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ABSTRACT 

In this paper, we prove common fixed point theorems for a 

pair of weakly compatible maps under E.A .property.  A 

major benefit of property (E.A.) is that it ensures convergence 

of desired sequences without completeness. At the end we 

rectify the main result of the paper, entitled “Common fixed 

points for weakly compatible maps, Proc. Indian Acad. Sci. 

(Math. Sci.) Vol. 111(2001), No. 2, pp 241-247.  
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1. INTRODUCTION 

There has been a considerable interest to study common fixed 

point for a pair (or family) of mappings satisfying contractive 

conditions in metric spaces for the last quarter of the 20th 

century.  Several interesting and elegant results were obtained 

in this direction by various authors. It was the turning point in 

the “fixed point arena” when the notion of commutativity was 

used by Jungck [6] to obtain a generalization of Banach’s 

fixed point theorem for a pair of mappings.  This theorem has 

had many applications, but suffers from one drawback-the 

definition requires that T be continuous throughout X.  This 

result was further generalized and extended in various ways 

by many authors.  On the other hand, Sessa [15] coined the 

notion of weak commutativity and proved a common fixed 

point theorem for these mappings.   

In particular we have to look first why we need such type of 

maps in the context of common fixed point theorem in metric 

spaces.  

Start with the following contraction conditions: 

Let T be a mapping from a complete metric space (X, d) into 

itself and consider the following conditions:  

(1.1)   d(Tx, Ty) ≤ α.d(x, y) for all x, y ∈X, where 0 ≤ α <1 , 

(1.2)  d(Tx, Ty) ≤ β.[d(x, Tx) + d(y,T y)] for all x, y ∈X, 

where 0 ≤ β < ½ . 

It is clear that every self mapping T of X satisfying condition 

(1.1) is continuous but may fail to do so if T satisfies 

condition (1.2). In late 70's many generalizations of the 

condition (1.1) and (1.2) appeared. Difficulty arises in 

obtaining common fixed points for a pair of maps. To focus 

such pioneer problem we shall first generalize the condition 

(1.1) for a pair of self maps S and T of X in two ways:  

(1.3)  d(Sx, Ty) ≤ α.d(x, y) for all x, y ∈X, where 0 ≤ α 

<1, and  

(1.4) d(Sx, Sy) ≤ α.d(Tx, Ty) for all x, y ∈X, where 0 ≤ α 

<1.  

To prove the existence of common fixed points for (1.3) we 
shall choose an arbitrary point  x

0 
 in X and define a sequence 

{x
n
} of X by x

2n+1 
= Sx

2n
, x

2n+2 
= Tx

2n+1
, n ∈ N

0 
. For the 

inequalities such as (1.4), it is necessary to add additional 

assumptions of the following type:  

(i) construction of the sequence {xn} (ii) some mechanism to 

obtain common fixed point and this problem was over by 

imposing additional hypothesis of commutative pair of { S, T 

} by Jungck [5] Most of the papers with the generalization in 

the lines of condition (1.4) followed a similar pattern of maps:  

(i) contraction (ii) continuity of functions (either one or both) 

and (iii) commuting pair of mappings were given. In some 

cases condition (ii) can be relaxed but condition (i) and (iii) 

are unavoidable. The answer of the Global problem, How to 

develop extensively this theory? was affirmatively answered 

when mathematicians diverted their research in the direction 

of conditions (i) and (iii). 

 Now we give preliminaries and basic definitions which are 

used throughout the paper. 

Definition 1.1. Two self-mappings f and g be of a metric 

space (X,d)  are said to be weakly commuting if   d (fgx, gfx) 

  d(gx,fx) for all x in X.  

In last two decades, a major breakthrough was done when 

Jungck 6] introduced the  notion of  “compatibility of 

mapping”. This concept has been very useful for obtaining 

fixed point theorems for pairs of mappings satisfying a 

contractive type conditions and assuming continuity of at least 

one of mappings. 

Definition 1.2.[6] Two self-mappings f and g  of a metric 

space (X,d)  are said to be compatible if  d(fgxn , gfxn) = 

0, whenever {xn}  n=1  is a sequence in X such that  

fxn =  gxn = t for some t in   X . 

