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ABSTRACT 

In this article we describe a complete method to the layout 

clustered graph in hierarchical fashion. We have adopted 

Sugiyama[11] framework for hierarchical layout and modified 

its phases to produce the clustered graph layout. The 

algorithm is based on Sanders compound graph layout 

algorithm. Our main contribution is positioning of nodes with 

different sizes without any node overlap while maintaining 

straight lines for long edges. Experimental results show that 

the executiontime and quality of the produced drawings with 

respect to commonly accepted layoutcriteria are quite 

satisfactory.This algorithm is intended to integrate as a part of 

system biology software Cell-in-Silico, for drawing biological 

pathways with compartmental constraints and arbitrary 

nesting of graphs and molecular complexes. 
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1. INTRODUCTION 
Graph structures are very useful to represent large data. The 

different comprehensive depictions of a graph can convey 

meanings and information to the viewer. The clustered graph 

conveys more information by capsulation of the nodes and 

edges in a cluster. These graphs are useful in many domains 

e.g. networking, system biology and finance. Automatically 

arranging nodes, edges and their clusters in human 

comprehensible form is called graph layouting. There are no 

strict rules about graph aesthetics, but generally accepted 

criteria are minimum edge crossings, shorter edge length and 

symmetry. In this article, we are going to focus on 

hierarchical layout of clustered graph. 

In biology domain biologist need to analyze biological 

networks or pathway models. These models need to be 

visualized. Cell-in-Silico(www.cellinsilico.com), a 

comprehensive Systems Biology suite, is aimed at addressing 

the need of Experimental Biologists and Bioinformaticians for 

studying biological systems. The method we present is 

intended to use in Cell-in-Silico to layout clustered graphs. 

The graphs in biology domain are clustered graph and include 

special node type called ‘complex’. These nodes can include 

other nodes which forms the complex. For hierarchical graph 

edge orientation should be in downward direction.  The nodes 

must be strictly drawn inside their respective cluster, similarly 

the clusters be drawn as per their actual nesting. To layout 

clustered graph properly is the motivation behind this project. 

We present complete process to layout clustered graph in this 

paper. 

The Sugiyama[11] has presented the framework for 

hierarchical graph layout process. This is a general model 

which describes the phases as (i) cycle removal (ii) layering 

the graph (ii) crossing reduction (iv) node positioning. 

Although this model is for a non-clustered graph, it become 

perfect with few additional steps to maintain cluster 

information while crossing reduction and positioning of 

nodes. This approach is taken by Sander[12]. Sander presents 

a method for layout of compound directed graph. In 

compound graphs a node can be a graph, thus nesting of 

graphs is allowed. The edges are allowed between 

combination of compound graphs and nodes. Clustered graph 

is similar to the compound graph but the edges are not 

allowed between graph and nodes. Sander[12] uses global 

partitioning into layers. The nodes are arranged on these 

layers such that border rectangles can be drawn without 

entangling with each other. This approach does crossing 

reduction by considering not only the edges within the 

subgraph but also edges connecting with nodes outside the 

cluster. 

In step (iv) positioning of nodes phase; the ordering of nodes 

at layers must be maintained while assigning positions and the 

cluster rectangles must be drawn without an overlap with 

other nodes. Aesthetic criteria for readable graph include 

straightness of long edges, minimum edge slopes [1]. The 

long edges are divided by dummy nodes at each layer they 

cross. These long edges must be drawn as straight as possible. 

Previous approaches either optimize constrained objective 

function of coordinate differences or iteratively improve 

layout using one or various heuristics, or do both 

([11][6][7][2][8][3][5][4][9][10]).We chose the Brandes[1] 

approach which is simplest among them with the lowest time 

complexity O(N) where N is total number of edges, dummy 

nodes and original nodes. This approach does not consider 

node height and width. This creates overlaps of nodes and 

false alignments. We have improved it to assign positions for 

nodes with different sizes without compromising the layout 

quality.  

