
International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.24, June 2014

28

Clustered Graph Hierarchical Layout Algorithm

for Systems Biology Models

Pratik Erande

Research Scholar
Vishwakarma Institute of

Technology, Pune

Noshir Tarapore
Assistant Professor

Vishwakarma Institute of
Technology, Pune

Vrushali Inamdar
Software Team Lead
Persistent Labs, Pune

ABSTRACT

In this article we describe a complete method to the layout

clustered graph in hierarchical fashion. We have adopted

Sugiyama[11] framework for hierarchical layout and modified

its phases to produce the clustered graph layout. The

algorithm is based on Sanders compound graph layout

algorithm. Our main contribution is positioning of nodes with

different sizes without any node overlap while maintaining

straight lines for long edges. Experimental results show that

the executiontime and quality of the produced drawings with

respect to commonly accepted layoutcriteria are quite

satisfactory.This algorithm is intended to integrate as a part of

system biology software Cell-in-Silico, for drawing biological

pathways with compartmental constraints and arbitrary

nesting of graphs and molecular complexes.

General Terms

Data Visualization, Layout Algorithm.

Keywords

Clustered Graph, Hierarchical Layout, Biological Graphs,

Node Size, Complex Species.

1. INTRODUCTION
Graph structures are very useful to represent large data. The

different comprehensive depictions of a graph can convey

meanings and information to the viewer. The clustered graph

conveys more information by capsulation of the nodes and

edges in a cluster. These graphs are useful in many domains

e.g. networking, system biology and finance. Automatically

arranging nodes, edges and their clusters in human

comprehensible form is called graph layouting. There are no

strict rules about graph aesthetics, but generally accepted

criteria are minimum edge crossings, shorter edge length and

symmetry. In this article, we are going to focus on

hierarchical layout of clustered graph.

In biology domain biologist need to analyze biological

networks or pathway models. These models need to be

visualized. Cell-in-Silico(www.cellinsilico.com), a

comprehensive Systems Biology suite, is aimed at addressing

the need of Experimental Biologists and Bioinformaticians for

studying biological systems. The method we present is

intended to use in Cell-in-Silico to layout clustered graphs.

The graphs in biology domain are clustered graph and include

special node type called ‘complex’. These nodes can include

other nodes which forms the complex. For hierarchical graph

edge orientation should be in downward direction. The nodes

must be strictly drawn inside their respective cluster, similarly

the clusters be drawn as per their actual nesting. To layout

clustered graph properly is the motivation behind this project.

We present complete process to layout clustered graph in this

paper.

The Sugiyama[11] has presented the framework for

hierarchical graph layout process. This is a general model

which describes the phases as (i) cycle removal (ii) layering

the graph (ii) crossing reduction (iv) node positioning.

Although this model is for a non-clustered graph, it become

perfect with few additional steps to maintain cluster

information while crossing reduction and positioning of

nodes. This approach is taken by Sander[12]. Sander presents

a method for layout of compound directed graph. In

compound graphs a node can be a graph, thus nesting of

graphs is allowed. The edges are allowed between

combination of compound graphs and nodes. Clustered graph

is similar to the compound graph but the edges are not

allowed between graph and nodes. Sander[12] uses global

partitioning into layers. The nodes are arranged on these

layers such that border rectangles can be drawn without

entangling with each other. This approach does crossing

reduction by considering not only the edges within the

subgraph but also edges connecting with nodes outside the

cluster.

In step (iv) positioning of nodes phase; the ordering of nodes

at layers must be maintained while assigning positions and the

cluster rectangles must be drawn without an overlap with

other nodes. Aesthetic criteria for readable graph include

straightness of long edges, minimum edge slopes [1]. The

long edges are divided by dummy nodes at each layer they

cross. These long edges must be drawn as straight as possible.

Previous approaches either optimize constrained objective

function of coordinate differences or iteratively improve

layout using one or various heuristics, or do both

([11][6][7][2][8][3][5][4][9][10]).We chose the Brandes[1]

approach which is simplest among them with the lowest time

complexity O(N) where N is total number of edges, dummy

nodes and original nodes. This approach does not consider

node height and width. This creates overlaps of nodes and

false alignments. We have improved it to assign positions for

nodes with different sizes without compromising the layout

quality.