The study of common fixed points theorems for non 

compatible mappings is also interesting and first initiated by 

Pant [12] with the introduction of the notion of R-weakly 

commuting mappings in metric spaces. 



lim
n

 lim
n

lim
n
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Definition 1.3. A pair of self-mappings (f, g) of a metric space 

(X, d) is said to be R-weakly commuting if there exists some 

R > 0 such that 

    d(fgx, gfx) ≤ Rd(fx, gx, ) for all xX and t > 0. 

In 1997, Pathak Cho and Kang [11] improved the notion of R-

weakly commuting mappings  to  the notion of  R-weakly 

commuting mappings of type (Ag) and  R-weakly commuting 

mappings of type (Af). 

Definition 1.4. A pair of self-mappings (f, g) of a metric space 

(X, d) is said to be 

(i) R-weakly commuting mappings of type (Ag) if there exists 

some R > 0 such that         

         d(gfx, ffx) ≤  Rd(fx, gx) for all xX. 

(ii) R-weakly commuting mappings of type (Af) if there exists 

some R > 0 such that           

       d(fgx, ggx) ≤  R d(fx, gx) for all xX. 

In 1998, Jungck and Rhoades [7] introduced the notion of 

weakly compatible as follow:  

Definition 1.5. Two maps f and g are said to be weakly 

compatible if they commute at coincidence points.  

Example 1.1.  Weakly compatible maps need not be 

compatible.   

Let X = [2, 20] and d be the usual metric on X.  Define 

mappings      

B, T : X  X by Bx =  x if x =  2 or > 5, Bx  = 6 if 2 < x  5 ,  

Tx =  x      if   x = 2, Tx = 12  if 2 < x  5, Tx = x3 if x > 5.  

The mappings B and T are non-compatible since sequence 

{xn} defined by xn =(5 + (1/n) , n  1) .   Then Txn  2, Bxn 

 2, TBxn =  2 and BTxn =  6.   But they are weakly 

compatible since they commute at coincidence point at x = 2.  

Now in a similar mode we can state R-weakly commuting 

mappings of type (P) ,which seem to be unreported in the  

metric fixed point theory literature. 

Definition 1.6. A pair of self-mappings (f, g) of a metric space 

(X, d) is said to be R-weakly commuting mappings of type (P) 

if there exists some R > 0 such that                  

d(ffx, ggx) ≤ Rd(fx, gx) for all xX. 

Remark 1.1.We have  some suitable examples to show that 

R- weakly commuting mappings , R-weakly commuting of 

type (Ag) , R-weakly commuting of type (Af) and  R-weakly 

commuting of type (P) are distinct. 

Example  1.2.  Let X= [-1,1] the set of all real numbers with 

usual  metric d defined by 

            d(x, y) = x y for all x,y in X.  

Define fx = x and gx = 1x  . Then by a straightforward 

calculation, one can show that   

d(fx,gx)=1, d(fgx, gfx)=2(1 )x ,
 
d(fgx, ggx) = 1

,
 d(gfx, 

ffx) =1  ,d(ffx, ggx) = 2 x   for all x  in X. 

Now we conclude the following:    

(i)  pair (f, g) is  not weakly commuting   

(ii) for R=2, pair (f, g) is R-weakly commuting 

, R-weakly commuting  of type (P) , R-

weakly commuting  of type (Ag) and   R-

weakly commuting  of type (Af), 

(iii)  for R= 
3

2
, pair (f, g) is R-weakly 

commuting  of type (Af) but  not R-weakly 

commuting  of type  (P) and R-weakly 

commuting. 

Example 1.3.  Let X= [0,1] the set of all real numbers with 

usual metric d defined by 

            d(x, y) = x-y
 
for all x,y in X.  

Define fx = x and gx = x2. Then by a straightforward 

calculation, one can show that  ffx=x,gfx=x2,fgx=x2,ggx=x4 

and   d(fgx, gfx) =0
, 

d(fgx, ggx) = 
2( 1)( 1)x x x 

,
 

d(gfx, ffx) = ( 1)x x ,  d(ffx, ggx) = 

2
( 1)( 1)x x x x     and     d(fx, gx) = x(x-1)  

for all x in X. Therefore, we conclude that  

i)   pair (f, g) is R- weakly commuting for all positive, real 

values of R, 

ii)  for R=3, pair (f, g) is R-weakly commuting of the type 

(Af),R-weakly commuting of the type (Ag) and R-weakly 

commuting of the type (P), 

   iii)  for  R=2, pair (f, g) is R-weakly commuting of type 

(Af), and R-weakly  commuting of type (Ag)  but not R-

weakly commuting of    type (P)(for this take x= 
3

4
).                         

