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ABSTRACT
This paper proposes general techniques for adapting operators in
SGA for software project scheduling problem. The use of adap-
tive of crossover and mutation gives chance to control the diver-
sity. Adaptive nature also tends to give convergence in the com-
plex solution. Crossover and Mutation probability changes ac-
cordingly the change in the fitness values. High fitter is kept
in the next pool. AGA(Adaptive genetic algorithm) converges to
sub-optimal solution in fewer generation than SGA. In this pa-
per, we consider skilled employees as an important resource to
calculate the cost of the project along with some constrains of
tasks. The paper gives a near-optimal estimated cost of project
by using AGA. Our algorithm employs adaptive approaches for
calculation of fitness of individuals, crossover rate and mutation
rate. The paper also considers the aspects of head count, effort
and duration calculated by COCOMO-II.1999. These parameters
are used to verify the fitness of each chromosome to get esti-
mated cost by AGA closer to the cost estimated by COCOMO-II.

General Terms:
Software Project Management, Machine learning
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1. INTRODUCTION
1.1 Natural evolution and GA
Natural evolution is discussed and expressed by one of its first pro-
ponents, Charles Darwin. His theory of evolution was based on four
primary axioms [12].
? An offspring has many of the characteristics of its parents. This
axiom implies that the population is stable.
? There are variations in characteristics between individuals that
can be passed from one generation to the next.
? The third axiom is the only a small percentage of the offspring
produced survive to adulthood.
? Survival of offspring depends on their inherited characteristics.
These all axioms and presumptions together imparts the theory of
natural selection.
Another set of biologically-inspired methods are Genetic Algo-
rithms (GAs). They derive their inspiration from combining the

concept of genetic recombination with the theory of evolution and
survival of the fittest members of a population [7]. The learning
process devises better and better approximations to the optimal pa-
rameters, starting from a random set of candidate parameters. The
GA is primarily a search and optimization technique. The genetic
algorithm is a one of the family of evolutionary algorithms. Darwin
discovered that species evolution based on two components: the se-
lection and reproduction. The selection provides a reproduction of
the strongest and more robust individuals, while the reproduction
is a phase in which the evolution run.
The behavior of the GA depends on how we get the values of pc

and pm. There are a various ways being told in regarding choos-
ing pc and pm, by K. A. DeJong [25] [18].These are inadequate
as the choice of the optimal pc , and pm becomes specific to the
software problem under consideration. Grefenstette has formulated
the problem of selecting pc and pm, as an optimization problem
in itself.A theoretical comparison of randomized and genetic op-
timization algorithms concluded that many GAs are characterized
by higher probability of finding good solutions than randomized al-
gorithms, as long as the solution space fulfills several restrictions.
These restrictions however are weak and hold for almost any choice
of the genetic operators [13].
It is important to prevent promising individuals from being elim-
inated from the population during the application of genetic op-
erators. To ensure that, the best chromosome is preserved, elitist
methods copy the best individual found so far into the new popula-
tion [25] [46]. However, elitist strategies tend to make the search
more exploitative rather than explorative and may not work for
problems in which one is required to find multiple optimal solu-
tions [46]. In elitist strategy, the offspring have to compete with
the parents to gain admission for next generation of GA [52]. The
outstanding advantage of this environment is it always preserve the
best solutions in every generation. Discussions on exploitation and
exploration trade-off (by F. van den Bergh) has initiated the idea
to investigate tournament and roulette wheel schemes other than
deterministic in elitism strategy.

1.2 Related work
The approaches to project scheduling can be summarized as fol-
lows:
1.Search for optimal solutions using integer programming, dy-
namic and binary programming, branch and bound techniques, and
2.Search for suboptimal solutions using heuristic algorithms, in-
cluding: Specialized heuristics; and Artificial intelligence methods
are also exploited in the form of expert systems, ANN (Artificial
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neural networks), and hybrid systems.
The scheduling problem is usually described as the task of integer
programming. In such tasks, the vector of decision variables usu-
ally takes the form of a binary vector Brucker et al. 1999; Kasprow-
icz 2002; Kolish and Padman 1997; Marcinkowski 1990; Weglarz
1981. Precise procedures of single-criterion optimization of sched-
ules are mainly based on the branch and bound method Dorndorf et
al. 2000; Kasprowicz 2002; Weglarz 1981. To solve serious practi-
cal problems using precise algorithms is impossible because of the
length of time needed for the calculations and the limited memory
capacity of computers Marcinkowski 1990; Slowinski et al. 1994;
Weglarz 1981.
Thus several approximation methods employing the heuristic ap-
proach have been conceived. The methods can be divided into
two groups: specialized heuristics and meta-heuristics. Specialized
heuristics can be used to solve only one optimization problem.
Priority heuristics is among the most well known heuristics solv-
ing scheduling problems which is usually available in the project
scheduling software. Priority heuristics are of two phases. The first
phase prepares and arranges priority lists of processes according
to decreasing values of priorities. The second phase calculate the
start and finish times of these processes so as to keep to all the con-
straints in. In this phase, one of the two methods of tasks schedul-
ing is used: parallel or serial, which differ in how they solve re-
sources conflicts. The second phase is considered in our approach
to have parallel tasks which are independent with each others. The
works of Shanmuganayagam in 1989, Tsai and Chiu in 1996, and
Ulusoy and zdamar in 1995 uses priority heuristics for scheduling
projects and resources allocation. We used priority scheduling with
respect to TPG only. Priority schedule may reduce the results that’
why Khamooshi in 1996 modified the existing approach to estab-
lish process priorities. The procedure Khamooshi worked out and
in dividing a project into parts and using a different priority rule
for each part. He presents this approach in the form of a dynamic
programming model. Slowinski et al. 1994 suggested employing a
cluster of many rules instead of one priority rule, and then choos-
ing the best one. We clustered the rules in terms of Hard and Soft
constraints in our approach. To solve single-criterion optimization
problems in scheduling projects, metaheuristic algorithms can also
be used. They define only a certain pattern of optimization proce-
dure, which must be adapted for particular applications software
project scheduling by ACO (Jing Xiao, Xian-TingAo, YongTang
2012).
The most frequently used metaheuristic methods are taboo search,
simulated annealing, and evolutionary algorithms. Actually, Neigh-
borhood local search algorithms include simulated annealing and
taboo search method ( Sampson and Weiss 1993). They searched
the feasible area solutions going from a current solution to a neigh-
boring one. The natural imitating processes used in local search
methods are also used in evolutionary algorithms.

1.3 Concerned readings and inspiration
The work done in fields, domains and sub-domains produced
in various related papers are significantly carried out by some
mean of related areas like genetics, GA, adaptiveness, software
engineering, data structure required for GA, project management
and interdisciplinary work done by researchers and authors. The
readings of all the following papers is done for doing the study
of various angles in the proposed approach. The work done
by Mark [31], Dark [10], Sahani [22], Uyar [44], Forest [35],
Imtiaz [24], Hayenes [20],Fogarty [16], Back [2], Yang [45],
Therens [51] [50], Macheal and Shurva [?], Alba [14], Pinedo [41],

Tom [37], Keightley [27], Charles [3], Parag [39], Thorat and Am-
bole [1], Zhang [57], Futuyam [17] and Jurgen [21].