2. CONVENTIONS
A directed graph G = (V,E) consist of set of nodes V and set

of edges E. E is finiteset of ordered pairs over V. We denote

an edge E from node u to v as uv, a path from u to v as u

* v. A cycle is a path from any node v to itself i.e. v*v. If

a directed graph does not contain a cycle then it is called as

Directed Acyclic Graph (DAG). A DAG T = (V,E) is called a

tree with n number of nodes and n-1 edges. T has a root node

where root* v, v ∈ V.

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.24, June 2014

29

A clustered graph G = (G’, T’) includes a directed graph G’=

(V S, EG) and a tree T’ = (V S, ET),see figure 1b. Set V

contains leaf nodes of T’ which are called as graph nodes and

set S contains the non-leaf nodes of T’ which are ‘subgraph’.

G’ represents the edge connectivity between nodes and T’

represents a nesting relation of ownership between graph

nodes and subgraphs. Thus T’ states that a subgraph may

contain a subgraph or graph node. We say u belongs to w ∈ S

iff w*u in T’. Layered graph G = (V D, E; L) is a graph

G with a proper layering where set D contains the dummy

nodes introduced for each subgraph. The edges are also called

edge segments where edge source node is at layer Li and

target node is at layer Li+1. A layer contains nodes which are

at the same level from root node. The ordering of nodes at

layer is described by left of relation ≺. If node u is left

neighbor of v then it is denoted by u ≺ v and left(v) = u. For a

given layered graph while assigning horizontal coordinates

three margins are defined, γ is edge margin, β is node margin

and δ is minimum separation between neighbor nodes at the

same layer.

(a) Nesting Tree (b)Clustered Graph

Fig 1: Nesting Tree and Corresponding graph

3. LAYERING

3.1 Preprocessing
The graph must be a DAG to apply the nest stages of

algorithm. We remove cycles contained in graph. To find

minimum number of edges to be removed is NP Complete

problem. Instead we can use depth first search traversal of

graph; the edges which discovers a node which is already

visited, mark that edge as back edge. Reverse all back edges.

This guarantees a cycle free graph, after layout restore all

edges removed or reversed.

3.2 Global Layering
After preprocessing we have a clustered DAG G. The

Layering process is dividing the graph nodes in layers.

Uppermost layer is numbered 1. The process is to calculate

rank of nodes; this rank value will decide which layer they

belong to. In global layering we consider whole graph as a

single hierarchy. The root node will reside at first layer in

layered graph. The direct neighbor nodes of root node will be

at second layer and so on. To make clustered DAG G as

single connected hierarchy we create its copy - nested graph.

Once a nested graph is created, all nodes of graph can be

aassigned rank. The processes are as follows:

3.2.1 Nesting Graph
Nested graph [12] is a copy of original graph with all nodes

reachable from a root node. The nodes we add for each

subgraph above and below all its nodes are called as border

nodes.

1. Assign upper and lower border nodes for each

subgraph, see figure 2(b)
2. Add edges from upper border node to the nodes in

subgraph. Add edges from all nodes in subgraph to

the lower border node. These edges are called

‘nesting edges’.
3. Add ‘nesting edge’ from upper border node of

subgraph to upper border nodes of its child

subgraphs. Similarly from lower border nodes of

child subgraphs to lower border node of subgraph
4. Add original graph edges and if an edge creates a

cycle then reverse it or delete it. The graph edges

are denoted by dashed line, see figure 2(a).

 (a) Nesting Graph (b)Graph

Fig 2: Nesting Graph and Corresponding graph with

upper and lower border nodes

3.2.2 Ranking
Rank of node decides its vertical position relative to other

vertices. The nodes with same rank forms a layer. One simple

method to create proper ranks is to traverse graph

topologically from root vertex. Upper border node of the

nested graph is root node.