Example  1.4. Consider X= 
1

,2
2

 
 
 

. Let us define self maps 

f and g by fx=
1

3

x 
,gx=

2

5

x 
.We calculate the following: 

d(fx, gx)= 
2 1

15

x 
,d(fgx, gfx)=0,d(fgx, ggx)= 

2 1

75

x 
,        

d(gfx, ffx)= 
2 1

45

x 
 and d(ffx, ggx)= 

8
(2 1)

225
x   for all 

x in X. 

Now we conclude the following: 

The pair (f,g) is R-weakly commuting  for all positive real 

numbers. 

for  R





, it is R-weakly commuting  of type (Af), R-

weakly commuting  of type (Ag) and  R-weakly commuting  

of type (P). 

i) for  
1

3
R


 


, it is R-weakly commuting  

of type (Ag)  and  R-weakly commuting  of 
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type (Af) but not   R-weakly commuting  of 

type (P). 

 ii)              for  
1

5
R


 


, it is R-weakly commuting  of 

type (Af ) but not     R-weakly                       commuting  of 

type (Ag) and    R-weakly commuting  of type (P). 

             Moreover, such mappings commute at their 

coincidence points. It is  also obvious that f and g can fail to 

be point wise R-weakly commuting only if there exists some x 

in X such that fx =gx but fgx ≠gfx ,that is ,only if they possess 

a coincidence point at which they do not commute.  

the notion of point wise R-weak commutativity is equivalent 

to commutativity at coincidence points.  

In 1998, Jungck [8] introduced the notion of weakly 

compatible as follow:  

Let A   and S  be self-mappings of a metric space (X, d) and   

C(A, S) the set of  coincidence points of A and S. 

Definition 1.7. A and S are said to be weakly compatible if 

SAu = ASu for all                              u ∈ C(A, S). 

Example 1.5.   Let X = [2, 20] and define mappings S, T : X 

 X by 

 

 

Now consider   a sequence {xn} defined by   xn = (5+
1

n
 , n  

1) . Then Txn    2, Sxn  2,  TSxn    2 and STxn    6. The 

mappings S and T are non-compatible, however, the maps S 

and T are weakly compatible since they commute at 

coincidence point at x = 2. 

Now, there arises a natural question: “How fixed 

point theorems can be improved to the setting of non-

complete metric spaces and without continuity of f and g over 

the whole space X?" We give the partial answer. It seems that 

fixed point theorems can be improved by using E.A. property. 

     Aamri and El Moutawakil [1] generalized the concept of 

non compatiblity in metric spaces by defining the notion 

property (E.A.) and proved common fixed point theorems 

under strict contractive conditions. A major benefit of 

property (E.A.) is that it ensures convergence of desired 

sequences without completeness. 

Recently, Amari and Moutawakil [1] introduced a 

generalization of non compatible maps as property ( E. A. ) as 

follows:  . 

Definition 1.8. LetA and S be two self-maps of a metric 

space(X,d) .The pair (A,S) is  said to satisfy property ( E. A. )   

, if there exists a sequence{xn} in X such that limn→∞ Axn 

=limn→∞Sxn =t for some t in X. 

Example  1.6.  Let X =[0,+∞). Define S,T :X→X by 

fx= 
4

x
 and gx= 

3

4

x
 , for all x in  X. Consider the sequence 

xn = 
1

n
. Clearly  lim

n
 d(fxn,gxn)=0,  then f and g satisfy 

property ( E. A. )   . 

Example  1.7.  Let X =[2, )  . Define f,g :X→X by 

gx= 1x  and fx= 2 1x , for all  x   X. Suppose that the 

property ( E. A. )   holds. Then, there exists a sequence {xn} in 

X satisfying lim
n

 fxn = lim
n

  gxn = z for some z   X. 

Therefore, lim
n

 xn = 1z  and lim
n

xn =
1

2

z 
.Thus, z = 1, 

which is a contradiction, since 1 is not contained in X. Hence f 

and g do not satisfy E.A property. 