1.4 Evolutionary algorithms
Evolutionary algorithms are classified into include evolution strate-
gies, classifier systems,genetic algorithms, evolutionary program-
ming, genetic programming.The results of research in this field
are usually not classified according to an individual method but
are generally described as evolutionary algorithms (Michalewicz
1996). Evolutionary algorithms work as computer systems for solv-
ing problems according to the rules observed in the evolution of live
organisms. The rules involve system structure and the organisms
ways function and adapt to existing conditions. A feature of this ap-
proach to solving optimization problems is creating a population of
individuals representing solutions in a form of a chromosome. As
in nature, better-adapted individuals more effective solutions which
stand a better chance of survival and development.
The evolutionary algorithms are used to solve optimization prob-
lems in many branches of industry. A number of examples of their
application, such as
] software project scheduling on timeliness GA (Carl chang 2010).
] basis the optimization of structures ( Koumousis and Georgiou
1994), engineering and design (Grierson and Pack 1993),
] selection of equipment for earth-moving operations (Haidar et al.
1999).
Some studies show that evolutionary algorithms have a consid-
erable potential to solve many project scheduling problems effi-
ciently. ] For e.g., Li (1997;1999) used genetic algorithms to facil-
itate the time-cost optimization, and Hegazy 1999 applies them to
the optimization of resource allocation and leveling.
] Leu and Yang 1999 developed a multi-criteria optimization model
for construction scheduling based on a genetic algorithm, which in-
tegrates the time-cost trade-off model, the resource-limited model,
and the resource-leveling model.
Some authors such as Padman 1997; Michalewicz 1996 classified
evolution algorithms based on AI. Some experts like Adeli and
Karim 1997, Kanet and Adelsberger 1987 solved the scheduling
problem from ANN, expert systems apart from evolutionary algo-
rithms.
Carl Chang proposed a tracking mechanism in the SPMNet [6]. He
kept track of all the events through SDLC. An automatic technique
based on genetic algorithms was introduced to determine the op-
timal resource allocation in 1994 by him. He and their co-authors
calculated the total time and cost of a project dependant on the
information generated from GA. SM (Software manager) may be
able to predict the future states of a project. Runwei CHENG and
Mitsuo GEN (1994) suggested approach wich can significantly im-
prove the performance of evolution program both in term of the
speed and the accuracy. Marek Pawlak (1995) presented an evo-
lution program for project planning to implement an optimisation
resource demand. The GA simulation based approach was demon-
strated by Julia Pet (1995) with stochastic task durations using a
multiple RCPS (resource constrained project scheduling) problem
.
Because practical application of precise methods is limited by
the complexity of practical problems and imperfection of heuris-
tic methods, the writers search for optimal and suboptimal project
schedules using evolutionary algorithms. This approach proved to
be appropriate for solving scheduling problems and relatively sim-
ple in computation. Even though, the method proposed by the some
authors do not provide the optimal solution, the results are close to
the optimum and can be obtained in a short time. Because, evo-
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lutionary algorithms may be easily adapted to solving any type of
problems, the proposed AGA method is versatile and allows defin-
ing the case conditions and constraints freely [29].
In order to adjust a genetic algorithm [34] to the optimization
problem it tackles, some kind of parameter control is usually em-
ployed [33]. Adaptive control [26] uses feedback from the search to
determine how the parameter values are to be altered. Self-adaptive
control [?], puts additional information into the representation in
order to provide some guidance to the operators. To date, most
efforts on parameter control focused on adapting only one aspect
of the algorithm at a time. The most comprehensive combination
of forms of control [33] was offered in, where the adaptation of
mutation probability, crossover rate and population size were com-
bined. Other forms of adaptive systems for genetic algorithms can
be found in [28] [36] . We proposed here a adaptive of a genetic
algorithm which is able to dynamically adapt both the rate and the
behavior for each of its operators.
All Genetic algorithms are a classified into stochastic type of op-
timization methods inspired by the principles of natural evolution.
The promising research area in this area is adaptation of strategy
parameters and genetic operators. For getting optimum solutions,
different adaptive techniques has been used to guide search of GAs.
A key component of GAs is mutation which is a variable GA op-
erator to create diversity in GAs. There are several adaptive muta-
tion operators in GAs, including population level adaptive mutation
operators and gene level adaptive mutation operators. The experi-
mental results of [24] show that the gene level adaptive mutation
operators are usually efficient than the population level adaptive
mutation operation.
The operator adaptation techniques in GAs can be classified into
three categories, i.e., population level, individual level, and compo-
nent level adaptation [40]. Operator adaptation depends on how op-
erators are updated. At the population level, parameters are adapted
globally by using the feedback information from the current pop-
ulation. Individual level adaptation changes parameters for each
individual in the population. Component level adaptation is done
separately on some components or genes of an individual in the
population [40].
Adaptation of strategy parameters and genetic operators has be-
come an important and promising area of research on GAs. Many
researchers are focusing on solving optimization problems by us-
ing adaptive techniques, e.g., probability matching, adaptive pur-
suit method, numerical optimization, and graph coloring algo-
rithms [49, 52, 38]. The value of parameters and genetic operators
are adjusted in GAs. Parameter setting and adaptation in mutation
was first introduced in evolutionary strategies [47]. The classifica-
tion of parameter settings has been introduced differently by the
researchers [11, 48]. Basically, there are two main type of param-
eter settings: parameter tuning and parameter control. Parameter
tuning means to set the suitable parameters before the run of al-
gorithms and the parameters remain constant during the execution
of algorithms. Parameter control means to assign initial values to
parameters and then these values adaptively change during the ex-
ecution of algorithms. According to [11], parameters are adapted
according to one of three methods: deterministic adaptation adjusts
the values of parameters according to some deterministic rule with-
out using any feedback information from the search space; adaptive
adaptation modifies the parameters using the feedback information
from the search space; and self-adaptive adaptation adapts the pa-
rameters by the GA itself.
There are two main groups of adaptive mutation operators, one
group are the population-level adaptive mutation (PLAM) opera-
tors and the other are the gene-level adaptive mutation (GLAM)

operators. Many researchers have suggested different static muta-
tion probabilities for GAs. These static mutation probabilities are
derived from experience or by trial-and-error.

Table 1. Athours and suggested Pm.
Author Suggested Pm

De Jong 0.001
Schaffer [0.001, 0.005]
Back 1.75/(N × L1/2)

where, N means the population size and L denotes the length of
individuals. This equation is based on Schaffers results [?]. In [11],
it is suggested that Pm = 1/L should be generally optimal. It is very
difficult, though not impossible, to find an appropriate parameter
setting for Pm for the optimal performance.
In the simple GA, the penalty function that is used to convert the
constraints problems to unconstraint ones, and genetic operators,
such as cross-over, mutation, and elitism, so on that are used to ex-
plore the important regions of the search space are adopted. Since
there is not a unique way to define the penalty scheme and genetic
operators, different forms of these are proposed (Rajeev and Kr-
ishnamoorthy, 1994; Rajan, 1995; Krishnamoorthy et al., 2002). In
contrast to classical penalty scheme and genetic operators having
the values of the various coefficients treated as pre-defined con-
stants during the calculation of penalty function, some enhance-
ments in the GA have been made and proposed by the researchers
(Nanakorn and Meesomklin, 2000; Chen and Rajan, 2000; Srinivas
and Patnaik, 2000; Togan and Daloglu, 2006 ) in order to increase
the efficiency, reliability and accuracy of the methodology for code-
based design of structures.
In this paper, adaptive approaches are proposed for both the penalty
function and crossover and mutation probabilities in order to relieve
the user from determining any values that are needed prior the op-
timization and enhance the performance of the GA in optimizing
SPSP. In the simple GA, the penalty function that is used to convert
the constraints problems to unconstraint ones, and genetic opera-
tors, such as cross-over, mutation, and elitism, so on that are used to
explore the important regions of the search space are adopted. Since
there is not a unique way to define the penalty scheme and genetic
operators, different forms of penalty scheme and genetic operators
are proposed (Rajeev and Krishnamoorthy, 1994; Rajan, 1995; Kr-
ishnamoorthy et al., 2002). In contrast to classical penalty scheme
and genetic operators having the values of the various coefficients
treated as pre-defined constants during the calculation of penalty
function, some enhancements in the GA have been made and pro-
posed by the researchers (Nanakorn and Meesomklin, 2000; Chen
and Rajan, 2000; Srinivas and Patnaik, 2000; Togan and Daloglu,
2006) in order to increase the efficiency, reliability and accuracy of
the methodology used.In 1975, Holand ,De Jong, and in 1987 Ack-
ley proposed one-point, N-point crossover and uniform crossover
respectively.
The paper’s outline is organized as follows.
◦ Section I, we discussed the GA & optimization, and the various
techniques proposed in the literature and related work to overcome
the problems.
◦ Section II describes GA and itś significance in optimisation.
◦ In section III,We light on the role of project manager, importance
of time management in SPM.
◦ In section IV, we gave the utilisation of SEE (Software Engineer-
ing Economics) in our approach.
◦ In section V we formulated the SPSP with definition.
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◦ In Section VI, our approach of using adaptively varying probabil-
ities of crossover and mutation for SPSP (software project schedul-
ing problem) is focused.
◦ In section VII, We have Operations, Mathematical Modeling And
Adaptive Fitness for our approach.
◦We illustrated input and output to our problem in section VIII.
◦ A discussion of results obtained, some conclusions of the study
and future work still to be done are explained in section IX,X,XI
respectively.

2. GENETIC ALGORITHM
All GAs are inspired by the biological evolution. Each individ-
ual represents binary strip called chromosome. Each element in
the strip is called as gene where each individual shows the possi-
ble solution of CO (Constraints optimization) problem in our hand
after evolution. GAs are powerful methods of optimization used
successfully in different problems. Their performance is depend-
ing on the encoding scheme and the choice of genetic operators
especially, the selection, crossover and mutation operators. A va-
riety of these latest operators have been suggested in the previous
researches. In particular, several crossover operators have been de-
veloped and adapted to the permutation presentations that can be
used in a large variety of combinatorial optimization problems.
Genetic algorithms (GAs) are powerful search methods. GAs were
first introduced by John Holland in 1960s in USA. Nowadays,GAs
have been successfully applied for solving many optimization prob-
lems due to the properties of easy-to-use and robustness for find-
ing good solutions to difficult problems [6]. The efficiency of GAs
depends on many parameters, such as the initial population, the
representation of individuals, the selection strategy, and the recom-
bination (crossover and mutation) operators. Mutation is used to
maintain the diversity of the entire population by changing individ-
uals bit by bit with a small probability pm. Usually, the mutation
probability has a significant effect on the performance of GAs.