 ∈

The rank of a node decides its layer. Between two layers of

graph nodes there can be a maximum 2k layers of border

nodes, where k is the nesting depth of the graph[12]. Therefor

assign rank value to the graph nodes in the multiple of 2k + 1.

Assign upper and lower border nodes rank between multiples

of 2k + 1. After the rank assignment from root upper border

node, the lower border nodes are ranked close to the subgraph

nodes it is connected to. Adjust upper border vertices to rank

value closer to the subgraph node, it need one bottom up pass

starting from lower border node to root node.

Let u be upper border node.

 ∈

3.2.3 Layering
All the nodes with same rank are assigned to the layer with

same rank. The ranks to the graph nodes are assigned in

multiples of 2k + 1. This gives necessary space between two

layers of graph nodes to accommodate border layers. Nesting

depth for graph from fig 1(b) is 3. The resulting layers are

shown in fig 3.

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.24, June 2014

30

Fig 3: Layers

3.3 Splitting Long Edges
The edges which cross one or more layers in layered graph are

call long edges. We split the long edges at the points where

they cross the layers by adding dummy node. So crossing

reduction algorithm can guide these dummy nodes to produce

reduced crossings by converting them to bends. This way

when all the long edges are split by dummy node, every edge

in thegraph will have source and target nodes at adjacent

layers. This creates a proper hierarchy. Add dummy node to

the nearest common parent graph in nesting tree T’. The graph

in fig 3 has one long edge crossing graph nodes layer 14 and

21. Note that here we are not considering layer 20 and 27 to

keep the number of dummy nodes less but we can split the

edge at these layers too. Fig 4 shows graph after splitting a

long edge.

Fig 4: Splitting long edge

4. CROSSING REDUCTION
Crossing reduction will be done in two phases. Global

crossing reduction: without considering the subgraphs nesting

and Subgraph Crossing Reduction: considering the cluster

bounding rectangles, to maintain node vicinity of nodes in

same subgraph.

4.1 Global Crossing Reduction
We use barycenter crossing reduction heuristics. This is a two

layer crossing reduction process. It is applied from top to

bottom layer then bottom to top, this completes one iteration.

 ∈

Assign artificial positions to first layer and calculate

barycenter weights of nodes at second layer. Reorder the

nodes at second layer in ascending order of their barycenter

weights. The above equation is for top-down sweeps of the

layered graph. Similarly use Successors of v in bottom-up

sweeps in the above equation. This process might not remove

all edge crossings but gives a good starting point for further

Subgraph Crossing Reduction process.

4.2 Subgraph Crossing Reduction

Global crossing reduction reduces some crossings but can

reorder the nodes at layers which make subgraphs intertwined

with each other [12]. To place nodes of same subgraph in an

unbroken sequence at each layer we use reduced nesting trees.

Reduced nesting tree for ith layer is nesting tree containing

only nodes at layer i. This creates grouping of nodes of having

same parent subgraph, see Figure 5(d).Each node v in reduced

nesting tree is assigned average position of its direct and

indirect child graph nodes. Sorted traversal on reduced nesting

tree according to average position places the nodes at layer i

with nodes of same parent subgraph in unbroken sequence.

Though the nodes with the same subgraph placed in unbroken

sequence, this sequence of subgraphs at each layer is not

guaranteed to be the same for each layer in layered graph, so

still two subgraphs can get intertwine. ‘z’ is integer for

tweaking number iterations of crossing reduction process.

Algorithm 1: Crossing Reduction

Input: Nesting Tree T’, Layered Graph L

A 0 //Average crossings in z iterations

C current crossings

while A ≠ C do

 Assign artificial positions to layer 1

 foreach Li∈ L , i = 1 to |L| do

 foreach v ∈ Li do

 calculate barycenter for v

 end

 Sort Li nodes by their barycenter weight

 Sorted traversal of Ti’ according reordered Li

 end

 Create subgraph ordering graph OG

 foreach v ∈ T’ do

 update average barycenter for v

 end

 Break cycles and sort OG topologically

 Calculate αo,1

 Sorted traversal of Ti’ according to αo,1

 foreach Li∈ L , i = 1 to |L|

 foreach v ∈ T’ do

 update average barycenter for v

 end

 Calculate αo,i

 Sorted traversal of Ti’ according to αo,i

 end

 ..Similarly do bottom-up traversal..