Example 1.8.  Let X =
2

[ , )
3
  . Define f,g :X→X by 

gx= 
1

3

x 
 and fx= 

2 1

3

x 
, for all  x   X. Suppose that  f 

and g satisfy property ( E. A. )   ,then  there exists a sequence 

{xn} in X satisfying lim
n

 fxn = lim
n

  gxn = z for some z   

X. Therefore, lim
n

 xn =3 1z  and lim
n

xn =
3 1

2

z 
.Thus, z 

= 
1

3
, which is a contradiction, since 

1

3
 is not contained in X. 

Hence f and g does not satisfy property ( E. A. )   . 

Example 1.9.  Let X =R+ and d be the usual metric on X..Also 

define  f,g :X→X by  

 fx =0, if 0   x ≤ 1  and fx  =1, if x  1 or x = 0; and gx = 

[x], the greatest integer that is less than or equal to x, for all  x

X. Consider a sequence{xn} ={1+
1

n
}n ≥ 2 in (1, 2), then 

we have lim
n

fxn = 1 = lim
n

gxn. Similarly for the sequence 

{yn} = {1− 
1

n
}n≥2 in (0, 1), we have lim

n
fyn = 0 = lim

n

gyn. Thus the pair (f,g)   satisfy property ( E. A. )   .  

        However, f and g are not weakly compatible as as each 

u1∈ (0,1) and u2∈ (1,2) are coincidence points of f and g, 

where they do not commute. Moreover, they commute at x = 

0, 1, 2... but none of these points are coincidence points of f 

and g. 

It was pointed out in [1] that property ( E. A.)   buys 

containment of ranges without any continuity requirements 

besides minimizes the commutativity conditions of the maps 

to the commutativity at their points of coincidence. Moreover, 

property ( E. A.)   Allows replacing the completeness 

requirement of the space with a more  natural condition of 

closeness of the range.  
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Definition 1.9.  Let A ,B, S and T be self-maps of a metric 

space (X,d)   Two pairs (A,S ) and  (B, T) satisfy a common  

E.A. property if  there exists a sequences {xn} and {yn} in X 

such that limn→∞Axn = limn→∞Sxn limn→∞Byn = limn→∞Tyn = z 

for some zX. 

2. MAIN RESULTS 

Theorem 2.1.  Let A, B, S and T be self maps of a metric 

space (X,d)  satisfying the following conditions: 

(2.1)   A(X)   T(X) and  B(X)   S(X), 

(2.2) d(Ax,By ) ≤   ϕ {d(Sx,Ty ), d(Ax,Sx ) ,d(By,Ty ) 

,d(Sx,By) ,d(Ax,Ty )}  for all x,y in X   , where    : 

(R+)5   R+ is in the class F of all upper semi-

continuous mappings, strictly non-decreasing in 

each coordinate variables . 

(2.3)  pairs (A,S) or (B,T) satisfy property ( E. A. )   , 

(2.4)   pairs (A,S) and (B,T) are weakly compatible.  

If the range of one of A, B, S and T is a closed subset of X, 

then A, B, S and T have a unique common fixed point in X. 

Proof. Suppose that (B, T) satisfies the property ( E. A. )   . 

Then there exists a sequence {xn} in X such that limn→∞Bxn = 

limn→∞Txn = z for some zX. 

Since B(X) S(X), therefore, there exists a sequence {yn}
X such that limn→∞Bxn = limn→∞Syn = z .   

Now we shall show that limn→∞Ayn = z. We claim that 

   
   

Ayn = l. 

From (2.2) , we hav  

d(Ayn, Bxn) ≤  ϕ { d(Syn, Txn), d(Ayn, Syn), d(Bxn ,Txn), 

d(Syn,Bxn),                            

                           d(Ayn, Txn )} 

 Proceeding limit as n→∞  

d(l, z)   ≤ ϕ { d(z, z), d(l, z), d(z ,z), d(z,z),d(l, z )} 

             = ϕ{ 0 ,d(l, z), 0 ,0,d(l, z )}≤  (t, t, t, t, t) < t, where 

t= d(l, z),      we have  l = z. 

Therefore, limn→∞Ayn = z. 

Suppose that S(X) is a closed subset of X. Then z = Su for 

some uX. Subsequently, we have limn→∞Ayn = limn→∞Bxn 

= limn→∞Txn = limn→∞Syn = z = Su. 

From (2.2) we have  

d(Au, Bxn,) ≤  ϕ {d(Su, Txn), d(Au, Su), d(Bxn ,Txn), 

d(Su,Bxn),                            

                           d(Au, Txn )}. 