2.1 Simple Genetic Algorithm

Fig. 1. Simple Genetic algorithm

GA is optimization search techniques useful in a number of practi-
cal problems. The robustness of Genetic Algorithm is method with
it’s behaviour to find the global optimum in a hypothesis. GA’s ran-
dom, directed is search for locating the globally optimal solution.
Randomized and directed GA is specially for finding the globally
optimal solution. GA is useful as tool for a genetic representation
for the feasible solution. We get a population of encoded solutions.
We have a fitness function that evaluates the optimality of each so-
lutions. Genetic operators generate a new population from existing

populations. The GA is iterative process of population evolution
for sequenced generations. After and in between generation,each
solution has fitness which gives to decide the next chromosomes
to do the mating.Fitter is selected for meting and other are dis-
carded from the pool. The fitter is selected by and from fitness val-
ues for next generation. The selected chromosomes then has to go
for crossover and mutation operation. The main and important op-
eration is crossover which makes a structured and randomized ex-
change of alleles with crossover possibility. Crossover can be done
by Pc, crossover rate. Mutation does the flipping of the allele of a
chromosome by mutation probability. The mutation plays impor-
tant role to do this by restoring the lost of genetic material. Scaling
is another operation which is useful for maintaining the steady se-
lecting pressure in objective function.
It is an objective that GA should not converge towards the optimal
solution by taking much of iterations. In this section, we discuss
the role of the parameters in controlling the behavior of the GA.
We also discussed the techniques proposed in the literature for op-
timization of SPS problem for enhancing the performance of GA
. The significance of pc and pm in controlling GA performance
has long been acknowledged in GA research [7]. The crossover
probability pc controls the rate at which solutions are subjected to
crossover. The higher the value of pc, the faster are the new so-
lutions introduced into the population. As pc, increases, however,
solutions can be disrupted faster than selection so, typical values of
pc, are in the range 0.5-1.0.
Mutation is only a secondary operator to restore genetic material.
Nevertheless the choice of pm plays important role in GA perfor-
mance and has been emphasized in DeJongs work [25]. Large val-
ues of pm , transform the GA into a solely random search algo-
rithm, while some mutation is required to prevent the premature
convergence of the GA to suboptimal solutions. Typically pm , is
chosen in the range 0.005-0.05. We must thanks to DeJong for his
the Efforts made to improve GA performance in optimization. De-
Jong introduced the ideas of overlapping populations and crowd-
ing in his work also. In the case of overlapping populations, newly
generated offspring replace similar solutions of the population, pri-
marily to sustain the diversity of solutions in the population and to
prevent premature convergence. However,the crowding factor (CF)
is introduced in this technique which has to be tuned to certain op-
timal GA performance. In all the techniques described above, no
emphasis is placed on the choice of pc and pm. pc , and pm is still
left to the user to be determined statically prior to the execution of
the GA. The idea of adaptive mutations and crossover is already
employed to improve GA performance. Our approach for find-
ing SPSP (software project schedule Problem) also uses not only
Crossover and mutation adaptive probabilities but also adaptive fit-
ness, but in a manner different from these previous approaches.
In the next section, we discussed the motivation for having adaptive
probabilities of crossover and mutation, and describe the methods
adopted to realize them. In this paper, We used adaptive probabil-
ities of crossover and mutation to see the effect of keeping simple
track of diversity and taking linear load of convergence. Another
advantage of our approach is to provide a solution to the problem
of choosing the optimal values of the pc , and pm. (We referred
crossover and mutation probability as pc and pm, respectively).

3. SOFTWARE PROJECT MANAGEMENT
3.1 Objectives
Each software project is initiated by the need of an organization to
deliver new software products and solutions to the market in order
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to produce profit, knowledge or something else of the organizations
interest. Each software project has its own main objective which is
defined at the very beginning. It is the task of the software project
management process to ensure that software project main objec-
tive is achieved. There are some common things that most of the
projects share among themselves, e.g.:
· Specific start and threshold date.
· Time schedule,Direct cost, Indirect cost, budget and quality con-
straints.
· Particular attention to get the target result.
Software Project management is the application of logical and algo-
rithmic knowledge, skills, software tools and different techniques
to meet the userś requirements of the particular project. Software
Project management, knowledge and practices are best described
in terms of their some of s/w engineering processes eg. waterfall
model, RAD, Spiral model. These processes can be placed into five
process groups and nine knowledge areas. These groups are Re-
quirement engineering, Design and analysis, coding, testing and
integration (closing). These areas are project integration manage-
ment, project scope management, project time management,project
cost management, project communications management, project
risk management and project procurement management, project
quality management, project human resource management.
There are three very important threads that we can find in almost
all the software projects: Cost (Money), Schedule (time) ,and per-
formance (quality). Two of them we may not exceed - Cost and
Duration (Time) and the third one quality must be at least as re-
quired by the customers. Above mentioned processes are actually
a processes of managing a number of others, mutually dependant
sub-processes each having its own objective, but contributing to the
main project objective. We will see in the next section about project
managerś role and time management as this aspects are more fo-
cused and related to our SPSP.

3.1.1 software Project Manager. A Software PM is a person
who is responsible for the project. He/she may lead the software
development towards a successful or, sometimes unsuccessful soft-
ware product. A Software PM must have a set of competencies that
make him/her appropriate person for such a duty. A project man-
ager, besides leading the project, should have well communications
with other related instances involved in and around the project other
than software related technical problems. He has to play a role of
interface that the best software PM must play. He must keep com-
mon and important relations intact with project sponsors and users.
Software PM is directly responsible to the project sponsor as the
sponsor is the one who orders a project to be executed. Project
sponsor usually defines some specific boundaries (e.g. budget, time,
quality) and monitors them closely. That’s why AGA approach is
not only useful for the Software PM but for the quality oriented
project as our approach considers some of the aspects of SEE.
Users are those who usually specify the requirements and negotiate
technical details of realization that are of high importance to them.
When we talk about software development, a common situation is
that the client orders some extensions of already existing systems,
or wants some new systems that are compatible to other existing
systems. In any case, very usual things are change requests dur-
ing development or after finishing the original project. That’s why
we defined some flexible software engineering oriented constraints
that has to be met during the scheduling of project.

3.1.2 Software project Time Management (SPTM). SPTM is a
subset of project management that includes the processes required
to ensure timely completion of the project. It consists of problem

definition, TPG ( Tasks precedence graph), event and activity se-
quencing, schedule (DUR) estimating, schedule development ac-
cording to target schedule, and schedule control. Since, time is one
of the most important management factor and parameter that must
be obeyed during software project development (and in SDLC), it
will involve a lot of planning and reviewing on monthly, weekly or
even daily basis. We come across the term Milestone in SPTM. De-
fined and target Milestones shows Umbrella activities with WBS
(work breakdown structure ) points in the SPM. Milestones are
generally associated with important baselines and results. They are
defined using time and appropriate deliverables. In another words
milestones define end of certain project development phase.

4. SOFTWARE COST ESTIMATION (SCE)
There are main seven steps that is generally adapted in SCE as per
the SEE [4].
Step 1. Establish objectives.
Step 2. Plan for required data and resources.
Step 3. Write down software requirements.
Step 4. Work out in detail work (WBS) as we can.
Step 5. Use different independent techniques and sources.
Step 6. Compare and Iterate budgeted estimates.
Step 7. Followup.
Out of these seven step, we work out only on roughly on step 1
and 2 and Step 5. We tried to define the problem, requirements in
terms of hard and soft constraints and schedule the project with one
technique i.e. by AGA.

4.1 Effort, COCOMO Models
There are various COnstructive COst MOdels developed by Barry
W. Boehm and others. Estimating effort of software is product of
productivity and size of team. The unit of effort is man-month
(MM) or person-month (PM) which is calculated in terms of KDSI
(thousands of delivered source instructions) by following equa-
tion [4].

MM= 2.4 (KDSI)1.05.
Also, the development schedule (TDEV) in months is given as

TDEV= 2.5 (MM)0.38
The above equation is a basic model applicable to the large majority
of software projects [4]. According to COCOMO model a man-
month (MM) is equal to 152 hours of working time.
Table no.2 shows Effort and Duration for three different types of
project as per the COCOMO model. We assumed the calculated
efforts (by COCOMO Model) as one of the inputs to our project.
Further calculation, evaluation and comparison with our model is
done by following equations.

TDEV = 3× (MM)0.328 (1)

HC = 0.666× (MM)0.672 (2)

Above equations are also used for calculating the constrain factor,
the effort and head count.