 Update A and C

end

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.24, June 2014

31

Fig 5: Crossing reduction top-down iteration

(b) Layered Graph with barycenter

weights at layer 2

(a) Nesting Tree T’

1 2 3 4 5 6

8 12 7 9 10 11

(c) Layer 2 sorted according to

barycenter weights

1 2 3 4 5 6

8 12 7 9 10 11

(e) Layer 2 according to sorted traversal of

reduced nesting tree. Nodes of same cluster

are placed in unbroken sequence at each

layer. Subgraph are still intertwined because

of 9 and 12

(d) Layer 2 Reduced Nesting Tree - T’2

 7

8 9

10

11 12

6

1.5 4 5

5 4 1 3

2

(f) Subgraph Ordering Graph

with average barycenter weights

(g) Acyclic Subgraph Ordering Graph with o 1 2 3 4 5 6

8 12 7 9 10 11

1 2 3 4 5 6

8 12 7 9 10 11

(h) Layers sorted according to o,i

(i) Placement of nodes after one top to

down iteration in Clustered Graph

1,2,8,11

7 5,6,9

3,4,12 10
1

2 4

3 5

1

 7

2 8 5 6 3 4 9

10

11 12

1 2 3 4 5 6

8 12 7 9 10 11

2 1 4 5 2 4.5

1 2 3 4 5 6

1,2,8,11

7 5,6,9

3,4,12 10
2

3 5

4 6

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.24, June 2014

32

To place all subgraphs in same sequence at each layer

SubgraphOrdering Graph is used [12]. Subgraph ordering

graph represents subgraph/node is left to which

subgraph/node. If a node v is direct left neighbor of node u on

the same layer we add edge in nearest common parent of node

v and u. See Figure 5. If any subgraphs are intertwined then

there will be a cycle in subgraph ordering graph. Remove

cycles by breaking them at node with minimum average

barycenter weight, as shown in Figure 5. A topological

traversal of subgraph ordering graph gives ordering αo,

denoting which subgraph is to the left of other subgraph.

5. POSITIONING

The edge crossings are reduced and nodes are placed

according to their subgraphs at each layer. Now we need to

calculate absolute positions for graph nodes such that there

will be enough space to draw subgraph boundaries. To draw

subgraph vertical boundaries straight we aadd trail of dummy

vertical nodes one to the left and one to the right side of each

layer in every subgraph.

Fig 6: Vertical Dummy Nodes for every subgraph

The goal is to position the long edges as straight as possible

and vertical borders of subgraph strictly vertical without

reordering the nodes at any layer. We present a heuristic

approach based on Brandes [1] approach. The nodes have

different height and width. There should be no overlap

between any two nodes and node and subgraph boundary.

The process consists of three steps. The first and second steps

are carried out four times. The first algorithm referred as

vertical alignment, to align nodes with eitherits median upper

or median lower neighbor node. This will give maximum

possible straight long edges positions in upward and

downward direction. The alignment conflicts are resolved

with leftmost and rightmost direction. Combination of the

directions creates four alignments namely Upward-Left,

Upward-Right, Downward-Left and Downward-Right. In

second step each alignment is given absolute positions

according to four alignments. In the last step these alignments

are balanced and merged to produce final absolute positions

of nodes and subgraph borders. We have givenalgorithmfor

upward left alignment deriving the other three alignments is

symmetric.

5.1.1 Mark Edge Conflicts
Hierarchy of nodes might contain edge crossings. Every edge

crossing is referred to as edge conflict. The inter-cluster edge

crosses with at least one vertical border edge. To give

preference to edge to be drawn vertically straight over its

conflicted edges we mark other edges as conflicted. If conflict

is between graph edge and long edge, mark the graph edge as

conflicted [1]. In addition to that if graph edge is conflicted

with vertical border edge then graph edge is marked similarly

long edge is marked when conflicted with vertical border

edge.

