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ABSTRACT 

Rapid growth of software industry leads to need of new 

technologies. Software effort estimation is one of the areas 

that need more attention. Exact estimation is always a 

challenging task. Effort Estimation techniques are broadly 

classified into algorithmic and non-algorithmic techniques. 

An algorithmic model provides a mathematical equation for 

estimation which is based upon the analysis of data gathered 

from previously developed projects and Non-algorithmic 

techniques are based on new approaches, such as Soft 

Computing Techniques. Effective handling of cost is a basic 

need for any Software Organization. This paper presents the 

new hybrid Bayesian Network model of PSO for effort 

estimation.   we have developed a tool in MATLAB and at 

last proved that Bayesian Network with PSO gives more 

accurate results than other existing techniques. For sake of 

ease, we use NASA 93 datasets to verify the model and also 

compare the proposed model with COCOMO and Bayesian 

Regulation Neural Network Model and it is found that the 

developed model provides better estimation.   

General Terms 

Particle Swarm Optimization, Neural network, Bayesian 

Network. 
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1. INTRODUCTION 
Software effort estimate is one of the noticeable & mind 

catching field. But since it was started, it is challenging factor 

for software industry and Academia to realize the exact 

estimation of software development. In today’s fast changing 

world, success in managing projects is a critical factor for the 

success of the entire organization. Estimation that either 

overestimated or underestimated both is very critical. In case 

of Overestimating time and effort (or budget), due to a 

presumed lack of resources or because the projected 

completion is too late, can convince management not to 

approve projects that may otherwise contribute to the 

organization. On the other hand, underestimation may result 

in approval of projects that will fail to deliver the expected 

product within the time and budget available. There are many 

factors that influence the Software estimation, some of them 

are: uncertainty, level of detail of preparing the project plan, 

managerial factors, lack of past data, pressure to lower 

estimation and estimator experience [11]. In spite of the 

critical role of accuracy, examples of incorrect estimation 

abound, especially in IT projects, resulting in enormous waste 

of time and money. Some techniques which were used in the 

past are not in use during present time, like SLIM [3], 

checkpoint [2], Seer [1]. In all the way of work time, many of 

new advance roads have been suggested for effort estimation 

like Genetic programming [17], Fuzzy logic [12], Neural 

Network [8], data mining [5], etc. One cannot state that one 

model give better accuracy above all. Each and every give 

different level of accuracy in different Environment. But in 

recent days, soft computing techniques like PSO [7] gains 

main attention. The main focus of this paper is to investigate 

the accuracy of estimation using Bayesian network approach 

based on PSO and this has been done with the help of tool 

generated by us in MATLAB. This paper comprises as follow: 

section 2 describes the some former effort estimation models 

and review of related work to PSO, section 3 includes 

introduction of Bayesian Network and PSO, in section 4 

problem is stated, section 5 describes methodology used, 

section 6 includes experimental results and comparisons. In 

last conclusion and future scope is given. 

2. REVIEW OF LITERATURE 
The period of Effort Estimation was started from the expert 

judgments, which is based on the experiences of experts. But 

it is only proceed as pillar when current project & pertinent 

Past projects are similar. Choices of effort estimation 

techniques footstep from COCOMO [2] to AI approaches [3]. 

In 1970, Larry Putnam developed the method SLIM [1], based 

on the Rayleigh function and the influence used to Rayleigh 

curve was Manpower Buildup Index (MBI and Productivity 

Factor (PF) [2]. Linear programming was key work to drive 

effort estimation in SLIM [3] and depend upon the source line 

of code. In 1981 developer Barry Boehm developed 

COCOMO as constructive cost model [21]. Which is one of 

an easy going & understandable model, could call the effort & 

time period of project. Due to some problems and some 

misses found in COCOMO, later on Barry Bohem developed 

the advance road of this model i.e. COCOMO 2.0 [3]. As 

growth of software industry rising tremendously and previous 

version was not up to need. After that, Howard Rubin 

proposed the ESTIMAC model to estimate effort at 

conception stage [21]. Equations used in this model are not 

available, because it was a proprietary model. ESTIMAC is 

high level model but doesn’t provide accurate solution [10]. 