5. PROBLEM DEFINITION AND
FORMULATION [?]

A project schedule is an assignment of the tasks to the 4Ps at
particular duration by considering all the constrains of the project
to get the optimal solution with optimum cost and time. Each task
requires a set of skills and effort [9].
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Table 2. Notations ,symbols and meanings.
Notations Meaning

MM man-months
PM Person-Months
KDSI Thousands of delivered

source instructions
TDEV Development time
HC Head Count
GSCH Schedule derived

by our approach using GA
CD Ti

COCOMO Calculated duration
COD Ti

COCOMO Optimistic duration
= 0.86 × CD

AGODTi
Optimistic duration
obtained by our AGA approach

CPDTi
COCOMO pessimistic duration
of task Ti =1.6 × CD

EFavg Stretch out effort of the project
EFpa The Pessimistic effort at analysis phase
EFpd The pessimistic effort at design phase
EFpi The pessimistic effort

at implementation phase
EFp The pessimistic effort of whole project.
TPHC Total project head count.
EMF Effort multiplier factors
Pc Crossover rate
Pm Mutation rate
sth Schedule number in generation
χ(AGSHDs) Modified Fitness of sth Schedule
FCs ≡ F(AGSHDs) Fitness of sth Schedule
Ps Total Penalty of sth schedule
NDs Normalised duration of sth schedule
SEmax Maximum salary of employee

among all employees
TCHCs Total COCOMO head count

of sth schedule
AGSHDs Schedule obtained by our genetic

approach of sth schedule
CPSHD s COCOMO pessimistic of sth schedule
COSHD s COCOMO optimistic of sth schedule
DPs Degree of penalty of sth schedule
Pavg Average penalty of generation
Pmax Maximum penalty of generation
Pmin Minimum penalty of generation
NHCPs, Normalised head count Penalty
NTPs, Normalised total time Penalty
NITPT i Normalised task incompleteness penalty
TNITPs Total Normalised Incompleteness

Task Penalty
of sth schedule

Table 3. Formulae for Effort and
Duration according to the types of

project.
Organic MM = 2.4 (KDSI)1.05

TDEV= 2.5 (MM)0.38

Semidetached MM= 3.3 (KDSI)1.12

TDEV=2.5 (MM) 0.35

Embedded MM=3.6(KDSI)1.20

TDEV= 2.5(MM) 0.32

Table 4. Tables and their description.
Fig. Figureś Description
No.
1 Athours and suggested Pm
2 Notations ,symbols and meanings
3 Formulae for Effort and Duration according

to the types of project
4 Tables and their description
5 Figures and their description
6 A Sample example of solution

in terms of Schedule representation
7 Input:Configuration file [9] showing mathematical

notations for T10E5S4 as an example
8 Input:Task Properties for T20E5S4
9 Input:Employee Properties for T20E5S4
10 Output:Employee working times for T20E5S4
11 COCOMO and AGA durations for T20E5S4 Where,

CODTi ≤ AGADTi ≤ CPDTi

12 Output:Tasks duration in Months with
employee for T20E5S4

13 Output:Xover Vs Avg Computation
time for T20E5S4

14 Comparative chart of our and
Ting-Tang approach for G2 Group

15 Comparative chart of our and
Ting-Tang approach for G3 Group.

16 Comparative chart of our
and Ting-Tang approach for G4 group.

Table 5. Figures and their description T20E5S4
means 20 Tasks, 5 Employees, 10 Skills example

but employees possesses 4-5 skills.
Tab. About Figure
No.
1 Task Precedence Graph for T20E5S4
2 Generation vs Fitness
3 Generations Vs Task Completed T20E5S4
4 Generation Vs Critical Duration for T20E5S4
5 Schedule for first year for Task Precedence

Graph for T20E5S4
6 Schedule for second year for T20E5S4
7 Schedule for Third year for T20E5S4
8 Graph shows assignment of employee,

duration for each employee to tasks, critical path
duration, total duration for T20E5S4

9 First part of Network diagram for T20E5S4
10 Second part of Network diagram for T20E5S4

• Let T be a set of tasks, T={Ti, i=0,....,n-1} where n is the
number of tasks,
• Let E be a set of employees, E={Ei, i=0,....,e-1} where e is
number employees,
• Let S be a set of skills, S={Si, i=0,...,m-1}, where m is the total
number of skills.
• Let ES be a set of skill of employees,
ES={ESi,i=0,....,m-1} where m is the number of skills and
• EF be the effort required for the tasks in T,
EF={EFTi

, i=0,...,n-1} where EFTi
is the effort required for task

Ti.
• The skills required by tasks are represented by an n × m sized
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task skill matrix i.e TS,
where TS={TSij , i=0,....,n-1, j=0,...,m-1}
Each elements TSij of task skill matrix S is either 0 or 1,
depending on whether task Ti requires skill Sj as

TSij =

{
1 if Task T i requires skill Sj .
0 Otherwise.

The dependence [39] between the tasks is given by task depen-
dency matrix (TD) of size of n×n. Its elements are given as,

TDik =

{
1 if Task T i depends upon task T k.
0 Otherwise.

Finally, AGSHD is a n×e sized task assignment matrix of dura-
tion (in months) assigned to each employee on various tasks. The
duration may be in years, months, quarters or weeks. TD matrix
is obtained from task precedence graph (TPG). The Task Prece-
dence Graph shows the precedence relation between the tasks, is an
acyclic Graph, G(T,EG) where The T represents the set of all task
nodes included in the project and EG is the set of edges between de-
pendent tasks [?]. A sample TPG for 10 tasks, 5 employees and 10
skills is shown in Fig 1. There are various types of tasks in a project

Fig. 2. Task Precedence Graph for T20E5S4

[55]. These are Start to Start (SS), Start to End (SE), End to Start
(ES), and End to End (EE). In this paper, we have considered the
tasks of SE type. Once a task starts for such tasks, it has to end
without fail but by maintaining parallel or concurrent mechanism.
Each task has associated with the optimistic as well as pessimistic
values of effort and head count. Here, we have made the average of
the pessimistic values of 3 SPM phases.

EFpa = 2×EF (3)

EFpd = 1.5×EF (4)

EFpi = 1.25×EF (5)

Epavg = 1.583333 ∗EF (6)

Where, EFavg is stretch out effort of the project ( project maximum
effort),

? EFpa is the Pessimistic effort at analysis phase,
? EFpd is the pessimistic effort at design phase,
? EFpi is the pessimistic effort at implementation phase and
? EFp is the pessimistic effort of whole project. We calculated all
the above corresponding duration CPD,COD using equation1 We
have taken average effort as threshold value and hard constraint in
our problem. We have 25% managerial margin to work for schedul-
ing software project apart from CMM (Capability Maturity Model)
model under consideration. CMM’s one of the principles says that
30 PC FSP should be kept as extra staff for substitution in case of
critical situation. This paper gives scheduling of software project
by considering some hard and soft constraints which is described
in next subsection.
We used an indirect constraints handling i.e. objectives optimiza-
tion by satisfying the constraints. In general, penalties are given for
violated constraints. Some GAs allocate penalties for wrongly in-
stantiated variables also for the distance up to a feasible solution.
The generality of penalty gives reduction of the problem to simple
optimization. The described and defined constraints for our SPSP
(Software Project Scheduling Problem) are given and listed bellow.

5.0.1 Hard constraints. The tasks in given SPS problem are to be
assigned to employees subject to the following hard constraints [5].

(1) All skills must be matched. The employee must have skills re-
quired for the tasks to be done.

(2) Task precedence graph must be satisfied during an assignment
of a task to an employee.

5.0.2 Soft constraints. Also the following soft constraint are
considered to obtain a better schedule.

(1) At least 80 PC of task’s head count should be as per values cal-
culated by COCOMO-II.2000 and may differ at most ± 1 for
each task head count. This is managerial adjustment, normally
given by industry to the PM, to add or remove one employee
to maintain the quality of the project. But, This adjustment is
directly related to effort.

(2) Cost of the project should be below the average cost calculated
by COCOMO-II.2000 calculation.

(3) Employee may not be overloaded more than 50% of his/her
capacity.

OLEi ≤ 0.5× CEi (7)

OL and C are the overload and capacity respectively. Capacity
of employee is how much employee can do quality work in one
unit time. (The capacity is described in section IIIA).

(4) Work should be equally distributed amongst employees as far
as possible.

(5) Equal importance should be given to project cost and duration.
(6) For maintaining the quality, each duration of task should be

nearer to the optimistic duration (COD).
(7) The total number of employees for project tenure should

be in between 80% and 100% of Head count calculated by
COCOMO-II.

120% of TPHC >=

n∑
i=1

HCTi ≥ 80% of THC . (8)
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TPHC is total project head count.
(8) The task duration should not exceed the pessimistic duration

(CPDTi
).

