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ABSTRACT 

Image segmentation is one of the most important prerequisite 

for image analysis. This paper addresses the problem of model 

based image segmentation using mixture of Pearsonian Type I 

Distribution. Here the whole image is characterized by a 

mixture of  K-components Type I Personian Distribution. The 

Pearsonian Type I Distribution is capable of portraying the 

asymmetric nature of image regions more close to the reality. 

The model parameters estimated by EM Algorithm. The 

initialization of model parameters is done through the 

integrating the histogram method, K-means algorithm and 

moment of method of estimators. The Image Segmentation 

algorithm is developed using component maximum 

likelihood. The proposed algorithm is evolved by conducting 

experiments with 5 images taken from Berkeley image data 

set. The Experiments revealed that this algorithm performs 

better than that of Gaussian mixture model with respect to 

image segmentation quality measures such as PRI, VOC and 

GCE for some images taken in sky and on earth. 

.  Keywords 

Image Segmentation, Type I Pearsonian distribution, EM 

algorithm,K-means algorithm. 

1. INTRODUCTION 
Image analysis and image retrievals involve the image 

segmentation more effectively. In image segmentation we 

identify the regions in image with distinct characters. Much 

work is reported in literature regarding image segmentation 

and its applications in Srinivasa rao et al (2007), Prasad 

Reddy et al (2010). Pal S.K and Pal N.R.(1993), jahne 

(1995),Cheng et al (2001), Mantas and Audrius Usinskas 

(2007) and Shital Raut et al (2009) presented several image 

segmentation methods for all different types of images. There 

are two types of image segmentation methods. They are 

segmentation based on heuristic methods and segmentation 

based on models. It is well documented model based methods 

are much efficient then heuristic method (Srinivas Y (2007) 

and Sesha sayee et al (2011)). In model based image 

segmentation methods, the image segmentation based on 

finite Gaussian mixture model gave a lot of popularity due to 

its simplicity (Nasios N. et al (2006) and GVS Raj kumar et al 

(2011)). But the image segmentation based on Gaussian 

Mixture  model , The image regions are assumed to be 

symmetric and meso kurtic. Deviating from this M Sesha 

Sayee et al (2011) and Srinivas Yerramalle et al (2010), 

Srinivas Y et al (2007) and others developed image 

segmentation methods based on mixture of new symmetric 

distribution or truncated Gaussian Distribution or mixture of 

Generalized Gaussian distribution . In all these papers the y 

assumed that the feature is associated with image regions may 

not be Meso Kurtic but symmetric.  

However in many image regions the feature vector is 

associated with image regions may have skewed distribution, 

very little work is reported in literature regarding 

segmentation methods based on mixture of skewed 

distribution. Hence in this article we develop and analyze an 

image segmentation method based on finite mixture of 

Pearsonian Type I Distribution. Here it is assumed that the 

whole image is collection image regions in which the pixel 

intensity of each region follows a Pearsonian Type I 

distribution. The Pearsonian Type I Distribution is skewed 

Distribution and includes a spectra of distributions. This 

article organizes seven sections. Section 2 deals with mixture 

of Pearsonian Type I Distribution and its properties. Section-3 

deals with estimates of model parameters by EM algorithm 

and the Update equations of model parameters of EM 

algorithm. The initialization of parameters is done by K-

means Algorithm in Section-4. Section-5 deals with image 

segmentation algorithm. In Section 6 the experiments carried 

using the Berkeley image data set with five images. Section-7 

is considered with discussion on performance of proposed 

algorithm and a comparative study. Finally the conclusion of 

this paper is given in Section-8. 

