduced.

Decreasing the inertia over time introduces a shift from the

exploratory (global search) to the exploitative (local search)

mode. [14]

Multi Objective Particle Swarm Optimization for software

Cost Estimation

Recently 2014 Rao ,et al. proposed a model for software cost

estimation using Multi Objective (MO) Particle Swarm

Optimization. By considering two objectives- Mean Absolute

Relative Error and Prediction, parameters of model tuned by

using MOPSO [15]. For testing COCOMO dataset is

considered. From the comparison, it proved that model

developed using MO gives better results than standard

COCOMO. Also found that by giving more classification

among training data gives efficient results. At the deficiency

part of this model, it returns set of solution rather than

returning a single solution.

The PSO with K-mean Model

In 2013, Rao et al. proposed Particle Swarm Optimization

technique is proposed which drive on data sets which are

clustered using the K-means clustering algorithm [16]. PSO

has been employed to generate parameters of the COCOMO

model for each cluster of data values. Back Propagation

technique is used to train the Neural Network. COCOMO 81

dataset is used for testing and also the results have been

compared with standard COCOMO model and as well as the

neuro fuzzy model. It is concluded from the results that the

neural networks with efficient tuning of parameters by PSO

operating on clusters, can generate better results and hence it

can function efficiently on ever larger data sets.

3. INTRODUCTION TO BAYESIAN

NETWORK AND PSO
BN are a strong modeling technique which increases some

different unique characteristics. A powerful feature of BN is

the possibility, through application of probability theory, to

model uncertainty or subjectivity. that allows the integration

of objective evaluations, learned from data, with subjective

evaluations estimated by experts [19]. Also another feature is

the possibility to carry out what-if analyses, by giving the

model with variations in input values, referred to as

evidences, and monitoring the effect on the output. The main

advantage of BN is that it can deal well with missing data,

which happens number of times in all software projects

datasets. BNs are named after and founded on the Bayes

theorem, which models the relationship between two

variables. The Bayes theorem basically builds the relationship

between the prior and posterior probabilities. The prior

probability taking some specified value regardless of other

variables, that is, it is the default probability. Posterior

probability is variable taking some value, given some

evidence, i.e. it is the updated probability after new

information is input. BNs is basically the graph structure that

models the causal relationships between the variables, and a

quantitative part made up of node probability tables (NPT's)

which contain the probability distributions. The directed

acyclic graph (DAG) encrypts the dependencies between the

variables. The nodes represent the relevant variables (factors)

in the domain being modeled, and each directed arc depicts

the dependencies between these factors [19]. The NPT's

contain the prior and conditional probabilities. BNs can be

modeled fully based on data, through a hybrid approach, i.e.

integrating data modeling and experts knowledge or fully

expert-based. Expert Knowledge can be coded by means of

subjective or qualitative variables and also in the network

topology by defining the relationships between the variables.

PSO is a population related search technique. In the

population, there are different set of particles which signifies

the solution for problem. These particles are generally

initialized randomly in most evolutionary computation

methods. At the time of starting process, each particle based

on some evaluation, changes their personal position with

positive speed [7]. The speed is calculated based on

experience of the particle itself and all of the population. This

changed process is repetitive for different generations. This

process stops either when the task is completed or when the

maximum number of generations is reached.

PSO was developed in 1995 by James Kennedy and Russell

Eberhart. It utilizes a number of particles that comprise a

swarm moving around for the best results [7]. Every particle

is treated as a point in a N-dimensional space which alters its

“flying” according to its own flying experience and the flying

experience of other particles also. PSO is a population-based

optimization tool, which could be imposed and applied easily

to solve different function optimization problems. PSO is a

robust stochastic optimization technique based on the

movement of intelligent swarms. The basic concept of PSO

lies in accelerating every particle towards its Pbest and Gbest

locations with a random weighted acceleration every time.

PSO is one of the optimization methods and a kind of

evolutionary computation technique.

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.4, June 2014

55

Table 2. Cost Drivers for COCOMO

Attribute Type Description

RELY Product Required system reliability

CPLX Product Complexity of system modules

DOCU Product Extent of documentation required

DATA Product Size of database used

RUSE Product Required percentage of reusable

components

TIME Computer Execution time constraint

PVOL Computer Volatility of development platform

STOR Computer Memory constraints

ACAP Personnel Capability of project analysts

PCON Personnel Personnel continuity

PCAP Personnel Programmer capability

PEXP Personnel Programmer experience in project

domain

AEXP Personnel Analyst experience in project

domain

LTEX Personnel Language and tool experience

TOOL Project Use of software tools

SCED Project Development schedule compression

SITE Project Extent of multisite working and

quality of inter-site communications

4. PROBLEM STATEMENT
The main aim of any software development organizations is to

finish the project within acceptable or customary schedule and

budget. Budget is mainly driven by labor cost and time and

together they form a measure called effort. From quality point

of view estimating effort is one of the major important factors.