Six critical estimation dimensions identified by Rubin for this 

model are: effort hour, staff size, cost, hardware resource 

requirement, risk, portfolio impact [2]. But these methods 

(COCOMO, SLIM, ESTIMAC) are based on Line of code 

(LOC). The main problems in Line of Code methods are: lack 

of universally accepted definition for exactly what line code 

really is? Other side line of code is language dependence. So, 

in 1979 at IBM, developer Allan Albrecht developed 

measurement method called Function point [10] in order to 

reduce the issues related with LOC methods. Function point 

defines the complexity of software system in terms of 

functions that system delivers to user. It comprise linear 

combination of five basic software components (input, output, 

master files, interfaces, inquiries) consider to be low, average, 
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high [10]. In 1990, GC Low and DR. Jeffery also concluded 

in their paper that Function point method is more consistent 

then the line of code measure [9]. But on the other side, 

function point method is unable to deal with Uncertain, 

imprecise and incomplete data. Many researcher collaborate 

PSO with different types of techniques for effort estimation. 

Some of PSO collaborate models are given below:  

 

Table 1. Summary of PSO Effort Estimation Approaches with Their Pros and Cons

 

Author’s 

Name 

 

Year 

 

MODEL 

name 

 

dataset 

 

Comparison 

With 

 

Conference/ 

Journal 

 

advantages 

 

disadvantages 

 

Alaa Sheta 

et al., 

 

2008 

 

COCOMO-

PSO 

 

COCOMO 

81 

 

Fuzzy 

Logic and 

Halstead 

 

IEEE 

accuracy Don’t handle 

missing data 

 

Prasad 

Reddy 

 

2010 

 

PSO with 

Fuzzy 

 

COCOMO 

81 

 

COCOMO

-PSO and 

Fuzzy 

 

IJSE 

Uses 

linguistic 

Variable 

Rules are not 

very direct 

 

 

Prasad 

Reddy et al., 

 

2011 

 

PSO with 

Inertia Weight 

 

NASA 

 

Not 

mention 

 

IJSE 

Better tuned Difficult to 

compute 

 

Srinivasa 

Rao T. et 

al., 

 

2013 

 

PSO with K-

Mean 

 

COCOMO 

81 

 

COCOMO 

and Fuzzy 

 

IJSE 

 

faster 

Fails for 

nonlinear data 

sets 

 

 

Zhang Dan 

 

2013 

 

PSO-ANN-

COCOMO II 

 

COCOMO I 

and 

NASA93 

 

ANN-

COCOMO 

 

IEEE 

Powerful 

tool 

complex 

 

Rao et al., 

 

2014 

 

MPSO 

 

COCOMO 

81 

 

COCOMO 

 

SPRINGER 

Better 

results 

Poor to 

handle missing 

datasets 

 

Artificial Neural Network Model Based on PSO 

Sheta, Alaa proposed a collaboration of artificial neural 

network (ANN) and Constructive Cost Model 

(COCOMO)[20] [3], which expanded by Particle Swarm 

Optimization (PSO). PSO-ANN-COCOMO II model 

accurately estimate the cost of Software development.  This 

revised model not only raised the speed of artificial neural 

network but also resolve the problem of dependency of initial 

weight in learning ability of artificial neural network. With 

keeping the advantages of COCOMO model, this model get 

better the learning capability of original model. PSO-ANN-

COCOMO II has an progress of 3.27% in software effort 

estimation precision than the original artificial neural network 

Constructive Cost Model (ANN-COCOMO II), this 

consequence is supported by two data set ( COCOMO I and 

NASA93).There are three critical factors in software 

development process: Time, Cost and Manpower. By 

appraising these parameters at early phase of project, we can 

get an effective development process. As original ANN-

COCOMO II model provide good solution to vagueness of 

data and uncertainty found in software attributes, but every 

model have some cons also, low speed convergence and high 

dependency on network for initial weight are some short-

coming in ANN-COCOMO II model. Particle swarm 

optimization algorithm solves these problems. 