5.1.2 Vertical Alignment
We want to align nodes with their median upper side neighbor

for positioning the long edges as straight as possible and

resolve alignment conflict by placing nodes in left alignment.

The alignment is stored in cyclic linked list implemented in an

array of size of total number of graph nodes. The set of

vertically aligned nodes are called ‘blocks’ [1]. Every node in

block points to its block’s first node i.e. root node. A block

root node can be aligned to next node below it; similarly next

node aligned to its next node, this link goes on till the last

node of the block which is then aligned to the root node. The

node in block has to be assigned a same x coordinate i.e. same

absolute horizontal position to draw a straight edge.

Algorithm 2: Upward Left Alignment

Input: Layered Graph L

initialize root[v]  v, v ∈ V S

initialize align[v]  v, v ∈ V S

for i  1,...,|L| do

 p -∞;

 for v 1,...,|Li| do

 if v has upper layer neighbors u1≺u2≺..≺ud with d > 0

 then

 for m 

 do

 if(align[v] = v)then

 if(edge(um , v) is not marked as conflicted)then

 if(p<pos[um])then

 align[um] v;

 root[v]  root[um];

 align[v]  root[v];

 ppos[um];

 end

 end

 end

 end

 end

 end

end

//Align vertical border nodes

visited[v]  F, v ∈V S

foreach v ∈ V S do

 if(visvertical border node)then

 if(visited[v] = F)then

 while(predecessor(v) ≠∅)do

 visited[v] T;

 v predecessor(v);

 end

 rv;

 while(successor(v) ≠∅)do

 align[v]  successor(v);

 root[v] r;

 v successor(v);

 end

 align[v] r;

 root[v] r;

 end

 end

end

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.24, June 2014

33

5.1.3 Horizontal Compaction with Node sizes
In the second step of positioning, the horizontal coordinates

are assigned to the nodes according to the four node

alignments. All the nodes in the same block are assigned

coordinate of their block root node. This way it guarantees the

nodes aligned to each other will be drawn vertically in a

straight line. If we consider an edge from every node to its

next aligned node in a block and its predecessor on the layer

except edge from the bottom node to block’s root node, see

figure 7. This will create a DAG, the root of blocks will be

sink and always there will be at most only one node of this

kind at each layer. We partition this graph into ‘classes’. The

class of block is the reachable sink which has topmost root

[13]. The algorithm places the classes with minimum

separation calculated from the node widths and the maximum

position of predecessor class node. We have corrected the

original algorithm of horizontal compaction from Brandes [1]

paper and added horizontal size considerations in the process.

The constants for edge margin and node margin can be varied.

(a) Graph

(b)Block (c)Classes

Fig 7 Blocks and Classes

Algorithm 3: Horizontal Compaction with Node Sizes

function space(v)

begin

 s 0;

 if (v is DummyNode) then

 s width[v] + γ;

 else

 s width[v] + β;

 end

 ss / 2;

returns;

end

functionplace_block(v)

begin

 if (x[v] = undefined) then

 x[v]  0;

 u  v;

 repeat

 if(pos[u] > 1)then

 r  root[left[u]];

 place_block(r);

 if(sink[v] = v)then

 sink[v]  sink[r];

 end

 δ space(left[u]) + space(u);

 if(sink[v] ≠ sink[r])then

 ShiftClass[sink[r]] [sink[v]] 

 min{ShiftClass[sink[r]][sink[v]] , x[v] - x[r] –δ};

 else

 x[v]  max{x[v] , (x[r] + δ)};

 end

 end

 u  align[u];

 until(u = v);

 end

end

initialize ShiftClass[v][u]  ∞, v ∈ V S , u ∈ V S

initialize sink[v]  v , v ∈ V S;

initialize shift[v]  ∞, v ∈ V S;

initialize x[v]  undefined, v ∈ V S;