Because estimation either it be over estimate or under

estimate, produces worst results. In case of over estimation of

time and effort project completion is too late due to lack of

resources, which refuses the management to approve that

favored project. On the other hand, under estimation may

result in approval of projects that will fail to deliver the

expected product within the time and budget available [11].

So, there is a need of accurate estimation effort technique at

early Stages of software development. In this research, the

main aim is to improve software effort estimation by using

Bayesian network with PSO. The main reason for using such

a learning system for this problem is to keep the estimation

process up-to-date by incorporating up-to-date project data. At

last Comparison is drawn between training algorithms used in

this research to state that Bayesian Network with PSO gives

much accurate estimation. One algorithmic approach,

COCOMO is also compared with Bayesian Regulation of

neural network model.

5. PROPOSED METHODOLOGY
Following are the steps used for Effort Estimation:

5.1 Data Collection
The dataset used in this work is NASA93

(http://promisedata.googlecode.com) a public available data

set consisting of a total of 93 projects at the time of this study.

5.2 Division of Data
Data set is divided into two parts: Training and Testing. For

our work we divide the data into 85-15% ratio i.e. 80 rows for

training and 13 for testing. These 13 rows are randomly

chosen by formula (ceil (1+ (93-1)*rand(13,1))), available in

MATLAB. From this, for testing row number

15,40,92,74,91,94,5,80,59,64,71,63, 38 are chosen.

5.3 Cost Drivers
Cost drivers for this work choose from the cost drivers

designed for COCOMO II. Table 2 represents, Cost drivers

for COCOMO.

5.4 Normalization of data
The first step in training to normalize the data , because in

Bayesian network the data is only pass to the network when it

is in normalize .so the formula for normalization is

I1 = (I1 - min(I1))/(max(I1)-min(I1)) - 1;

Where I1 is the data which are input by radio button.

5.5 Initializing parameters to PSO

algorithm
After the normalization of data, the next step is to initializing

the parameters to PSO i.e., initialize the swarm, velocity and

positions of the particles

5.6 Creation of Bayesian network
After the second step then the creation of Bayes net is started.

In this step the Bayes net is created and also the Dags are

created.

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.4, June 2014

56

5.7 Training
Once the network weights and biases are initialized, the

network is ready for training.

5.8 Performance Criteria
Mean Magnitude Relative Error: MMRE is frequently used to

evaluate the performance of any estimation technique. It

seems obvious that the purpose of MMRE is to assist us to

select the best estimation approach. It measures the

percentage of the absolute values of the relative errors,

averaged over the N items in the "Test" set and can be written

as [4]:

 MRE = {actual effort} - {estimated effort}|}\ actual effort}

MMRE = 1/N (Σ MREi)

MMRE of COCOMO = 6.92/13

 = 0.51

MMRE of BR = 6.446/13

 = 0.49

MMRE of Bayesian Network with PSO = 0.85/13

 = 0.065

6. EXPERIMENTAL RESULTS AND

COMPARISION
Table 4 summarizes the result obtained by COCOMO model

Bayesian Regulation Neural Network Model and Bayesian

Network Model of PSO. In the testing phase the calculated

efforts and errors using different training algorithms and

COCOMO is shown in table 3 and table 4 respectively.

Table 3. Comparison between different training

algorithms

Performance

criteria
COCOMO BR

Bayesian

with PSO

MMRE 0.51 0.49 0.065

Figure 1 clearly present Bayesian Network with PSO is more

accurate than others. As evident from the table 3, the

predicted values of the Bayesian Network with PSO efforts is

very close to the expected or actual values as compare to

Bayesian Regulation Neural Network and COCOMO.

7. CONCLUSION
Effort Estimation is one of the crucial tasks in software

project management. This simulation with NASA93 dataset

has been carried out using tool created with the help of

MATLAB. Bayesian Network is generated using PSO. The

result from our simulation shows that Bayesian Network

Model of PSO gives the best performance, among the other

training algorithms. We have experimented with 15 attributes

of the COCOMO and further investigation can be done with

other attributes and also concentration needed for process

maturity.

Table 4. Effort Estimation by using COCOMO, BR and

Bayesian Network with PSO

Row no.

Expected

COCOMO

BR

Bayesian

Network

with

PSO

15 48 85.9557 61.9294 54

40 114 66.9477 121.206 126

92 240 85.9557 85.847 232

74 4178.2 1649.24 4058.46 4150

91 1772.5 539.26 2902.12 1794

94 1924.5 393.61 1201.62 1921

5 25.2 38.2213 83.0016 32.7

80 703 904.279 562.929 693

59 4560 6718.84 4471.23 4584

64 150 115.445 61.3017 157

71 72 155.732 106.606 79

63 160 270.499 61.7749 144

38 444 463.311 338.233 456

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.4, June 2014

57

Fig 1: Column chart for effort estimation

8. REFERENCES
[1] Boehm, B.W. Software Engineering Economics. rentice-

Hall, Englewood Cliffs, N.J. 1981.

[2] Boehm, Barry, Chris Abts, and Sunita Chulani. Software

development cost estimation approaches—A survey."

