
International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.23, June 2014

22

Resource Aware Monitoring in Distributed System

using Tabu Search Algorithm

Sonali L. Vidhate

P.G.Student at MET’s BKC IOE
Nasik, Maharashtra, Pune University, India

M.U.Kharat, PhD
Professor at MET’s BKC IOE

Nasik, Maharashtra, India

ABSTRACT

Tabu search algorithm like simulated annealing or

evolutionary algorithm or genetic algorithm and guided local

search algorithm is a effective solution of optimization

problem. This is the most comprehensive combinatorial

optimization technique available for treating difficult

problems. It is a neighborhood based search method which is

very useful in distributed system for monitoring application.

Distributed operation of Applications involve: Multiple

applications deployed over different sets of hosts e.g.

Datacenters. Application State monitored the performance of

both systems and applications running on large-scale

distributed systems. It is constantly collecting detailed

performance attribute values as a large number of nodes & a

large number of attributes. Tricky task of Resource aware

application state monitoring is the monitoring overlay

construction. In this method first, it jointly considers inter-task

cost sharing opportunity and node-level resource constraints.

Further, it clearly models the per-message processing

overhead which can be extensive but is often ignored by

earlier works. Second, REMO produces a forest of optimized

monitoring trees through iterations of two phases. One stage

explores cost-sharing opportunities between tasks, and the

other refines the tree with resource-sensitive construction

schemes. REMO also included an adaptive algorithm that

balances the profit and costs of cover adaptation. This is

helpful for large systems with continuously changing

monitoring tasks.

General Terms
Remo, Algorithm, Resource etc

Keywords

Resource-Aware, State Monitoring, Datacenter, Adaption.

1. INTRODUCTION
Monitoring system that gather values of different status of

attribute and visualize them in interesting ways can often lead

to an increased understanding of a System’s detailed behavior.

For examination, analysis and control of distributed

applications and systems, application state monitoring is

required. For e.g. data stream applications may need

monitoring the data receiving/sending rate, tracked data

entities, captured events, signature of internal states and any

number of application-specific attributes on participating

computing nodes to guarantee constant operation in the look

of highly bursty workloads. A fast increasing set of distributed

applications ranging from stream processing to applications

running in Cloud datacenters also increases. Monitoring of

such applications involves collecting values of metrics, e.g.

performance related metrics, from a big number of member

nodes to locate out the state of the application or the system.

Such monitoring tasks are called as application state

monitoring.

Application state monitoring is organizing nodes into a

monitoring topology where metric values from different nodes

can be together and delivered is the main problem. In many

cases, it is useful to collect detailed performance attributes at

a prohibited gathering frequency. As an example, fine-grained

performance characterization information is necessary to build

various system models and to examine hypotheses on system

performance. Similarly, the data rate and buffer occupancy in

each element of a distributed application may be compulsory

for judgment purposes when there is a seeming restricted

access. So, REMO is the first system that promotes resource-

aware attitude to hold up and extent several applications state

monitoring tasks in extensive distributed system. Under

dissimilar environments REMO employs efficient monitoring

topologies. For that basic topology planning algorithm is used.

At a high level, REMO operates as a guided local search

approach [1].Using this approach, optimized monitoring trees

for a set of moving monitoring tasks. So the existing works

either construct monitoring tasks or use a fixed monitoring

topology for all monitoring tasks [3] [6].In mostly scalable

monitoring System involves design and operation, including

what kinds of data gathered and the scale of the processing

involved[2].So the monitoring system designed specific

monitor activity. At any given time it collects and reports on

active node. Reporting is done via a Web interface that

provides the ability to sort data. Application requires

collecting routine of attribute values. The application state

monitoring tasks occupy collecting values of various position

attributes from a large number of nodes. So its

implementation is the systems and applications successively

on large-scale distributed systems that always collecting

complete performance attributes values as a large number of

nodes & a large number of attributes.

2. BACKGROUND
REMO takes available node level resources as a first class

factor for building a monitoring topology. Optimization of

the monitoring topology achieves best scalability and ensures

that no node would be assigned with excessive monitoring

workloads for their available resources. In the on hand system

does not acquire node-level resource utilization as a first-class

consideration. And some assumptions in existing works do

not grasp in real world scenarios. For example, many works

guess that the cost of inform messages is only related with the

number of values within the message, while we locate that a

permanent per message overhead is not negligible. Existing

works frequently believe monitoring tasks to be the stage one-

time topology optimization and fixed [8]. Due to which the

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.23, June 2014

23

monitoring data may be failure. Application State Monitoring

is essential for monitoring topology i.e. it should keep away

from monitoring nodes spend unnecessary resources on

collecting and delivering attribute values. In existing works do

not take node level resource consumption as a first class

consideration. Due to which monitoring data may be loss.

Users and administrators of major distributed applications

frequently utilize application state monitoring for

surveillance, debugging, and examination and manage

purposes. Each application State monitoring task at times

collects values of definite attributes from the place of

computing nodes over which an application is administration.