//Root coordinate relative to sink

forech v ∈ V S do

 if root[v] = v then place_block(v); end

end

foreach layer Li∈ L do

 foreach v ∈ Lido

 if(left(v) ≠ ∅)then

 x[v]  x[root[v]];

 if(v = root[v] and v = sink[v])then

 minShift ∞;

 foreach u ∈ShiftClass[v]do

 if(shift[u] < ∞)then

 minShift min{ shift[u] + ShiftClass[v][u],

 minShift};

 end

 end

 shift[v] minShift;

 end

 end

 end

end

foreach layer Li∈ L do

foreach v ∈ Lido

 if(shift[sink[root[v]]] < ∞)then

 x[v]  x[v] + shift[sink[root[v]]];

 end

 end

end

5.1.4 Merging Alignments
Finally, we merge the four layouts obtained in first two steps

of positioning. This step is same from [1]. First align the

layouts to the layout of minimum width among the four.

Align leftmost (rightmost) alignments to match their

minimum (maximum) coordinate with minimum of smallest

alignment. Every node has four coordinates, out of four

calculate the average position of median coordinate and assign

as final coordinate. See figure 8.

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.24, June 2014

34

 (a) Upward Left (b) Upward Right

(c) Downward Left (d) Downward Right

(e) Balanced Alignment

Fig 8: Four alignments and final balanced alignment

5.1.5 Y Coordinate Assignment
In y coordinate assignment there are two node properties

which we taken into account: node height and its edge

degrees. It is obvious if the node heights are not uniform then

layers must be placed such that the nodes must not overlap

vertically. If nodes have more out (in) degree then next

(previous) layer must be placed at more distance apart from

each other to minimize the edge slope.

6. RESULTS& ANALYSIS
In this section we present the performance statistics. Figure 9

shows the performance in terms of time for graphs with

different number of nodes. Each graph sample contains same

number of cluster and constant nodes to edge ratio. The graph

obtained is fairly linear. This proves the algorithm has a linear

time complexity till 1100 nodes graph.

Fig 9: Performance of algorithm Nodes vs. Time

Table 1: Impact of long edges

Nodes Edges Cluster Long

Edges

Time

(ms)

60 55 7 12 219

60 55 7 22 296

60 55 7 31 337

60 55 7 40 393

The table 1 shows the performance in terms of time to

complete the layout. The graph used has same number of

nodes, clusters and edges. We only vary the number of long

edges. The long edges are forward edges in the graph. The

time required to layout increases as the number of long edges

increase. This is because the long edges are split at layers they

cross. It increases the number of dummy nodes hence

increases the time to layout.

The figure 9 shows output of our graph layout algorithm.

These two graphsexpose the features of our method:

a. Clusters are maintained properly. There is enough
margin left to draw cluster boundaries.

b. Long edges are drawn as straight as possible; this

improves the readability of layout.

c. Nodes with varying sizes are places accordingly

with necessary margins left to the left, right, up and

down directions.

d. Nodes are places compactly as a result of horizontal

compaction algorithm, this improves the space
utilization.

e. The graph with symmetric edge connections are
drawn symmetrically.

(a)Clustered Graph (b) Symmetric Graph

Fig 9: Output Graphs

0

1000

2000

3000

4000

5000

6000

T
im

e
in

 m
il

li
se

co
n
d

s

Number of nodes

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.24, June 2014

35

Figure 10(b) was produced by our layout method and figure

10(a) shows the hierarchical layout of same graph from

systems biology software Cell-Designer 4.2 [14]. The

difference in layering creates unnecessary edge routing in

graph figure 10(a) and violation of feature a, on the other side

our layout draws cluster lines inside the proper cluster. Thus

creates more comprehensible layout.

(a) Cell Designer Graph Layout (b) Our method layout

Fig 10: Output Graphs

7. CONCLUSION
The presented algorithm gives good results, is flexible and

fully automatically layouts the clustered graphs i.e. it does not

need user intervention. It is well suited for the layout of

clustered graphs such as biological networks.