2. CONVENTIONS 
A directed graph G = (V,E) consist of set of nodes V and set 

of edges E. E is finiteset of ordered pairs over V. We denote 

an edge E from node u to v as uv, a path from u to v as u 

* v. A cycle is a path from any node v to itself i.e. v*v. If 

a directed graph does not contain a cycle then it is called as 

Directed Acyclic Graph (DAG). A DAG T = (V,E) is called a 

tree with n number of nodes and n-1 edges. T has a root node 

where root* v, v ∈  V. 
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A clustered graph G = (G’, T’) includes a directed graph G’= 

(V S, EG) and a tree T’ = (V S, ET),see figure 1b. Set V 

contains leaf nodes of T’ which are called as graph nodes and 

set S contains the non-leaf nodes of T’ which are ‘subgraph’. 

G’ represents the edge connectivity between nodes and T’ 

represents a nesting relation of ownership between graph 

nodes and subgraphs. Thus T’ states that a subgraph may 

contain a subgraph or graph node. We say u belongs to w ∈ S 

iff w*u in T’. Layered graph G = (V   D, E; L) is a graph 

G with a proper layering where set D contains the dummy 

nodes introduced for each subgraph. The edges are also called 

edge segments where edge source node is at layer Li and 

target node is at layer Li+1. A layer contains nodes which are 

at the same level from root node. The ordering of nodes at 

layer is described by left of relation ≺. If node u is left 

neighbor of v then it is denoted by u ≺ v and left(v) = u. For a 

given layered graph while assigning horizontal coordinates 

three margins are defined, γ is edge margin, β is node margin 

and δ is minimum separation between neighbor nodes at the 

same layer.  

 

(a) Nesting Tree          (b)Clustered Graph 

Fig 1: Nesting Tree and Corresponding graph 

3. LAYERING 

3.1 Preprocessing 
The graph must be a DAG to apply the nest stages of 

algorithm. We remove cycles contained in graph. To find 

minimum number of edges to be removed is NP Complete 

problem. Instead we can use depth first search traversal of 

graph; the edges which discovers a node which is already 

visited, mark that edge as back edge. Reverse all back edges. 

This guarantees a cycle free graph, after layout restore all 

edges removed or reversed. 

3.2 Global Layering 
After preprocessing we have a clustered DAG G. The 

Layering process is dividing the graph nodes in layers. 

Uppermost layer is numbered 1. The process is to calculate 

rank of nodes; this rank value will decide which layer they 

belong to. In global layering we consider whole graph as a 

single hierarchy. The root node will reside at first layer in 

layered graph. The direct neighbor nodes of root node will be 

at second layer and so on. To make clustered DAG G as 

single connected hierarchy we create its copy - nested graph. 

Once a nested graph is created, all nodes of graph can be 

aassigned rank. The processes are as follows: 

3.2.1 Nesting Graph 
Nested graph [12] is a copy of original graph with all nodes 

reachable from a root node. The nodes we add for each 

subgraph above and below all its nodes are called as border 

nodes. 

1. Assign upper and lower border nodes for each 

subgraph, see figure 2(b)  
2. Add edges from upper border node to the nodes in 

subgraph.  Add edges from all nodes in subgraph to 

the lower border node. These edges are called 

‘nesting edges’. 
3. Add ‘nesting edge’ from upper border node of 

subgraph to upper border nodes of its child 

subgraphs. Similarly from lower border nodes of 

child subgraphs to lower border node of subgraph 
4. Add original graph edges and if an edge creates a 

cycle then reverse it or delete it. The graph edges 

are denoted by dashed line, see figure 2(a). 

 

      (a) Nesting Graph              (b)Graph 

Fig 2: Nesting Graph and Corresponding graph with 

upper and lower border nodes 

3.2.2 Ranking 
Rank of node decides its vertical position relative to other 

vertices. The nodes with same rank forms a layer. One simple 

method to create proper ranks is to traverse graph 

topologically from root vertex. Upper border node of the 

nested graph is root node. 

                ∈                    

The rank of a node decides its layer. Between two layers of 

graph nodes there can be a maximum 2k layers of border 

nodes, where k is the nesting depth of the graph[12]. Therefor 

assign rank value to the graph nodes in the multiple of 2k + 1. 