TDEVTi
= 3×EF 0.328

Ti
(9)

e∑
j=1

SCHT i ,Ej ≤ CPDTi
. (10)

where, CPD is pessimistic duration calculated using
COCOMO-II.2000.
CPDTi

=1.6 × TDEVTi
(according to equation no.6 and

analogous to it).
(9) Total duration computed by GA of all tasks should be above 86

% of duration calculated by COCOMO-II.2000 calculation.
n∑

i=1

e∑
j=1

AGSHDT i ,Ej > 0.86×
n∑

i=1

CODTi
. (11)

Above constraint is taken by considering personnel effort mul-
tiplier factors (PEMF), Where PEMFs are the effort multipliers
defined by COCOMO-II as these factors lies in between 0.86
to 1.56 as per the quality and skill proficiency of an employee.
Our problem takes Normal scale which gives 1.0 as scale of
(multiplication factor) effort multipliers as all employees are
considered at nearly equal level. Cost of the project should be
in between the cost calculated by normal scale of COCOMO-
II.2000 and adjusted scale of COCOMO-II calculation. Qual-
ity drivers ( also called as effort multipliers) of all employees
for personnel properties assumed are not above the maximum
adjusted scale of 1.6 i.e. adjustment factor of all the employ-
ees are considered in the range of 1.0 to 1.6, where adjustment
factor is the change in the some of the effort multiplier factors
(EMF) [23].

6. PROPOSED AGA APPROACH
6.1 Motivations
A software project scheduling is CSP(Constrained Satisfying prob-
lem) with objective optimisation. We require pushing energy to
meet optimal solution after getting the optimal space. Not only this,
but also, we need another property of finding new space of solu-
tion in optimal search. Interestingly, The trade-off between these
properties is hiddenly packaged in values of pc and pm and also
in crossover type. Usually, in practice,we take large values of pc

(0.5-1.0) and small values of pm(0.001-0.05), In our approach, we
put this trade-off by varying pc , and pm adaptively in response to
the fitness values of chromosomes. pc , and pm are increased when
the population is about to get stuck at a local optimum and are de-
creased when the population in solution space is scattered.
To vary pc, and pm, adaptively, for preventing premature conver-
gence of the GA to local optimum. We should able to identify
whether the GA is on right optimum path of convergence.
For detecting the convergence ,we have to see average fitness value
f of the population in relation to the maximum fitness value fmax

of the population. The minimum the value of fmax - f , more is the
convergence to an optimum solution, it means a population scat-
tered in the solution space.pc and pm has to be increased if GA
converges to local optimum when fmax - f decreases. Pc , and pm

has to be increased if solutions come towards scattered pool.

pm α fmax − f (12)

pc α fmax − f (13)

We use the difference in the average and maximum fitness values,
fmax - f , as a benchmark for detecting the convergence. † f is
also denoted by fava in adaptive mutation, crossover in next
section. It has to be observed in the above expressions that pc and
pm do not depend on the fitness value of any particular solution,
and have the same values for all the solutions of the population.
Consequently, solutions with high fitness values as well as solutions
with low fitness values are subjected to the same levels of mutation
and crossover. When a population converges to a globally optimal
solution (or even a locally optimal solution), pc, and pm, increase
and may cause the disruption of the near-optimal solutions. The
population may never converge to the global optimum.
To overcome the above-stated problem, we need to preserve good
solutions of the population. This can be achieved by having lower
values of pc and pm for high fitness solutions and higher values of
pc and pm for low fitness solutions. This can be seen and realised
in the B.4 and B.6 subsections of VII. the high fitness solutions aid
in the convergence of the GA, the low fitness solutions prevent the
GA from getting stuck at a local optimum. The value of pm, should
depend not only on fmax - f, but also on the fitness value f of the
solution. Similarly, pc should depend on the fitness values of both
the parent solutions. The closer f is to fmax, the smaller pm , should
be, i.e.,pm, should vary directly as fmax - f. Similarly, pc , should
vary directly as fmax - f, where f is the larger of the fitness values
of the solutions to be crossed.

Fig. 3. Adaptive Genetic algorithm

6.2 Steps in AGA
The successive steps of the AGA is described in general below.
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6.2.1 Step 1. Initiation.. Initiation consists in creating an ini-
tial population specified number of individuals chromosomes. The
writers use individual representation in the form of gene strings
containing information about methods and values of processes pri-
ority. The initial population is created randomly. Particular genes
assume values chosen randomly with equal probability from their
variability interval. Activity priorities, allocated randomly in the
initial population, are modified in consecutive steps of the algo-
rithm until a solution that corresponds to the shortest duration of
the project is obtained. Therefore, the AGA enables the user to find
optimal values of priorities that determine the sequence of allocat-
ing tasks to employees, to activities. The algorithm is thus a tool
that may help PM in their everyday work of making decisions and
setting priorities.

6.2.2 Step 2. Individuals assessment.. This procedure is used to
calculate project duration, and thus it enables chromosomes fea-
sible solutions assessment. To assess the solutions generated by
AGA, the authors worked out the heuristic algorithm for tasks to
employee allocation and calculating the shortest project duration
presented in the next section.

6.2.3 Step 3. Protection of the best individual.. The individual
chromosome from the initial population for which the objective
function value is the best the shortest project duration is remem-
bered. The best individual protection also-called exclusive strategy
is a special additional reproductive procedure. The best adapted in-
dividual, among all from former generations, does not always pass
to a new population. Exclusive strategy is used as the protective
step against the loss of that individual.

6.2.4 Step 4. Calculating value of individuals adaptive fitness
function.. AGAs are used to look for the best adapted individu-
als for which the fitness function value is the highest. The study
focuses on finding the solutions of minimization problems. In
this case, it is necessary to convert the minimized objective func-
tion into maximized fitness function. The calibrating fitness func-
tion prevents premature convergence of the evolutionary algorithm,
which would result in finding a local optimum and not a global one.

6.2.5 Step 5. Checking the termination condition.. The action of
the algorithm can be stopped in two cases: after performing a speci-
fied number of iterations when the number of the current generation
is greater than the maximum value assumed, and when, after some
number of iterations, there are no better solutions than in previous
generations. If the termination condition is not met, a selection of
individuals is carried out as the next step.

6.2.6 Step 6. Selection procedure (Elitism).. Chromosomes se-
lection consists in choosing individuals that will take part in pro-
ducing offspring for the next generation. Chromosomes having the
highest fitness function value are the most likely to produce new
individuals. The last step is repeated for each individual in the pop-
ulation.

6.2.7 Step 7. Crossover (Adaptive) . The task of crossover is to
recombine chromosomes by exchanging strings of genes between
parents chromosomes. The different crossovers are employed in the
study. Strings of genes in the parents chromosomes ahead of the
point of crossing are not changed, only genes behind that point are
exchanged between parents.

6.2.8 Step 8. Mutation (Adaptive). Mutation involves random
change of one or more genes of the selected chromosome, with
probability equal to mutation frequency. Calculation of the fitness

function value for each individual in a new generation, the best in-
dividual protection, selection procedures, crossover, and mutation
are repeated cyclically until the termination condition of the algo-
rithm is met. Then the result of algorithms action, i.e., the solution
to the problemthe way of using skilled employee, the project du-
ration, and beginning and finishing of each task is given. The best
solution corresponds to the individual having the lowest value of
the assessment function the shortest or minimal project duration.

6.3 The Critical Path Procedure
Following is the CPP is used in our approach to find and compare
them with previous individual’s CPT to get optimum duration
AGAD.

Fig. 4. Critical Path Algorithm

The assignment of tasks to employees are given on the devotion
basis. We have choice to do the division of devotion in percentage.
The gene value of chromosome is an integer in the range 0 to 8.
That is, we have set of devotions in gene values with percentage
considered as per following equation. If employee Ei is assigned
tasks Tj , and gene value is ”1” then his or her devotion is 12.5
% of his(r) capacity . The capacity is property of Full time Soft-
ware Professional (FSP) and its unit may be hours/day, days/week,
hours/week. e.g. an employee can give 10 hours ”means” :if em-
ployee works with capacity of 40 hours/week and his devotion is
25%. The devotion of employee can be given as

Devotion =
g

Gmax

× 100 (14)

where g is gene value and Gmax is max value of gene. We have
used string representation of chromosome in our paper as an
employee task assignment schedule. Each chromosome shows
the schedule of assignment of skilled employees and tasks with
specified and derived time of the software project.
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6.4 Solution Representation in our approach
We proceed to describe the elements of a solution for the problem.
A solution can be represented with a matrix AGSHD =(xij) of size
E x T , where xij ε [0,1]. The value xij represents the fraction of
the working time that the employee Ei dedicates to the task Tj in
terms of months. A sample example of a problem solution is given
in Table II, where a software project with 7 tasks is performed by a
team of 5 employees. ’1’ indicates 100%.