The global layering improves the space utilization. The

horizontal compaction method is an added advantage

implemented in this method, nodes with different sizes are

placed compactly to improve the horizontal space utilization.

The barycenter method used in combination to the subgraph

ordering graph method gives good crossing reduction. This

method is applied on globally partitioned graph, we can

extend this by using crossing reduction method which

considers the subgraph even at globally partitioned layers.

There are several generic elements present in given

methodlike different layering techniques, in positioning break

conflicts in favor of high degree vertices etc., which can be

further used to get any domain specific features in graph

layout.

8. ACKNOWLEDGMENTS
This research project is funded by Persistent Labs, Pune, we

are thankful to them. We thank Vivek Kulkarni for his critical

comments and suggestions during the project. We are grateful

to our jury Dr. S. T. Patil for his comments and suggestions.

Our friends and colleagues Anwar Shaikh, Pratham Shah and

Ujwala Bangar at Labs have provided good suggestions on

implementation, we are thankful to them. We are thankful to

Mayur Narkhede for all the discussions and criticisms on

algorithms he generously offered whenever asked for.

9. REFERENCES
[1] Ulrik Brandes and Boris Kopf, 2002. “Fast and Simple

Horizontal Coordinate Assignment”. 9th international

symposium on Graph Drawing(GD’01) (LNCS 2265),

31-44.

[2] Peter Eades, Xuemin Lin, and Roberto Tamassia,

1996.“An Algorithm for Drawing a Hierarchical Graph”.

International Journal of Computational Geometry &

Applications, 6:145-156.

[3] Peter Eades and Kozo Sugiyama, 1990. “How to Draw a

Directed Graph”. Journal of Information Processing,

13(4), 424-437.

[4] Michael Frohlich and Mattias Werner, 1994.“The graph

visualization system daVinci - a user interface for

applications”. Technical Report 5/94, Department of

Computer Science, University of Bremen.

[5] Emden R. Gansner, Eleftherios Koutsofios, Stephen C.

North, and Kiem-Phong Vo.,1993.“A Technique for

Drawing Directed Graphs”. IEEE Transactions on

Software Engineering, 19(3):214-230.

[6] Emden R. Gansner, Stephen C. North, and Kiem-Phong

Vo., 1988. “DAG - A Program that Draws Directed

Graphs”. Software - Practice and Experience,

17(1):1047-1062.

[7] Georg Sander, 1995. “Graph Layout through the VCG

Tool”. In Roberto Tamassia and Ioannis G. Tollis, editor,

Proceedings of the DIMACSInternational Workshop on

Graph Drawing (GD ’94), LNCS 894, 194-205, Springer.

[8] Georg Sander, 1996. “A fast heuristic for hierarchical

Manhattan layout”. In Franz J. Brandenburg, editor,

Proceedings of the 3rd International Symposium on

Graph Drawing (GD ’95), LNCS 1027, 447-458.

Springer.

[9] Georg Sander, 1999. “Graph Layout for Applications in

Compiler Construction”. Theoretical Computer Science,

217(2):175-214.

[10] Kozo Sugiyama and Kazuo Misue, 1991. “Visualization

of Structural Information: Automatic Drawing of

Compound Digraphs”. IEEE Transactions on Systems,

Man and Cybernetics, 21(4):876–892.

[11] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda,

1981. “Methods for Visual Understanding of

Hierarchical System Structures”. IEEE Transactions on

Systems, Man and Cybernetics, 11(2):109–125.

[12] Georg Sander, 1996. “Layout of Compound Directed

Graphs”. Technical Report A/03/96. Sarland University,

D-66123 Saarbrücken, Germany.

[13] Christoph Buchheim, Michael Jünger, and Sebastian

Leipert, 2001. “A Fast Layout Algorithm for K-Level

Graphs”. In Joe Marks, editor, Proceedings of the 8th

International Symposium on Graph Drawing (GD 2000),

LNCS 1984, 229–240, Springer.

[14] Cell Designer Guide, available online at:

http://celldesigner.org/documents/StartupGuide42.pdf.

IJCATM : www.ijcaonline.org