Letting limit as n→∞ ,we have Au = Su=z.  

Since A(X) T(X), so there exists vX such that z = Au = 

Tv. 

Now, we claim that z = Tv = Bv.  

From (2.2) ),    

d(Au, Bv) ≤  ϕ {d(Su, Tv), d(Au, Su), d(Bv ,Tv,) ,d(Su,Bv,), 

d(Au, Tv)}, we have  

z=Bv. 

 

 Thus we have Au = Su = Tv = Bv =z.  

Since the pair (A, S ) is weak compatible which implies ASu 

= SAu  i.e, Az=Sz. 

From (2.2)  

d(Az, Bv) ≤  ϕ {d(Sz, Tv), d(Az, Sz, ), d(Bv ,Tv), d(Sz,Bv ),  

d(Az, Tv )} ,imply that Az=Sz=z. 

The weak compatibility of B and T implies that BTv = TBv 

,i.e., Bz = Tz . 

Now we shall show that z is the common fixed point of B. 

From (2.2), one obtains   Bz=z,  

Hence Az=Bz=Sz=Tz=z and z is a common fixed point of A, 

B, S and T. 

Example 2.1.  Let X= 0,2   equipped with the Euclidian 

distance .Define A,B,S and T by 

0 0 1

1 1 2

0 0 1

2 1 2

if x
Ax Tx

if x

if x
Bx Sx

if x

 
  

 

 
  

 

 

The mapping ϕ: (R+)5→R+ defined by ϕ(x1,x2,x3,x4,x5)  =  x1 

Then  

d(Sx,Ty) ≤  

ϕ{d(Sx,Ty),d(Ax,Sx),d(By,Ty),d(Ax,Ty),d(By,Sx)}  for all 

x,y ε X  and consider 
1

nx
n

    .Limn→∞Axn = limn→∞Bxn = 

limn→∞Txn = limn→∞Sxn = 0. 

Hence pairs (A,S) and (B,T)  satisfy E.A. property . 

Also A(X) =T(X)={0,1} and B(X) =S(X)={0,2} are  a closed 

subset of X. Moreover, pairs (A,S) and (B,T)  are weakly 

compatible .Thus all the conditions of the  above theorem are 

satisfied . 0 is the unique common fixed point of A, B, S and 

T. 

In 2008, Kubiaczyk  Sharma[6] proved the following fixed 

theorem.  

Corollary 2.1.  Let A,B,S and T be  self maps  of a metric 

space  (X,d)  satisfying (2.1) , (2.3) ,(2.4) and  the following: 

(2.5) d(Ax,By ) ≤  k max{ d(Sx,Ty), d(Ax,Sx ) ,d(By,Ty) 

,d(Sx,By) ,d(Ax,Ty)}  for all x,y in X, where k ε 

(0,1). 

If the range of one of A, B,S and T is a closed subset of X, 

then A,B,S and T have a unique common fixed point in X. 

Proof . Take in the above Theorem ϕ(x1,x2,x3,x4,x5) = max 

{x1,x2,x3,x4,x5} 

Example 2.2.  Let  X= 0,2   equipped with the Euclidian 

distance  Define the self maps A,B,S and T:XX by 
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         

0 0,
0 0, 0 0,

0.40 0 0.6,
0.25 0. 0.45 0.

0.45 0.6.

0 0,

0.25 0 0.6,

0.25 0.6.

0,0.25 , 0.0.45 0 (0.15,1.55) , 0 0.25 (0.35,1.75).

if x
if x if x

Ax Bx Sx if x
if x if x

x if x

if x

Tx if x

x if x

AX BX SX TX


   

      
     




  
  

      

 

Let us consider the sequence xn=0.60+1/n ,then Axn0.25, 

Bxn0.45 Cxn0.15, Txn0.35, ASxn0.25, SAxn 0.40, 

BTxn0.45, Bxn0.25.Pairs (A,S) and  (B,T)  are non 

compatible. If we take k=0.6,and t=1, then A,B,S and T 

satisfy all the conditions of the theorem and 0 is the unique 

common fixed point of A,B,S and T. Moreover, A,B,S and T 

are discontinuous at the fixed point 0.  

Next we consider a function   : R+ R+  satisfying the 

conditions 

  is continuous and nondecreasing on R
(*) ,

 t  <  t for all t >0.