REMO Consist o several fundamental component:

a. Planning

 1. Task Manager

 2. Data collector

Monitoring Planning:

From the users’ point of observation monitoring results should

be correct. The monitoring network should maximize the

number of node-attribute pairs established at the central node.

Such a monitoring network should not cause the unnecessary

use of resource at any node.

Following fig. shows system flow:

Fig 1: System Flow

1. Task Manager:

Task manager takes state monitoring tasks and removes

replication among them. With such replication, node b has to

send CPU utilization information twice for each update,

which is clearly unnecessary. Therefore, given a set of

monitoring tasks, the task manager transforms this set of tasks

into a list of node-attribute pairs and eliminates all duplicated

node-attribute pairs.

For instance, t1 and t2 are equivalent to the list fa-cpu

utilization, b-cpu utilization and fb-cpu utilization, c-cpu

utilization respectively. In this case, node-attribute pair fb-cpu

utilization is duplicated, and thus, is eliminated from the

output of the task manager. Management core takes de-

duplicated tasks as key and schedules these tasks to sprint.

One key sub-component of the management core is the

monitoring planner which identify the inter relationship of

monitoring nodes. For straight forwardness, we also pass on

the overlay linking monitoring nodes as the monitoring

topology. In accumulation, the management core also

provides significant support for dependability improvement

and breakdown handling.

2. Data Collector:

Data collector provides an algorithms and library of functions

for powerfully collecting attribute ethics from the monitoring

network. It also serves as the monitoring data and provides

monitoring data entrance to users and complex applications.

On a high level, a monitoring system consists of n monitoring

nodes and one central node, i.e. data collector. Result

processor executes the actual monitoring operations together

with collecting and aggregating attribute values, triggering

warnings, etc.

b. Partition Augmentation:

Through a guided iterative process the partition augmentation

procedure is planned to create the attribute partitions that can

potentially decrease message processing cost. At each

iteration, REMO first sprint partition augmentation process to

produce a list of talented runner augmentation for civilizing

monitored workload between monitoring trees. If the total no.

of applicant augmentations is Very huge, this procedure spick

and span down the size of the applicant list for estimation by

selecting the most talented ones through cost estimation.

c. Resource-aware Evaluation:

For estimation of the objective function for a known applicant

partition augmentation the resource-aware evaluation process

evaluates by constructing trees for nodes pretentious and

method the total number of node-attribute cost pairs that can

be composed using these trees.

3. DESIGN
1. Per Node Daemon:

Our System will rely on node daemon process which will

monitor resources with help of system provided tasks mangers

and libraries .It will also take care of communicating and

sending attribute to respective monitor. It can take help of

system monitoring tool like top, ps etc. for collecting

resources utilization data. In this each node itself monitors and

collects resource information and sending this information to

assigned monitor. Also it receives information from central

node or monitoring node about change.

2. Monitoring Node:

Every monitor will be characterized by attributes it is

monitoring. Attributes can be collection of one or more

attributes of CPU, memory, virtual memory, network

utilization parameters. Monitoring Node calculates load and

self resource monitoring. It also collects resource utilization

information from assigned node and sending this information

to the central node.

Monitoring Task

Task Manager

Monitoring planner

Monitoring Nodes

Data Collector

Result Processor

Application State

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.23, June 2014

24

3. Central Node:

Central node will take care of following activities:

i. Monitoring topology decision

ii. Web interface.

Monitoring Topology Decision: Deciding monitoring

topology is a crucial task because scalability of system is

depends on this decision. Topology planning using Tabu

search algorithm which is describe in next section.

Web Interface: Reporting is done via a web interface that

provides that provides the ability to sort data, run moderately

complex selection queries and show graphs to recent history.

Through the web interface collected information making

available from monitoring nodes to admin for decision

making action.

4. IMPLEMENTATION STRATEGY
Monitoring system consists of n monitoring nods and one

central node i.e. Data collector. Each monitoring node has a

set of observable attributes. Fig.2 shows list of node-attribute

pairs. Monitoring planner organizes monitoring nodes into

monitoring trees where each node collects values of a set of

attribute. Also each monitoring node has separate

configuration file, which is useful for communication of

different nodes. Challenging tasks in this is, monitoring

network should maximize the no. of node-attribute pairs

received at the central node. Such a monitoring network

should not cause the excessive use of resource at any node.

Multiple monitoring nodes collects resource.xml file. In this

xml document resource information of every monitoring

nodes is available. Then this file forwarded to the central

node. Now at this stage Tabu search algorithm is used. And

using this algorithm load is assign to the nodes using available

resource information which is collected from different

monitoring nodes. Then at last topology is decide.

Fig 2: System Design

TABU SEARCH ALGORITHM:

The Tabu search procedure is a neighborhood based search

method deterministic mechanism of avoiding local minima.

The general idea of Tabu Search is to start from some initial

solution and iteratively move among neighboring solutions.