Table 6. a Sample example of solution in terms of
Schedule representation.

t0 t1 t2 t3 t5 t6
e0 0.125 0.625 1.0 0.375 0.125 0.625
e1 0.625 0.25 0.625 0.125 1.0 0.125
e2 0.375 1.0 0.125 1.0 0.625 0.625
e3 1 0.625 0.375 0.375 0.375 0.375

7. OPERATIONS, MATHEMATICAL MODELING
AND ADAPTIVE FITNESS [?]

7.1 Modified objective function
Modified objective function is defined as

χ(SHDs) = F (SHDs)× (1 +DPg) (15)

if Ps≥Pave︷ ︸︸ ︷
DPg =

(Pmax + Ps)

Pmax − Pave

(16)

if Ps<Pave︷ ︸︸ ︷
DPg =

(Pave + Ps)

Pave − Pmin

(17)

if Ps
.
=0︷ ︸︸ ︷

DPg = 0 (18)

In this way, the penalty function is kept free from any pre-defined
or user defined constants, and the degree of penalty can vary ac-
cording to the level of violation instead of being constant during
the schedule process. The outlines of the adaptive mutation and
crossover operators used in the current work, based on the meth-
ods suggested by Srivinas and Patnaik (1994) but modified and
described in next subsection. Pm and Pc represent a number that
demonstrate the task duration shifted by mutation in the individ-
ual and exchanged by crossover between the pairs. In the follow-
ing formulations, the probability of mutation and cross-over depend
on the fitness value of the solutions, and vary according to the fit-
ness value. Therefore, the user is free from defining any value for
those [53].

7.2 Fitness for AGA
The calculation and flow of the fitness for our model is sequenced in
following manner. sth number in every equation indicates sched-
ule number or chromosome number in generation Fitness of
chromosome for sth schedule is given by

FCs =
1

NDs + Ps

(19)

,where Ps= Total Penalty of sth schedule,

NDs = SHDs/ADs (20)

where, ND is Normalised duration,AD is Average Duration for sth
schedule.

7.3 Project Duration (Schedule)
An each completed task is checked according to the TPG. For

each individual, the sequence and the task completion is checked
and penalty is given if the task is not completed. The constant
penalty and reward technique is adapted to get good individuals,
instead of making it invalid,completely. The project duration is cal-
culated by

AGSHDs =

e∑
i=1

n∑
j=1

DV(Ei,Tj) (21)

where,

DV(Ei,Tj) = devotion of employeeEi to Task Tj inmonths.
(22)

7.3.1 Project (Schedule) Cost. The total schedule cost (SC)
or project cost (PC) is obtained by summation of multiplication
of devotion of each employee with each task and salary of each
employee per month.

SCs =

e∑
i=1

n∑
j=1

DV(Ei,Tj) × SEEi
(23)

Maximum cost of the project is calculated by,

MSCmax =

n∑
i=1

CPSHDs × SEmax (24)

where, SEmax is maximum salary of employee among all employ-
ees.

7.4 Total Schedule penalty
Total penalty [32] is addition of penalties regarding time,individual
task and head count. There are some competing objectives which
may give the delay to get the right solution. We have example of
making equal distribution of employees in project which is exactly
opposite to the head count constrain. Making trade off in the contra-
dictory objectives is must and common in project management [5].
The solution is to make the one of them hard and other one soft or
make the both constrained soft. The total schedule penalty is calcu-
lated and given by

Ps = NHCPs +NTPs + TNITPs (25)

where, NHCPs, NTPs, TNITPs are normalised head count, total
time and task incompleteness penalty respectively.

7.4.1 Head count penalty (team size penalty). The head count
of each task is the number of employees assigned to that task.
The effort is dependent on the team size and the team productiv-
ity. Effort changes due to change in the number of employee in the
project. We calculated the team size for current schedule and com-
pare the team size calculated initially by Eqn-1. The difference be-
tween them is taken as team size penalty. The following constraint
is taken as head count constraint for every individual task, Hence,
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the hard constraint is, HC of each task should be ±1 of Head count
calculated by COCOMO.

HCPTi
=

{
0 ifCondition1
|CHCTi

± 1−AGHCTi
| Otherwise (26)

Condition1 ≡ CHCTi
± 1

.
= GHCTi

(27)

NHCPs =

∑n

i=1
HCPTi

TCHCs

(28)

where TCHCs is total COCOMO head count of sth schedule.

7.4.2 Threshold penalty (Time penalty) . The threshold penalty
is calculated by taking the difference between AGSHD and CP-
SHD.

TPs =

{
rate ∗ (CPSHDs −AGSHDs) if Condition1
1× 109 if Condition2

(29)

Condition1 ≡ COSHDs <= AGSHDs <= CPSHDs

(30)

Condition2 ≡ GSHDs > CPSHDs (31)

Where,rate is penalty per unit time ( We kept rate= 1
penalty/months), AGSHD is schedule obtained by our genetic ap-
proach, CPSHD is COCOMO pessimistic schedule and COSHD is
COCOMO optimistic schedule. In SPM, schedule is also called
as project duration or DUR or DU.

NTPs =
TPs

CPSHDs

(32)

NTPs is Normalised time penalty.

7.4.3 Penalty For Individual Incomplete Task [9]. The penalty
of individual task is called incompleteness. This incompleteness is
duration difference between optimistic duration and GA obtained
duration of the task.

n∑
i=1

NITPTi
=

n∑
i=1

(AGODTi
− CODTi

)/GPDTi
. (33)

TNITP s =
∑

n
i=1NITPT i (34)

The incompleteness is normalised by above equation.

7.5 Adaptive Mutation
Mutation is done to change the direction search space as lowest
fitness values continuation doesnt provide good solution. Mutation
rate is changed according (to Togans [53] following formula) pro-
vided the chromosome has worst fitness in the pool.

Pm =

{
0.5(fmax − f)/(fmax − fave) f ≥ fave.
(fave − f)/(fave − fmin) f < fave.

Here, f is the fitness of an individual, fave is the average fitness
value of the population, fmax and fmin are the maximum and min-
imum fitness value of an individual in the population respectively.
Pm is mutation rate.

We have done simply the summation of all the objective function
and calculate the fitness value. Every objective is given same pref-
erence. The weight is equally distributed in the objectives itself.
The proposed SGA with adaptive approach for modified fitness
function given by Togan, Patnaik is considered to get the more suit-
able fittest chromosome from adaptive approach [53].

7.6 Adaptive Crossover
The crossover operator mimics the way in which bisexual repro-
duction passes along each parents good genes to the next genera-
tion [18]. Two parent create two new offsprings by combining their
genes typically according to following pseudo code. Crossover uses
both inheritance and variation to improve the performance of the
population while retaining its diversity of population [8]. In our ap-
proach, following flow of operation of crossover is experimented.
Pseudocode for the same is given bellow.

7.6.1 Adaptive Elitist Crossover (EX). where:
P(t) is equal to Pc; Comments ? The selection process in SGA is
always preceded by the crossover process. But ,in the EX above
method, both processes are integrated. The entire population is ran-
domly shuffled during the first step. Then,two new vectors are cre-
ated by crossover from each successive pair of parental vectors.
Two best vectors are singled out and taken as offspring to the next
population. ? Some times premature convergence may be due to
the reason of traditional way of elitist selection application on the
level of the entire population. So, we can apply this an EX elitist
selection on the family level.

Pc =

{
(fmax − f ′)/(fmax − fave) f ′ ≥ fave.
0 f ′ < fave.

Where, f’ is the larger of the fitness value of the solutions to be
crossed [53]

7.7 Selection :Elitist strategy
Elitist strategy is utilized for avoiding destroying the best individual
per generation. Specifically described as follows: If the next gen-
eration of groups of individual fitness value is less than the current
population of individual fitness value, the best individuals in the
current groups or adaptation value is greater than the value of the
next generation of the best individual fitness multiple individuals
directly copied to the next generation. The elitist strategy ensures
that the current best individual will not be destructed by crossover
and mutation operations [43]. We used separate ádaptive crossover
and elitist selection,́ Elitist adaptive crossover.

7.7.1 Stopping Criterion. Though, it is, usually, expected that
solution quality improves with the additional generations in GA.
Typically, genetic algorithms terminate after a predetermined num-
ber of generations passed or after a sequence of consecutive gener-
ations without objective function improvement. Alternatively, the
algorithm can terminate after the population is sufficiently homog-
enized, as measured by objective function variance [54]. We are
interested in the temporal (generational) performance in elitism se-
lection strategy [42]. we opted to utilize a maximum generation as
a stopping criterion..