Assign upper and lower border nodes rank between multiples 

of 2k + 1. After the rank assignment from root upper border 

node, the lower border nodes are ranked close to the subgraph 

nodes it is connected to. Adjust upper border vertices to rank 

value closer to the subgraph node, it need one bottom up pass 

starting from lower border node to root node.  

Let u be upper border node. 

                ∈                  

3.2.3 Layering 
All the nodes with same rank are assigned to the layer with 

same rank. The ranks to the graph nodes are assigned in 

multiples of 2k + 1. This gives necessary space between two 

layers of graph nodes to accommodate border layers. Nesting 

depth for graph from fig 1(b) is 3. The resulting layers are 

shown in fig 3. 
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Fig 3: Layers 

3.3 Splitting Long Edges 
The edges which cross one or more layers in layered graph are 

call long edges. We split the long edges at the points where 

they cross the layers by adding dummy node. So crossing 

reduction algorithm can guide these dummy nodes to produce 

reduced crossings by converting them to bends. This way 

when all the long edges are split by dummy node, every edge 

in thegraph will have source and target nodes at adjacent 

layers. This creates a proper hierarchy. Add dummy node to 

the nearest common parent graph in nesting tree T’. The graph 

in fig 3 has one long edge crossing graph nodes layer 14 and 

21. Note that here we are not considering layer 20 and 27 to 

keep the number of dummy nodes less but we can split the 

edge at these layers too. Fig 4 shows graph after splitting a 

long edge. 

 

Fig 4: Splitting long edge 

4. CROSSING REDUCTION 
Crossing reduction will be done in two phases. Global 

crossing reduction: without considering the subgraphs nesting 

and Subgraph Crossing Reduction: considering the cluster 

bounding rectangles, to maintain node vicinity of nodes in 

same subgraph. 

4.1 Global Crossing Reduction 
We use barycenter crossing reduction heuristics. This is a two 

layer crossing reduction process. It is applied from top to 

bottom layer then bottom to top, this completes one iteration. 

              
 

                 
            

  ∈               

 

Assign artificial positions to first layer and calculate 

barycenter weights of nodes at second layer. Reorder the 

nodes at second layer in ascending order of their barycenter 

weights. The above equation is for top-down sweeps of the 

layered graph. Similarly use Successors of v in bottom-up 

sweeps in the above equation. This process might not remove 

all edge crossings but gives a good starting point for further 

Subgraph Crossing Reduction process. 

4.2 Subgraph Crossing Reduction 

Global crossing reduction reduces some crossings but can 

reorder the nodes at layers which make subgraphs intertwined 

with each other [12]. To place nodes of same subgraph in an 

unbroken sequence at each layer we use reduced nesting trees. 

Reduced nesting tree for ith layer is nesting tree containing 

only nodes at layer i. This creates grouping of nodes of having 

same parent subgraph, see Figure 5(d).Each node v in reduced 

nesting tree is assigned average position of its direct and 

indirect child graph nodes. Sorted traversal on reduced nesting 

tree according to average position places the nodes at layer i 

with nodes of same parent subgraph in unbroken sequence. 

Though the nodes with the same subgraph placed in unbroken 

sequence, this sequence of subgraphs at each layer is not 

guaranteed to be the same for each layer in layered graph, so 

still two subgraphs can get intertwine. ‘z’ is integer for 

tweaking number iterations of crossing reduction process.  

 
 

Algorithm 1: Crossing Reduction 

Input: Nesting Tree T’, Layered Graph L 

A 0 //Average crossings in z iterations 

C current crossings 

 

while A ≠ C do 

   Assign artificial positions to layer 1 

   foreach Li∈ L , i = 1 to |L| do 

      foreach v ∈ Li do 

         calculate barycenter for v 

      end 

      Sort Li nodes by their barycenter weight 

      Sorted traversal of Ti’ according reordered Li 

   end 

   Create subgraph ordering graph OG 

   foreach v ∈ T’ do 

      update average barycenter for v 

   end 

   Break cycles and sort OG topologically 

   Calculate αo,1 

   Sorted traversal of Ti’ according to αo,1 

   foreach Li∈ L , i = 1 to |L| 

      foreach v ∈ T’ do 

         update average barycenter for v 

      end 

      Calculate αo,i 

      Sorted traversal of Ti’ according to αo,i 

   end 

   ..Similarly do bottom-up traversal.. 