Annals of Software Engineering 10.1-4 (2000): 177-205.

[3] Boehm, Barry, et al. "Cost models for future software life

cycle processes: COCOMO 2.0." Annals of software

engineering 1.1 (1995): 57-94.

[4] de Barcelos Tronto, Iris Fabiana, Jose Demisio Simoes

da Silva, and Nilson Sant'Anna. "Comparison of artificial

neural network and regression models in software effort

estimation." Neural Networks, 2007. IJCNN 2007.

International Joint Conference on. IEEE, 2007.

[5] Dejaeger, Karel, et al. "Data mining techniques for

software effort estimation: A comparative study."

Software Engineering, IEEE Transactions on 38.2

(2012): 375-397.

[6] E. C. Laskari, K. E. Parsopoulos and M.N. Vrahatis,

Particle Swarm Optimization for Minimax Problems ,

Evolutionary Computation, In: (Eds.) CEC '02

Proceedings of the 2002 Congress On, 2, 2002, pp. 1576

-158.

[7] Eberhart, Russ C., and James Kennedy. "A new

optimizer using particle swarm theory." Proceedings of

the sixth international symposium on micro machine and

human science. Vol. 1. 1995.

[8] Haykin, Simon. Neural networks: a comprehensive

foundation. Prentice Hall PTR, 1994.Kemerer, Chris F.

"An empirical validation of software cost estimation

models." Communications of the ACM 30.5 (1987): 416-

429.

[9] Low, Graham C., and D. Ross Jeffery. "Function points

in the estimation and evaluation of the software process."

Software Engineering, IEEE Transactions on 16.1

(1990): 64-71.

[10] Matson, Jack E., Bruce E. Barrett, and Joseph M.

Mellichamp. "Software development cost estimation

using function points." Software Engineering, IEEE

Transactions on 20.4 (1994): 275-287.

[11] Morgenshtern, Ofer, Tzvi Raz, and Dov Dvir. "Factors

affecting duration and effort estimation errors in software

development projects." Information and Software

Technology 49.8 (2007): 827-837.

[12] Nisar, M. Wasif, Yong-Ji Wang, and Manzoor Elahi.

"Software development effort estimation using fuzzy

logic-A survey." Fuzzy Systems and Knowledge

Discovery, 2008. FSKD'08. Fifth International

Conference on. Vol. 1. IEEE, 2008.

[13] PVGD, Prasad Reddy, and CH VMK Hari. "Software

Effort Estimation Using Particle Swarm Optimization

with Inertia Weight." Global Journal of Computer

Science and Technology 11.18 (1969).

[14] PVGD, Prasad Reddy. "Particle swarm optimization in

the fine-tuning of fuzzy software cost estimation

models." International Journal of Software Engineering

(IJSE) 1.2 (2010): 12-23.

[15] Rao, G. Sivanageswara, Ch V. Phani Krishna, and K.

Rajasekhara Rao. "Multi Objective Particle Swarm

Optimization for Software Cost Estimation." ICT and

Critical Infrastructure: Proceedings of the 48th Annual

Convention of Computer Society of India-Vol I. Springer

International Publishing, 2014.

[16] Rao, Srinivasa, C. H. Hari, and Prasad Reddy PVGD.

"Predictive and Stochastic Approach for Software Effort

Estimation." Int. J. of Software Engineering, IJSE 6.1

(2013).

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13

Expected

COCOMO

Bayesian Regulation (Neural
tech.)

BAYESIAN Network with PSO

Projects

Ef
fo

rt
 in

 P
er

so
n

-M
o

n
th

International Journal of Computer Applications (0975 – 8887)

Volume 96– No.4, June 2014

58

[17] Shan, Yin, et al. "Software project effort estimation using

genetic programming." Communications, Circuits and

Systems and West Sino Expositions, IEEE 2002

International Conference on. Vol. 2. IEEE, 2002.

[18] Suresh Chandra Satapathy, J.V.R. Murthy, P.V.G.D.

Prasad Reddy, B.B. Misra, P.K. Dash and G. Panda,

Particle swarm optimized multiple regression linear

model for data classification Applied Soft Computing , 9,

(2), (2009), Pages 470-476.

[19] Tierno, Ivan AP, and Daltro J. Nunes. "Assessment of

Automatically Built Bayesian Networks in Software

Effort Prediction." CIbSE. 2012.

[20] Zhang. "Improving the accuracy in software effort

estimation: Using artificial neural network model based

on particle swarm optimization." Service Operations and

Logistics, and Informatics (SOLI), 2013 IEEE

International Conference on. IEEE, 2013.

[21] Kemerer, Chris F. "An empirical validation of software

cost estimation models."Communications of the ACM

30, no. 5 (1987): 416-429. [22] Sheta, Alaa, David Rine,

and Aladdin Ayesh. "Development of software effort and

schedule estimation models using soft computing

techniques." Evolutionary Computation, 2008. CEC

2008.(IEEE World Congress on Computational

Intelligence). IEEE Congress on. IEEE, 2008.

IJCATM : www.ijcaonline.org