8. INPUT OUTPUT TABLES
We took the input as configuration files which have already been
given by Albas and paper written by Xing,Tang and Ting. We have
written C program to get the output as employees properties, task
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properties and TPGs. The outputs in terms of all these properties
has been given as the parameters and properties in INPUT Table-7
to 9. In tern, These parameters are taken as inputs to our imple-
mentation. The table-10 onward all tables represents outputs of our
approach.

Table 7. INPUT:Configuration file showing
mathematical notations for T10E5S4 as an example [56]

task.6.skill.number=3 task.6.cost=12.0
task.3.skill.2=2 task.0.cost=4.0
task.3.skill.1=5 task.9.skill.number=2
task.4.cost=7.0 employee.number=5
task.3.skill.0=3 employee.3.skill.number=5
employee.3.skill.4=5 task.8.skill.1=5
employee.3.skill.3=1 task.8.skill.0=2
employee.3.skill.2=6 task.4.skill.1=3
employee.3.skill.1=3 task.4.skill.0=6
employee.3.skill.0=0 task.3.skill.number=3
graph.arc.9=1 7 employee.4.skill.3=2
graph.arc.8=5 6 employee.4.skill.2=3
graph.arc.7=4 5 employee.4.skill.1=5
graph.arc.6=3 5 employee.4.skill.0=7
graph.arc.5=0 5 employee.2.skill.2=8
graph.arc.4=3 4 employee.2.skill.1=9
graph.arc.3=2 4 employee.2.skill.0=3
graph.arc.2=0 4 employee.0.skill.3=0
graph.arc.1=1 3 employee.0.skill.2=8
task.1.skill.0=0 task.2.cost=7.0
task.5.cost=8.0 employee.3.salary=9501.80
employee.1.skill.3=1 employee.0.skill.1=3
employee.1.skill.2=8 task.2.skill.number=2
employee.2.salary=9935.60 employee.0.skill.0=1
graph.arc.15=6 8 task.7.skill.number=2
graph.arc.14=5 8 task.9.cost=5.0
graph.arc.13=4 8 task.1.skill.number=3
graph.arc.12=2 8 task.9.skill.1=0
graph.arc.11=4 7 task.9.skill.0=2
graph.arc.10=3 7 employee.0.skill.number=4
task.4.skill.number=3

Fig. 5. Generation Vs Fitness T20E5S4

Table 8. INPUT : Task Properties for T20E5S4.
Task Effort CD CPD CHC Skills
ID (PM) (Mths) (Mths) Required
Task0 11 6.5 10.54 3.3 1,5,9
Task1 3 4.3 6.88 1.3 3,6,9
Task2 12 6.7 10.84 3.5 2,6
Task3 8 5.9 9.49 2.6 0,8,9
Task4 12 6.7 10.84 3.5 0,5,7
Task5 7 5.6 9.08 2.4 1,7
Task6 15 7.2 11.67 4.0 0,6,8
Task7 21 8.1 13.03 5.1 4,5
Task8 11 6.5 10.54 3.3 1,3
Task9 18 7.7 12.39 4.6 5,7,9
Task10 10 6.3 10.22 3.1 1,3,5
Task11 8 5.9 9.49 2.6 0,1,2
Task12 17 7.5 12.16 4.4 6,7,8
Task13 15 7.2 11.67 4.0 0,5,9
Task14 16 7.4 11.92 4.2 0,1,7
Task15 7 5.6 9.09 2.4 3,7
Task16 10 6.3 10.22 3.1 4,6,8
Task17 10 6.3 10.22 3.1 0,1
Task18 11 6.5 10.54 3.3 0,1,5
Task19 15 7.2 11.67 4.0 6,8

Table 9. INPUT : Employee properties for
T20E5S4.

Emp Id Salary Months work load Skills
factor

0 9793 3 1 0,1,5,7,9
1 9545 3 1 0,1,6,8,9
2 10131 3 1 1,2,4,8
3 10252 3 1 0,5,6,9
4 10944 3 1 0,3,7,8

Table 10. OUTPUT:Employee
working times for T20E5S4.

Employee Time No. of Task
Per Employee

0 25.875 15
1 22.025 15
2 27.975 14
3 24.4 15
4 21.525 16

9. RESULT AND DISCUSSION
9.1 Analysis and Discussion
The java code is written in netbean 7.1 IDE for JDK 1.6 with dif-
ferent java classes available for GA. The average number of com-
putation or evaluations needed to reach maximum of AGA is in
Table XIII. In GAs,Pc and Pm are usually assigned constant value
but in our approach we made crossover and mutation as variable of
fitness function which produces more efficient search. We are indi-
rectly mutating LSB for high-fitters thus it improves the accuracy.
AGA intends put low-fitters in mutation to play role in evolution.
In order to solve, the feeble adaptability and the imbalance between
random search and local search in the SPSP, a new adaptive genetic
algorithm (AGA) is presented in this paper. The superiority of this
algorithm was the adaptation achieved by adjusting the crossover
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Fig. 8. Schedule for first year for Task Precedence Graph for T20E5S4

Fig. 9. Schedule for second year for T20E5S4

rate and mutation rate. At the same time, the search property has
been balanced by restricting crossover and mutation. To insure the
best chromosome pass to the next generation, we immediately re-

served the best chromosome. The developed algorithm had been
tested by benchmark problems. Computational results show this
adaptive genetic algorithm (AGA) has an effective search behavior.
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Fig. 10. Schedule for Third year for T20E5S4

Fig. 6. Generations Vs Task Completed T20E5S4

This can get away from local optimal and avoid premature conver-
gence. Also the convergence speed increases [19]
We have taken approach elitist selection. Though the AGA plays
indirect role of elitist approach. We, also, took various penalties
and reward to the parameters of the objective functions .Experienc-

Fig. 7. Generation Vs Critical Duration for T20E5S4

ing the various ways of the execution gives the interesting conclu-
sions. For a quality project, task must be completed within time, be-
tween pessimistic optimistic duration, along with satisfying nearly
all soft and hard constraints. In our problem, we considered the
effort, duration, head count defined by Bohem for making cor-
rection in the fitness value of individual schedule. We considered
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Fig. 11. Graph shows assignment of employee, duration for each employee to tasks, critical path duration, total duration for T20E5S4

Fig. 12. First part of Network diagram for T20E5S4

COCOMO-II effort estimation, schedule calculation, Head count
for our paper and implementation. In preliminary run, we used the
right extinctive selection for 2 to 5 individuals (having less fitness)
for having zero production rate for some generation to discard the
some but little number of chromosomes which dont tends to give
super-individuals. We used elitist selection scheme which enforces
to go through selection along with their parent by making some
individual duplicates by constrained wise changes in the chromo-
somes.Comparison Table of simple GA(Ting [56]),AGA by our ap-
proach and ACO (Ting [56]) shows that AGA has good result than
others. Figure 2 and onwards gives the various graphs and chart.
These graphs gives the behaviour of AGA with parallelism. In par-
allelism ,if some skilled employees is idle then we allocate that
task to the employee by making allocation of randomized genes.

The execution of sequenced task are considered as per the princi-
ples of parallelism of project management.We see if all tasks are
completed first within group of sequenced parallel tasks, in turn,
we can start the next sequence of task immediately after the com-
pletion of all the tasks in the previous sequence. All predecessors
of that task must be completed before going to execute successor
tasks or follower tasks. Equal distribution of the work employee is
considered for the sake of making equilibrium in the division of a
task but it is exactly opposite to the head count of the task required.

9.2 Computational AGA results
The results for the sample example case for the given 20 task, 05
employee and 10 skills are shown in all the tables except compara-
tive table IX. The cost and time decreases as we do progress from

35



International Journal of Computer Applications (0975 8887)
Volume 96 - No. 21, June 2014

Fig. 13. Second part of Network diagram for T20E5S4

Table 11. COCOMO and AGA durations
for T20E5S4 Where, CODTi

≤ AGADTi

≤ CPDTi
.

CD COD AGAD CPD

Task0 6.59 5.66 6.00 10.54
Task1 4.30 3.70 6.38 6.88
Task2 6.78 5.83 6.38 10.84
Task3 5.93 5.10 4.88 9.49
Task4 6.78 5.83 5.63 10.84
Task5 5.68 4.88 7.50 9.09
Task6 7.29 6.27 6.75 11.67
Task7 8.14 7.00 8.63 13.03
Task8 6.59 5.66 7.50 10.54
Task9 7.74 6.66 6.38 12.39
Task10 6.38 5.49 7.13 10.22
Task11 5.93 5.10 5.63 9.49
Task12 7.60 6.53 6.38 12.16
Task13 7.29 6.27 7.88 11.67
Task14 7.45 6.41 6.38 11.92
Task15 5.68 4.88 5.25 9.09
Task16 6.38 5.49 5.25 10.22
Task17 6.38 5.49 9.75 10.22
Task18 6.59 5.66 5.63 10.54
Task19 7.29 6.27 6.00 11.67

one generation to another generation. The fitness value takes a con-
stant path after some generation as it increases, it takes constant
value. Though, the fitness gives constant value but it gives some
different solutions by considering all the composite components of
the schedule. We studied combination of different crossover types
with adaptive Pc,Pm. The generation is set to 500 for this specific

Table 12. OUTPUT: Tasks duration in Months with
employee for T20E5S4.