   Update A and C 

end 
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Fig 5: Crossing reduction top-down iteration  

(b) Layered Graph with barycenter  

weights at layer 2 

(a) Nesting Tree T’ 

1 2 3 4 5 6 

8 12 7 9 10 11 

(c) Layer 2 sorted according to  

barycenter weights 

1 2 3 4 5 6 

8 12 7 9 10 11 

(e) Layer 2 according to sorted traversal of 

reduced nesting tree. Nodes of same cluster 

are placed in unbroken sequence at each 

layer. Subgraph are still intertwined because 

of 9 and 12 

(d) Layer 2 Reduced Nesting Tree - T’2 
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(f) Subgraph Ordering Graph 

with average barycenter weights 

(g) Acyclic Subgraph Ordering Graph with  o 1 2 3 4 5 6 
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(h) Layers sorted according to  o,i 

(i) Placement of nodes after one top to 

down iteration in Clustered Graph 
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To place all subgraphs in same sequence at each layer 

SubgraphOrdering Graph is used [12]. Subgraph ordering 

graph represents subgraph/node is left to which 

subgraph/node. If a node v is direct left neighbor of node u on 

the same layer we add edge in nearest common parent of node 

v and u. See Figure 5. If any subgraphs are intertwined then 

there will be a cycle in subgraph ordering graph. Remove 

cycles by breaking them at node with minimum average 

barycenter weight, as shown in Figure 5. A topological 

traversal of subgraph ordering graph gives ordering αo, 

denoting which subgraph is to the left of other subgraph. 

5. POSITIONING 

The edge crossings are reduced and nodes are placed 

according to their subgraphs at each layer. Now we need to 

calculate absolute positions for graph nodes such that there 

will be enough space to draw subgraph boundaries. To draw 

subgraph vertical boundaries straight we aadd trail of dummy 

vertical nodes one to the left and one to the right side of each 

layer in every subgraph.  

 

Fig 6: Vertical Dummy Nodes for every subgraph 

The goal is to position the long edges as straight as possible 

and vertical borders of subgraph strictly vertical without 

reordering the nodes at any layer. We present a heuristic 

approach based on Brandes [1] approach. The nodes have 

different height and width. There should be no overlap 

between any two nodes and node and subgraph boundary.  

The process consists of three steps. The first and second steps 

are carried out four times. The first algorithm referred as 

vertical alignment, to align nodes with eitherits median upper 

or median lower neighbor node. This will give maximum 

possible straight long edges positions in upward and 

downward direction. The alignment conflicts are resolved 

with leftmost and rightmost direction. Combination of the 

directions creates four alignments namely Upward-Left, 

Upward-Right, Downward-Left and Downward-Right. In 

second step each alignment is given absolute positions 

according to four alignments.  In the last step these alignments 

are balanced and merged to produce final absolute positions 

of nodes and subgraph borders. We have givenalgorithmfor 

upward left alignment deriving the other three alignments is 

symmetric. 

5.1.1 Mark Edge Conflicts 
Hierarchy of nodes might contain edge crossings. Every edge 

crossing is referred to as edge conflict. The inter-cluster edge 

crosses with at least one vertical border edge. To give 

preference to edge to be drawn vertically straight over its 

conflicted edges we mark other edges as conflicted. If conflict 

is between graph edge and long edge, mark the graph edge as 

conflicted [1].  In addition to that if graph edge is conflicted 

with vertical border edge then graph edge is marked similarly 

long edge is marked when conflicted with vertical border 

edge. 

5.1.2 Vertical Alignment 
We want to align nodes with their median upper side neighbor 

for positioning the long edges as straight as possible and 

resolve alignment conflict by placing nodes in left alignment. 

The alignment is stored in cyclic linked list implemented in an 

array of size of total number of graph nodes. The set of 

vertically aligned nodes are called ‘blocks’ [1]. Every node in 

block points to its block’s first node i.e. root node. A block 

root node can be aligned to next node below it; similarly next 

node aligned to its next node, this link goes on till the last 

node of the block which is then aligned to the root node. The 

node in block has to be assigned a same x coordinate i.e. same 

absolute horizontal position to draw a straight edge.  