 PSO Fuzzy Software Cost Estimation Models 

In 1969, PVGD et.al is presented Particle Swarm 

Optimization Algorithm (PSOA) to fine tune the fuzzy 

estimate for the development of software projects [13][6][18]. 



International Journal of Computer Applications (0975 – 8887) 

Volume 96– No.4, June 2014 

54 

Efficiency is tested by using three datasets: 10 NASA 

software projects, 18 NASA projects and COCOMO 81 

database, which was based on a range of criterions for 

assessment of software cost estimation. By comparison of all 

the models, discussed in this paper, it proved that model 

developed by using particle swarm optimization algorithm is 

better than all. 

The PSO-tuned COCOMO model     

Bohem developed the simple COCMO model in 1981 [1]. For 

the better software effort estimation Sheta et.al used the PSO 

model along with simple COCOMO model in 2008. 

Generalization of computation is achieved for all the projects 

by using PSO model [22]. 

PSO with Inertia Weight model 

In 2010 PVGD et.al used PSO with initial weights in order to 

tune the parameters. For the continue moving of particles in 

the same direction a nonzero inertia weight is introduced. 

Decreasing the inertia over time introduces a shift from the 

exploratory (global search) to the exploitative (local search) 

mode. [14] 

Multi Objective Particle Swarm Optimization for software 

Cost Estimation 

Recently 2014 Rao ,et al. proposed a model for software cost 

estimation using Multi Objective (MO) Particle Swarm 

Optimization. By considering two objectives- Mean Absolute 

Relative Error and Prediction, parameters of model tuned by 

using MOPSO [15]. For testing COCOMO dataset is 

considered. From the comparison, it proved that model 

developed using MO gives better results than standard 

COCOMO. Also found that by giving more classification 

among training data gives efficient results. At the deficiency 

part of this model, it returns set of solution rather than 

returning a single solution. 

The PSO with K-mean Model 

In 2013, Rao et al. proposed Particle Swarm Optimization 

technique is proposed which drive on data sets which are 

clustered using the K-means clustering algorithm [16]. PSO 

has been employed to generate parameters of the COCOMO 

model for each cluster of data values.  Back Propagation 

technique is used to train the Neural Network. COCOMO 81 

dataset is used for testing and also the results have been 

compared with standard COCOMO model and as well as the 

neuro fuzzy model. It is concluded from the results that the 

neural networks with efficient tuning of parameters by PSO 

operating on clusters, can generate better results and hence it 

can function efficiently on ever larger data sets. 

3. INTRODUCTION TO BAYESIAN 

NETWORK AND PSO  
BN are a strong modeling technique which increases some 

different unique characteristics. A powerful feature of BN is 

the possibility, through application of probability theory, to 

model uncertainty or subjectivity. that allows the integration 

of objective evaluations, learned from data, with subjective 

evaluations estimated by experts [19]. Also another feature is 

the possibility to carry out what-if analyses, by giving the 

model with variations in input values, referred to as 

evidences, and monitoring the effect on the output. The main 

advantage of BN is that it can deal well with missing data, 

which happens number of times in all software projects 

datasets. BNs are named after and founded on the Bayes 

theorem, which models the relationship between two 

variables. The Bayes theorem basically builds the relationship 

between the prior and posterior probabilities. The prior 

probability taking some specified value regardless of other 

variables, that is, it is the default probability. Posterior 

probability is variable taking some value, given some 

evidence, i.e. it is the updated probability after new 

information is input. BNs is basically the graph structure that 

models the causal relationships between the variables, and a 

quantitative part made up of node probability tables (NPT's) 

which contain the probability distributions. The directed 

acyclic graph (DAG) encrypts the dependencies between the 

variables. The nodes represent the relevant variables (factors) 

in the domain being modeled, and each directed arc depicts 

the dependencies between these factors [19]. The NPT's 

contain the prior and conditional probabilities. BNs can be 

modeled fully based on data, through a hybrid approach, i.e. 

integrating data modeling and experts knowledge or fully 

expert-based. Expert Knowledge can be coded by means of 

subjective or qualitative variables and also in the network 

topology by defining the relationships between the variables. 