2. MIXTURE OF PEARSON TYPE I 

DISTRIBUTION 
In low level image analysis the entire image is considered as a 

union of several image regions.  In each image region the 

image data is quantified by pixel intensities. The pixel 

intensity  ( , )z f x y   for a given point ( pixel ) (x, y) is a 

random variable, because of the fact that the brightness 

measured at a point in the image is influenced by various 

random factors like vision, lighting, moisture, environmental 

conditions etc,. To model the pixel intensities of the image 

region it is assumed that the pixel intensities of the region 

follows a Pearson Type I distribution. The probability density 

function of the pixel intensity is  
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The entire image is a collection of regions which are 

characterized by Pearson Type I distribution. Here, it is 

assumed that the pixel intensities of the whole image follows 

a    K – component mixture of Pearson type I distribution and 

its probability density function is of the form 
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where, K is number of regions ,  0 ≤ i  ≤ 1 are weights such 

that  ∑ i = 1 and   
1 2 1 2( , , , , )i i i i if z a a m m  is as given in 

equation  ( 1 ). i  is the weight associated with ith  region  in 

the whole image.   

In general the pixel intensities in the image regions are 

statistically correlated and these correlations can be reduced 

by spatial sampling ( Lei T. and Sewehand W. ( 1992 ))  or 

spatial averaging  ( Kelly P.A. et al ( 1998 ) ) .  After 

reduction of correlation, the pixels are considered to be 

uncorrelated and independent. The mean pixel intensity of the 

whole image is    ( )
1

i i

K
E Z

i
  



. 

3. ESTIMATION OF THE MODEL 

PARAMETERS BY EM ALGORITHM 
In this section we derive the updated equations of the model 

parameters using Expectation Maximization (EM) algorithm. 

The likelihood function of the observations 1 2, ,..., Nz z z
 

drawn from an image is 
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where 1 2 1 2 ( , , , , ; 1,2,..., )i i i i ia a m m i K    is the 

set of parameters 
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 The first step of the EM algorithm requires the estimation of 

the likelihood function of the sample observations. 

E-STEP: 

In the expectation (E) step, the expectation value of log 

( )L    with respect to the initial parameter vector   (0)  is     

   (0)
; log ( ) /

(0)
Q E L z  
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Given the initial parameters
(0)  , one can compute the 

density of pixel intensity sz as   
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The conditional probability of any observation sz  , belongs 

to any region K is  

( ) ( ) ( ) ( )
( , ) ( , )( )

( , )
( ) ( ) ( )( , ) ( , )

1

 




 
   
        

l l l l
f z f zl s sk k k k

t zsk Kl l lp z f zs si i
i

   


  

The expectation of the log likelihood function of the sample is 
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M-STEP: 

For obtaining the estimation of the model parameters one has 

to maximize  ( )
;

l
Q    such  that ∑ i = 1.   This can be solved 

by applying the standard solution method for constrained 

maximum by constructing the first order   Lagrange type 

function,                                              
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For updating the parameter   1im , i = 1, 2, …, K we consider 

the derivative of  ( ); lQ    with respect to 1im  and 

equate it to zero.  
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The updated equation of 1im  at ( l +1)th  iteration is  
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For updating the parameter   2im , i = 1, 2, …, K we consider 
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The updated equation of 2im  at ( l +1)th  iteration is  
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( 1) ( )
( )

( 1) ( )

1

( , )
( , )

( , )

l l
l i i s

i s K
l l

i i s

i

f z
t z

f z

 


 










 

4. INITIALIZATION OF THE 

PARAMETERS BY K – MEANS  
    The efficiency of the EM algorithm in estimating the 

parameters is heavily          dependent on the number of 

regions in the image. The number of mixture components 

taken for K – Means algorithm is, by plotting the histogram of 

the pixel intensities of the whole image, the number of peaks 

in the histogram can be taken as the initial value of the 

number of regions K.    

 The mixing parameters  i  and the model parameters 

1 2,i im m  are usually considered as known apriori. A 

commonly used method in initializing parameters is by 

drawing a random sample from the entire image ( Mclanchan 

G. and Peel D. (2000)). This method performs well, if the 

sample size is large and its computational time is heavily 

increased. When the sample size is small, some small regions 

may not be sampled. To overcome this problem we use the K 

– Means algorithm to divide the whole image into various 

homogeneous regions. In K – Means algorithm the centroids 

of the clusters are recomputed as soon as the pixel joins a 

cluster. 