Algorithm 2: Upward Left Alignment 

Input: Layered Graph L 

initialize root[v]  v, v ∈ V   S 

initialize align[v]  v, v ∈ V   S 

for i  1,...,|L| do 

   p -∞; 

   for v 1,...,|Li| do 

      if v has upper layer neighbors u1≺u2≺..≺ud with d > 0  

         then 

         for m  
   

 
    

   

 
 do 

            if(align[v] = v)then 

               if(edge(um , v) is not marked as conflicted)then 

                  if(p<pos[um])then 

                     align[um] v; 

                     root[v]  root[um]; 

                     align[v]  root[v]; 

                     ppos[um]; 

                  end 

               end 

            end 

         end 

      end 

   end 

end 

//Align vertical border nodes 

visited[v]  F, v ∈V   S 

foreach v ∈ V   S do 

   if(visvertical border node)then 

      if(visited[v] = F)then 

         while(predecessor(v) ≠∅)do 

            visited[v] T; 

            v predecessor(v); 

         end 

         rv; 

         while(successor(v) ≠∅)do 

            align[v]  successor(v); 

            root[v] r; 

            v successor(v); 

         end 

         align[v] r; 

         root[v] r; 

      end 

   end 

end 
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5.1.3 Horizontal Compaction with Node sizes 
In the second step of positioning, the horizontal coordinates 

are assigned to the nodes according to the four node 

alignments. All the nodes in the same block are assigned 

coordinate of their block root node. This way it guarantees the 

nodes aligned to each other will be drawn vertically in a 

straight line. If we consider an edge from every node to its 

next aligned node in a block and its predecessor on the layer 

except edge from the bottom node to block’s root node, see 

figure 7. This will create a DAG, the root of blocks will be 

sink and always there will be at most only one node of this 

kind at each layer. We partition this graph into ‘classes’. The 

class of block is the reachable sink which has topmost root 

[13]. The algorithm places the classes with minimum 

separation calculated from the node widths and the maximum 

position of predecessor class node. We have corrected the 

original algorithm of horizontal compaction from Brandes [1] 

paper and added horizontal size considerations in the process. 

The constants for edge margin and node margin can be varied. 

 

(a) Graph     

 

(b)Block                                 (c)Classes 

Fig 7 Blocks and Classes  

Algorithm 3: Horizontal Compaction with Node Sizes 

function space(v) 

begin 

   s 0;         

   if (v is DummyNode) then 

      s width[v] + γ;     

   else 

      s width[v] + β; 

   end 

   ss / 2; 

returns; 

end 

 

functionplace_block(v) 

begin 

   if (x[v] = undefined) then 

      x[v]  0; 

      u  v; 

   repeat 

      if(pos[u] > 1)then 

         r  root[left[u]];             

         place_block(r); 

         if(sink[v] = v)then 

            sink[v]  sink[r]; 

         end 

         δ space(left[u]) + space(u);                 

         if(sink[v] ≠ sink[r])then 

            ShiftClass[sink[r]] [sink[v]]  

            min{ShiftClass[sink[r]][sink[v]]  ,  x[v] - x[r] –δ}; 

         else 

            x[v]  max{x[v] , (x[r] + δ)}; 

         end 

      end 

      u  align[u];         

   until(u = v);      

   end 

end 

initialize  ShiftClass[v][u]  ∞, v ∈ V   S , u ∈ V   S 

initialize sink[v]  v , v ∈ V   S; 

initialize shift[v]  ∞, v ∈ V   S; 

initialize x[v]  undefined, v ∈ V   S; 

//Root coordinate relative to sink 

forech v ∈ V   S do 

   if root[v] = v then place_block(v); end 

end 

foreach layer Li∈ L do 

   foreach v ∈ Lido 

      if(left(v) ≠ ∅)then 

          x[v]  x[root[v]]; 

         if(v = root[v] and v = sink[v])then 

            minShift ∞;  

            foreach u ∈ShiftClass[v]do 

               if(shift[u] < ∞)then 

                  minShift min{ shift[u] + ShiftClass[v][u],  

                  minShift}; 

               end 

            end 

            shift[v] minShift; 

         end 

      end 

   end 

end 

foreach layer Li∈ L do 

foreach v ∈ Lido 

   if(shift[sink[ root[v]]] < ∞)then 

      x[v]  x[v] + shift[sink[root[v]]]; 

      end 

   end 

end 

5.1.4 Merging Alignments 
Finally, we merge the four layouts obtained in first two steps 

of positioning. This step is same from [1]. First align the 

layouts to the layout of minimum width among the four.  