PSO is a population related search technique. In the 

population, there are different set of particles which signifies 

the solution for problem.  These particles are generally 

initialized randomly in most evolutionary computation 

methods. At the time of starting process, each particle based 

on some evaluation, changes their personal position with 

positive speed [7]. The speed is calculated based on 

experience of the particle itself and all of the population. This 

changed process is repetitive for different generations. This 

process stops either when the task is completed or when the 

maximum number of generations is reached. 

PSO was developed in 1995 by James Kennedy and Russell 

Eberhart. It utilizes a number of particles that comprise a 

swarm moving around for the best results [7]. Every particle 

is treated as a point in a N-dimensional space which alters its 

“flying” according to its own flying experience and the flying 

experience of other particles also. PSO is a population-based 

optimization tool, which could be imposed and applied easily 

to solve different function optimization problems. PSO is a 

robust stochastic optimization technique based on the 

movement of intelligent swarms. The basic concept of PSO 

lies in accelerating every particle towards its Pbest and Gbest 

locations with a random weighted acceleration every time. 

PSO is one of the optimization methods and a kind of 

evolutionary computation technique. 
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Table 2. Cost Drivers for COCOMO 

Attribute Type Description 

RELY Product Required system reliability 

CPLX Product Complexity of system modules 

DOCU Product Extent of documentation required 

DATA Product Size of database used 

RUSE Product Required percentage of reusable 

components 

TIME Computer Execution time constraint 

PVOL Computer Volatility of development platform 

STOR Computer Memory constraints 

ACAP Personnel Capability of project analysts 

PCON Personnel Personnel continuity 

PCAP Personnel Programmer capability 

PEXP Personnel Programmer experience in project 

domain 

AEXP Personnel Analyst experience in project 

domain 

LTEX Personnel Language and tool experience 

TOOL Project Use of software tools 

SCED Project Development schedule compression 

SITE Project Extent of multisite working and 

quality of inter-site communications 

 

4. PROBLEM STATEMENT  
The main aim of any software development organizations is to 

finish the project within acceptable or customary schedule and 

budget. Budget is mainly driven by labor cost and time and 

together they form a measure called effort. From quality point 

of view estimating effort is one of the major important factors. 

Because estimation either it be over estimate or under 

estimate, produces worst results. In case of over estimation of 

time and effort project completion is too late due to lack of 

resources, which refuses the management to approve that 

favored project. On the other hand, under estimation may 

result in approval of projects that will fail to deliver the 

expected product within the time and budget available [11]. 

So, there is a need of accurate estimation effort technique at 

early Stages of software development. In this research, the 

main aim is to improve software effort estimation by using 

Bayesian network with PSO. The main reason for using such 

a learning system for this problem is to keep the estimation 

process up-to-date by incorporating up-to-date project data. At 

last Comparison is drawn between training algorithms used in  

 

this research to state that Bayesian Network with PSO gives 

much accurate estimation. One algorithmic approach, 

COCOMO is also compared with Bayesian Regulation of 

neural network model.  

5. PROPOSED METHODOLOGY  
Following are the steps used for Effort Estimation: 

5.1 Data Collection  
The dataset used in this work is NASA93 

(http://promisedata.googlecode.com) a public available data 

set consisting of a total of 93 projects at the time of this study. 