Emp0 1 2 3 4 AGAD

Task0 2.25 1.875 1.875 0 0 6
Task1 1.125 1.5 0 3 0.75 6.375
Task2 0 1.5 2.25 2.625 0 6.375
Task3 0.375 1.875 0.375 1.125 1.125 4.875
Task4 0 1.875 0 0.75 3 5.625
Task5 3 1.125 1.875 0 1.5 7.5
Task6 1.125 1.875 1.875 0.75 1.125 6.75
Task7 3 0 3 2.625 0 8.625
Task8 0.75 1.875 2.625 0 2.25 7.5
Task9 0.75 2.25 0 1.5 1.875 6.375
Task10 0 3 0.75 2.625 0.75 7.125
Task11 2.25 1.5 1.125 0.375 0.375 5.625
Task12 1.125 0 2.625 1.875 0.75 6.375
Task13 2.25 2.625 0 3 0 7.875
Task14 1.125 0 0 3 2.25 6.375
Task15 2.25 0 0 0 3 5.25
Task16 0 1.125 1.5 2.25 0.375 5.25
Task17 2.25 1.5 1.875 3 1.125 9.75
Task18 2.25 0 2.625 0 0.75 5.625
Task19 0 1.875 3 0.75 0.375 6

problem of 20 Tasks, 5 Employees, 10 Skills. We got the following
as outputs

—schedule as chromosome in terms of Employee- Task 2D matrix

—conversion of these matrix in terms of months assigned as per
the devotion for same task, assigning of the task as per the TPG
and sequence
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Table 13. Xover Vs Avg Computatin time for
T20E5S4.

Xover Avg (SGA) Avg (AGA)
Methodology Computation Computation

One point 250 90
Two pont 210 75
Uniform 290 100
Selective 360 120

—addition of each gene to get the value of time required for tasks,
employees working time

—getting the distribution of employee over the number of tasks
—team size for completing the each task
—concurrent parallel adjustment of each employee with the task

assigned to skilled employee
—time required to complete the project i.e. schedule
—Cost of the schedule
—fitness of the schedule.

The figures 2 to 10 shows the above things in the chart. The cost
and time decreases as we do progress from one generation to an-
other generation. The fitness value takes a constant path after some
generation as it increases, it takes constant values. Though the fit-
ness gives constant value but it gives some different solutions by
considering all the composite components of the schedule. We put
crossover rate 0.9, mutation rate 0.01 initially and then the effect
of adaptive approach is observed which makes Pm and Pm changes
according to the fitness from generation to generation as stopping
criteria is 500 number of generations as different type of crossover
requires different computation time.

9.3 Gantt Chart of sample example as an
representation of task, breakdown

The schedule created is shown in Gantt Chart which shows tasks
assigned to skilled employees, critical path, dependency between
tasks as per input TPG, Starting and ending days and duration of
each tasks. It shows the sequence and flow of the tasks with starting
and ending point with employee allocations in slots. Fig.6 shows
the graph which shows same information as above for schedule of
20 Tasks, 5 employees, 10 skills example. It shows the concept of
SS, SE, ES, EE examples also and can be used for showing it.

9.4 Comparative discussion
Here, we compared the results of our model’s with
Ting,Tang’s [56] results. Somewhere, it has been found that
the result of ACO ( Ant colony optimization ) are better and some
time our results are. This observation can also be seen in the results
of Ting,Tang. ACO is better than GA for some of the smaller
problems and our approach GA put behind the ACO and the result
of Ting and Tang. Our results are good when problem becomes
complicated and complex due to GA’s global optimization nature,
due to combination of crossover types and changes in the mutation
rate according to fitness of individual. Our results produced
may give hope of making project manager feel satisfy about the
schedule.

10. CONCLUSION
Not only SGA or GA but also AGA gives various chance to us
to take tour of various parameters variability to get the optimistic

solution. All operators like adaptive crossover, adaptive mutation,
adaptive fitness gives different combinations of the solution. It is
the god gifted mechanism that gives chance of using constant as
well as mathematical modelled penalties to get the best optimal
solution. The constant penalty approach gives some what less result
than adaptive approach in the penalty.
In preliminary run, we set the pool of chromosome in such a way
that, after preliminary run the chromosomes in the pool get some
combinations of the super individual, best individual, normal indi-
viduals and zero product individual so that the natural test of GA is
kept on. In preliminary run, we got some good solution in chromo-
some pool to propagate to the next generation. Figure 3 to 7 gives
different graphs .These graphs gives the behaviour of AGA with
parallelism in scheduling [30]. In parallelism ,if some skilled em-
ployees is idle then we allocate that task to the employee by making
allocation of randomized genes. The execution of sequenced tasks
are considered as per the principles of parallelism of project man-
agement [15] .We see, if all tasks are completed first within group
of sequenced parallel tasks, in turn, we can start the next sequence
of task immediately after the completion of all the tasks in the pre-
vious sequence. All predecessors of that task must be completed
before going to execute successor tasks or follower tasks. Equal dis-
tribution of the work employee is considered for the sake of making
equilibrium in the division of a task but it is exactly opposite to the
head count of the task required .

Table 14. OUTPUT:Comparative chart of
our and Ting-Tang approach for G2 Group

Employee possesses 4-5 skills.
Group Instance Algorithm Duration

G2 5e10t ACS-SPSP 22.94651
GA 23.63111

AGA 20.875
10e10t ACS-SPSP 14.21091

GA 16.28071
AGA 16.125

15e10t ACS-SPSP 8.032931
GA 8.2231

AGA 8.125
20e10t ACS-SPSP 6.306531

GA 6.01912
AGA 6.00

Table 15. OUTPUT:Comparative chart of
our and Ting-Tang approach for G3

Group.Employee possesses 6-7 skills
Group Instance Algorithm Duration

G3 5e10t ACS-SPSP 22.11891
GA 23.15251

AGA 23.625
10e10t ACS-SPSP 14.20831

GA 13.2522
AGA 11.625

15e10t ACS-SPSP 8.2368
GA 8.05221

AGA 7.75
20e10t ACS-SPSP 6.020961

GA 6.284971
AGA 6.125
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Table 16. OUTPUT:Comparative chart of
our and Ting-Tang approach for G4

group.Employee possesses 2-3 skills
Group Instance Algorithm Duration

G4 5e10t ACS-SPSP 23.6223
GA 24.26261

AGA 23.125
10e10t ACS-SPSP 14.1833

GA 15.23891
AGA 14.5

15e10t ACS-SPSP 8.8731
GA 8.89696

AGA 7.625
20e10t ACS-SPSP 6.526491

GA 7.055161
AGA 6.875

11. FUTURE WORK
In the future, we can use the adaptive elitist-population search
method, a new technique for evolving parallel elitist individuals for
multimodal function optimization. The technique is based on the
concept of adaptively adjusting the population size according to
the individuals dissimilarity and the elitist genetic operators. The
adaptive elitist-population search technique can be implemented
with any combinations of standard genetic operators. To use it, we
just need to introduce one additional control parameter, the distance
threshold, and the population size is adaptively adjusted according
to the number of multiple optima.
We have a plan to apply this technique to hard multimodal engi-
neering design problems with the expectation of discovering novel
solutions. We will also need to investigate the behavior of the
AEGA on the more theoretical side. The performance of the AEGA
can be compared against the fitness sharing, determining crowing
and clonal selection algorithms.
Second issue might be Running huge parallel project which is
tough task for the PM. Future work may give us to do the parallel
among the module to module or project to project. Multi-project
scheduling problem is challenging issue using various type of ge-
netic algorithm.
Another angle and the area for Human resource management in
software is to calculate the efficiency of each employee for getting
better capacity to do the work in that particular area. It has been
observed that human being do the work fast and keep the tempo of
his work when he likes to do the work in his domain and area. The
psychological measurement and other physiological aspects are di-
rectly proportional to eagerness and enthusiastic property of human
being which is very important factor for increasing the productivity
of the employee and its team. In this paper, adaptive approaches are
proposed for both the penalty function, and crossover and mutation
probabilities in order to relieve the user from predicting any val-
ues needed prior the optimization, and enhance the performance of
the GA in optimizing structural systems. A strategy is also consid-
ered for member grouping to reduce the size of the problem and the
number of iteration to reach the optimum solution. From the results,
it is possible to say that the adaptive improvements presented in the
current study are effective and enhance the performance of the GA.
It can be concluded that member grouping proposed in the future
work together with the adaptive approaches improve the capability
of GA to catch the global optimum.
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