Align leftmost (rightmost) alignments to match their 

minimum (maximum) coordinate with minimum of smallest 

alignment. Every node has four coordinates, out of four 

calculate the average position of median coordinate and assign 

as final coordinate. See figure 8. 
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   (a) Upward Left            (b) Upward Right 

 

(c) Downward Left        (d) Downward Right 

 

(e) Balanced Alignment 

Fig 8: Four alignments and final balanced alignment 

5.1.5 Y Coordinate Assignment 
In y coordinate assignment there are two node properties 

which we taken into account: node height and its edge 

degrees. It is obvious if the node heights are not uniform then 

layers must be placed such that the nodes must not overlap 

vertically. If nodes have more out (in) degree then next 

(previous) layer must be placed at more distance apart from 

each other to minimize the edge slope. 

6. RESULTS& ANALYSIS 
In this section we present the performance statistics.  Figure 9 

shows the performance in terms of time for graphs with 

different number of nodes. Each graph sample contains same 

number of cluster and constant nodes to edge ratio. The graph 

obtained is fairly linear. This proves the algorithm has a linear 

time complexity till 1100 nodes graph. 

 

Fig 9: Performance of algorithm Nodes vs. Time 

Table 1: Impact of long edges 

Nodes Edges Cluster Long 

Edges 

Time 

(ms) 

60 55 7 12 219 

60 55 7 22 296 

60 55 7 31 337 

60 55 7 40 393 

The table 1 shows the performance in terms of time to 

complete the layout. The graph used has same number of 

nodes, clusters and edges. We only vary the number of long 

edges. The long edges are forward edges in the graph. The 

time required to layout increases as the number of long edges 

increase. This is because the long edges are split at layers they 

cross. It increases the number of dummy nodes hence 

increases the time to layout. 

The figure 9 shows output of our graph layout algorithm. 

These two graphsexpose the features of our method: 

a. Clusters are maintained properly. There is enough 
margin left to draw cluster boundaries. 

b. Long edges are drawn as straight as possible; this 

improves the readability of layout. 

c. Nodes with varying sizes are places accordingly 

with necessary margins left to the left, right, up and 

down directions.  

d. Nodes are places compactly as a result of horizontal 

compaction algorithm, this improves the space 
utilization. 

e. The graph with symmetric edge connections are 
drawn symmetrically. 

 

(a)Clustered Graph (b) Symmetric Graph 

Fig 9: Output Graphs  
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Figure 10(b) was produced by our layout method and figure 

10(a) shows the hierarchical layout of same graph from 

systems biology software Cell-Designer 4.2 [14]. The 

difference in layering creates unnecessary edge routing in 

graph figure 10(a) and violation of feature a, on the other side 

our layout draws cluster lines inside the proper cluster. Thus 

creates more comprehensible layout. 

 

(a) Cell Designer Graph Layout (b) Our method layout 

Fig 10: Output Graphs  

7. CONCLUSION 
The presented algorithm gives good results, is flexible and 

fully automatically layouts the clustered graphs i.e. it does not 

need user intervention. It is well suited for the layout of 

clustered graphs such as biological networks. 

The global layering improves the space utilization. The 

horizontal compaction method is an added advantage 

implemented in this method, nodes with different sizes are 

placed compactly to improve the horizontal space utilization. 

The barycenter method used in combination to the subgraph 

ordering graph method gives good crossing reduction. This 

method is applied on globally partitioned graph, we can 

extend this by using crossing reduction method which 

considers the subgraph even at globally partitioned layers. 

There are several generic elements present in given 

methodlike different layering techniques, in positioning break 

conflicts in favor of high degree vertices etc., which can be 

further used to get any domain specific features in graph 

layout. 
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