 

5.2 Division of Data  
Data set is divided into two parts: Training and Testing. For 

our work we divide the data into 85-15% ratio i.e. 80 rows for 

training and 13 for testing. These 13 rows are randomly 

chosen by formula (ceil (1+ (93-1)*rand(13,1))), available in 

MATLAB. From this, for testing row number 

15,40,92,74,91,94,5,80,59,64,71,63, 38 are chosen. 

5.3 Cost Drivers 
Cost drivers for this work choose from the cost drivers 

designed for COCOMO II. Table 2 represents, Cost drivers 

for COCOMO. 

5.4 Normalization of data 
The first step in training to normalize the data , because in 

Bayesian network the data is only pass to the network when it 

is in normalize .so the formula for normalization is   

I1 = (I1 - min(I1))/(max(I1)-min(I1)) - 1; 

Where I1 is the data which are input by radio button. 

5.5 Initializing parameters to PSO 

algorithm 
After the normalization of data, the next step is to initializing 

the parameters to PSO i.e., initialize the swarm, velocity and 

positions of the particles 

5.6 Creation of Bayesian network  
After the second step then the creation of Bayes net is started. 

In this step the Bayes net is created and also the Dags are 

created. 
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5.7 Training   
Once the network weights and biases are initialized, the 

network is ready for training. 

5.8 Performance Criteria   
Mean Magnitude Relative Error: MMRE is frequently used to 

evaluate the performance of any estimation technique. It 

seems obvious that the purpose of MMRE is to assist us to 

select the best estimation approach. It measures the 

percentage of the absolute values of the relative errors, 

averaged over the N items in the "Test" set and can be written 

as [4]: 

 MRE = {actual effort} - {estimated effort}|}\  actual effort} 

MMRE = 1/N ( Σ MREi ) 

MMRE of COCOMO = 6.92/13 

  = 0.51 

MMRE of BR = 6.446/13 

  = 0.49 

MMRE of Bayesian Network with PSO = 0.85/13 

     = 0.065 

6. EXPERIMENTAL RESULTS AND 

COMPARISION 
Table 4 summarizes the result obtained by COCOMO model 

Bayesian Regulation Neural Network Model and Bayesian 

Network Model of PSO. In the testing phase the calculated 

efforts and errors using different training algorithms and 

COCOMO is shown in table 3 and table 4 respectively.  

Table 3. Comparison between different training 

algorithms 

Performance 

criteria 
COCOMO BR 

Bayesian 

with PSO 

MMRE 0.51 0.49 0.065 

 

Figure 1 clearly present Bayesian Network with PSO is more 

accurate than others. As evident from the table 3, the 

predicted values of the Bayesian Network with PSO efforts is 

very close to the expected or actual values as compare to 

Bayesian Regulation Neural Network and COCOMO. 

7. CONCLUSION  
Effort Estimation is one of the crucial tasks in software 

project management. This simulation with NASA93 dataset 

has been carried out using tool created with the help of 

MATLAB. Bayesian Network is generated using PSO. The 

result from our simulation shows that Bayesian Network 

Model of PSO gives the best performance, among the other 

training algorithms. We have experimented with 15 attributes 

of the COCOMO and further investigation can be done with 

other attributes and also concentration needed for process 

maturity. 

 

 

 

 

Table 4. Effort Estimation by using COCOMO, BR and 

Bayesian Network with PSO 

 

Row no. 

 

Expected 

 

COCOMO 

 

BR 

Bayesian 

Network 

with 

PSO 

15 48 85.9557 61.9294 54 

40 114 66.9477 121.206 126 

92 240 85.9557 85.847 232 

74 4178.2 1649.24 4058.46 4150 

91 1772.5 539.26 2902.12 1794 

94 1924.5 393.61 1201.62 1921 

5 25.2 38.2213 83.0016 32.7 

80 703 904.279 562.929 693 

59 4560 6718.84 4471.23 4584 

64 150 115.445 61.3017 157 

71 72 155.732 106.606 79 

63 160 270.499 61.7749 144 

38 444 463.311 338.233 456 
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Fig 1: Column chart for effort estimation 
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