At each iteration move to the best solution in the

neighborhood of the current one is performed. To avoid local

minima, the memory of already visited solutions is introduced

most frequently used type of that memory is the Tabu list. The

Tabu list stores some no. of already visited solutions, its

attributes, or moves leading to them. During the search

process the move that leads to the solution i.e. stored in the

Tabu list is forbidden. Many implementations of Tabu search

method for various optimization problem shows that Tabu

search can deliver optimal or near optimal solution. The

efficiency of Tabu Search method is strongly dependent on

the proper selection of its attributes i.e.

1. Initial solution

2. Neighborhood

3. Tabu list

4. Stopping Condition.

Algorithm:

Input: TabuListsize

Output: Sbest

 Sbest ← ConstructInitialSolution ();

TabuList ← ϕ;

 while ￢ StopCondition () do

 CandidateList ← ϕ;

 for Scandidate ∈ Sbestneighborhood do

 if ￢ ContainsAnyFeatures (Scandidate, TabuList) then

CandidateList ← Scandidate;

End

Central Node

Monitoring

Node 1

Monitoring

Node 2

Monitoring

Node n

Resource.xml

N1 N2 N3 N4 N5 N6 N7 N8 Nn

Configurat

ion file

Configurat

ion file

Configurat

ion file

International Journal of Computer Applications (0975 – 8887)

Volume 96 – No.23, June 2014

25

End

Scandidate ← LocateBestCandidate (CandidateList);

if Cost (Scandidate) ≤ Cost (Sbest) then

Sbest ← Scandidate

TabuList ← FeatureDifferences (Scandidate, Sbest);

while TabuList > TabuListsize do

DeleteFeature (TabuList);

End

End

End

return Sbest ;

5. RESULT
From REMO can collects a large fraction of node-attribute

pairs to serve monitoring tasks presented to the system.

REMO collects resources of every monitoring node. The

result status is for multiple node. All resource information are

available for nodes and through the web interfaces the data

collects in tabular and sorted form. The Current result status is

for single node. Above table shows result of single node and

all resource information is available for single node.

6. CONCLUSION
Thus a resource-aware multi-task optimization framework is

used for application state monitoring in distributed systems.

REMO is a technique for generating the association of

monitoring that optimizes various monitoring tasks and

balances the resource utilization at different nodes using Tabu

search algorithm. We also proposed adaptive techniques to

efficiently handle continuous task updates, optimization

techniques that speedup the searching process. REMO is

observed as extensive technique for performance

applicalability of optimization.

7. REFERENCES
[1] Shicong Meng, Student Member, IEEE, Srinivas

R.Kashyap,Chitra Venkatramani, and Ling Liu, Senior

Member, IEEE. Vol. 23, No.12, DECEMBER 2012

[2] K. Park and V. S. Pai, Comon: a mostly-scalable

monitoring system for planetlab, Operating Systems

Review, vol. 40, no. 1, pp. 6574, 2006.Fröhlich, B. and

Plate, J. 2000. The cubic mouse: a new device for three-

dimensional input. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems.

[3] D. J. Abadi, S. Madden, and W. Lindner, Reed: Robust,

efficient filtering and event detection in sensor networks,

in VLDB, 2005.

[4] G. Cormode and M. N. Garofalakis, Sketching streams

through the net: Distributed approximate query tracking,

in VLDB, 2005, pp. 1324.

[5] P. Yalagandula and M. Dahlin, A scalable distributed

information management system, in SIGCOMM, 2004,

pp. 379390.

[6] U. Srivastava, K. Munagala, and J. Widom, Operator

placement for in-network stream query processing, in

PODS, 2005, pp. 250258.

[7] C. Olston, B. T. Loo, and J. Widom, Adaptive precision

setting for cached approximate values, in SIGMOD,

2001.

[8] S. Meng, S. R. Kashyap, C. Venkatramani, and L. Liu,

Remo: Resource-aware application state monitoring for

large-scale distributed systems, in ICDCS, 2009, pp.

248255.

[9] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P.

Maniatis, T. Roscoe, S. Shenker, I. Stoica, and A. R.

Yumerefendi, The architecture of pier: an internet-scale

query processor, in CIDR, 2005.

[10] A. Silberstein, R. Braynard, and J. Yang, “Constraint

Chaining: On Energy-Efficient Continuous Monitoring

in Sensor Networks,” Proc.ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD), 2006.

PID Name Status Threads Memory Usage Virtual Memory

7155 python running 1 5MB 11MB

7154 sleep sleeping 1 0MB 4MB

7151 sleep sleeping 1 0MB 4MB

7147 signin-u sleeping 3 18MB 107MB

7140 mission-ctrl-5 sleeping 4 6MB 43MB

7134 telepathy-indicator sleeping 4 10MB 83MB

7107 ubuntu-provider sleeping 3 5MB 31MB

IJCATM : www.ijcaonline.org