 

 

We note that   (1) =1 and   (t) < t   for all t > 0. 

  ( d(x,y))  <  d(x,y)   holds for  all  x,y in X. 

Theorem 2.3.  Let A,B,S and T be  self maps  of a metric 

space  (X,d) satisfying (2.1) , (2.3) ,(2.4) and  the following: 

(2.6) d(Ax,By )  ≤    ( max { d(Sx,Ty ) ,d(Ax,Sx), 

d(By,Ty ) ,d(Sx,By ), d(Ax,Ty )}  for all x,y in X. 

If the range of one of A, B, S and T is a closed subset of X, 

then A,B,S and T have a unique common fixed point in X. 

Proof. Suppose that (B, T) satisfies the E.A property. Then 

there exists a sequence {xn} in X such that limn→∞Bxn = 

limn→∞Txn = z for some zX. 

Since BX SX there exists a sequence {yn}X such that 

Bxn = Syn = z . Hence limn→∞Syn = z. 

We shall show that limn→∞Ayn = z. 

From (2.6) we have  

d(Ayn, Bxn) ≤   ( max{ d(Syn, Txn), d(Ayn, Syn), d(Bxn 

,Txn), d(Syn,Bxn ),                            

                           d(Ayn, Txn )}). 

Proceeding limit as n→∞, one obtain, limn→∞Ayn = z. 

Suppose that S(X)  is a closed  subspace of X. Then z = Su for 

some uX. Subsequently we have 

limn→∞Ayn = limn→∞Bxn = limn→∞Txn = limn→∞Syn = z = Su. 

Now, we shall show that Au = Su.  From (2.6) we have  

d(Au, Bxn) ≤  ( max{d(Su, Txn), d(Au, Su), d(Bxn ,Txn), 

d(Su,Bxn ),                            

                           d(Au, Txn )}. 

 

 

 

Letting limit as n→∞, we get 

d(Au, zt) ≤   (max{d(z, z), d(Au, z), d(z ,z), d(z,z ),                            

                           d(Au, z)}), using  (*) ,we have , Au = Su=z.  

Since AX TX, so there exists vX such that  z = Au = Tv. 

Now, we claim that z = Tv = Bv.  

 From (2.6) we have  

d(Au, Bv) ≤   (max{d(Su, Tv), d(Au, Su), d(Bv ,Tv), 

d(Su,Bv ),                            

                              d(Au, Tv)}), 

, using  (*) ,we have , z=Bv. Thus we have Au = Su = Tv = 

Bv =z.  

Since  the pair (A ,S ) is weak compatible which implies ASu 

= SAu  i.e, Az=Sz. 

From (2.6),  

d(Az, Bv, ) ≤   (max{d(Sz, Tv), Fd(Az, Sz), d(Bv ,Tv,), 

d(Sz,Bv),                            

                           d(Az, Tv)}) using  (*) , we have , Az=Sz=z. 

The weak compatibility of B and T implies that BTv = TBv 

,i.e., Bz = Tz . 

Now we shall show that z  is the common fixed point of A, B, 

T and S. 

Suppose that Bz ≠ z . Then using (2.6) one obtain  Bz=z. 

Hence Az=Bz=Sz=Tz=z and z is a common fixed point of 

A,B,S and T. 

Uniqueness follows easily. 

Theorem  2.4.  Let A,B,S and T be  self maps  of a metric 

space  (X,d)   satisfying (2.1),(2.4)  and the  following 

conditions:. 

(2.7) pairs  (A,S) and (B,T) satisfy  a common E.A. 

property 

If the range of S and T is a closed subset of X, then A, B, S 

and T have a unique common fixed point in X. 

Proof. Suppose that (A,S ) and  (B, T) satisfy a common  E.A. 

property. Then there exists a sequences {xn} and {yn} in X 

such that  

limn→∞Axn = limn→∞Sxn limn→∞Byn = limn→∞Tyn = z for some 

zX. 

Since S(X)    and T(X) are closed subsets of X , we obtain 

z=Su =Tv for some u ,v in X. 

From (2.6),  

d(Au, Byn) ≤  
 
max  {d(Su, Tyn), d(Au, Su), d(Byn ,Tyn,) , 

d(Su,Byn ),                            

                            d(Au, Tyn )})  

Letting n∞ and using (*), we have,z=Au =Su =Tv. 

The rest of the proof follows from the above theorem. 
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