K-MEANS CLUSTERTING ALGORITHM 

The K-means algorithm is one of the simplest clustering 

technique for which the objective is to find the partition of the 

data which minimizes the squared error or the sum of squared 

distances between all points and their respective cluster 

centers (Rose H. Turi, (2001)). K-means algorithm uses an 

iterative procedure that minimizes the sum of distances from 

each object to its cluster centroid, over all clusters. This 

procedure consists of the following steps. 

1) Randomly choose K data points from the whole dataset as 

initial clusters. These data  

     points represent initial cluster centroids. 

2) Calculate Euclidean distance of each data point from each 

cluster centre and assign the  

     data points to its nearest cluster centre 

3) Calculate new cluster centre so that squared error distance 

of each cluster should be  

     minimum. 

4) Repeat step 2 and 3 until clustering centers do not change. 

5) Stop the process. 

In the above algorithm, the cluster centers are only updated 

once all points have been allocated to their closed cluster 

centre. The advantage of K -means algorithm is that it is a 

very simple method, and it is based on intuition about the 

nature of a cluster, which is that the within cluster error 

should be as small as possible. The disadvantage of this 

method is that the number of clusters must be supplied as a 

parameter, leading to the user having to decide what the best 

number of clusters for the image is (Rose H. Turi, (2001)). 

Success of K-means algorithm depends on the parameter K, 

number of clusters in image.  

 

After determining the final values of K (number of regions) , 

we obtain the initial  estimates of 1 2 1 2, , , andi i i i ia a m m   

for the ith  region using the segmented region pixel         

intensities using Pearson type I distribution .The initial 

estimate i  is taken as 1/ Ki   , where  i = 1,2,...,K. The 

parameters 1im  and 2im  are estimated by the method of 

moments as first moment 1 and its three central moments

2 3 4( , and ).     

5. SEGMENTATION ALGORITHM 
In this section, we present the image segmentation algorithm. 

After refining the parameters, the prime step in image 

segmentation is allocating the pixels to the segments of the 

image.  This operation is performed by Segmentation 

Algorithm. The image segmentation algorithm consists of four 

steps. 

Step 1) Plot the histogram of the whole image.   

Step 2) Obtain the initial estimates of the model parameters 

using K-Means algorithm and moment estimates for each 

image region as discussed in section 4. 

Step 3) Obtain the refined estimates of the model parameters 

1 2,i im m  and i  for  i=1, 2, ..., K  using the EM algorithm 
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with the updated equations given  by (8), (10), and (11) 

respectively in  section 3. 

Step 4) Assign each pixel into the corresponding jth   region 

(segment) according to the maximum likelihood of the jth 

component Lj.    

That is  

1 2

1 2

1 2

1 2

1 2

j ( 1)
    1 2 1 2

1 1

L  
( ) ( 1, 1)

 max

j j

j j

j j

m m

m m s s
j j

j j

m m
j k j j j j

z z
a a

a a

a a m m
 



    
              

   
 
 

,   

,sz   1 2, ,j jm m    

1 2j s ja z a           

 

6. EXPERIMENTAL RESULT 
In order to find the performance of the proposed image 

segmentation algorithm with Personian Type I distribution, an 

experiment is conducted with five images taken from 

Berkeley images dataset (http://www.eecs.berkeley.edu/ 

Research/Projects/CS/Vision/bsds/BSDS300/html). The 

images FLIGHT, BOAT ELEPHANT, HOUSE and CAR are 

considered for image segmentation. The intensity of each 

pixel is taken as feature. The pixel intensities of all images are 

assumed to follow a mixture of Pearson type I distribution. 

That is, the image contains K regions and pixel intensities in 

each image region follow a Pearson type I distribution with 

different parameters. The number of segments in each of the 

five images considered for experimentation is determined by 

the histogram of pixel intensities. The histograms of the pixel 

intensities of the five images are shown in Figure 1. 

 

Fig 1: Histograms of the Images 

 

 

 

The initial estimates of the number of the regions K  in each 

image are obtained and given in Table 1.  

 

Table 1: Initial Estimates of K 

 

IMAGE FLIGHT BOAT   ELEPHANT HOUSE CAR 

Estimate 

of K 
2 3 4 4 3 

 

From Table 1, we observe that the image FLIGHT has two 

segments, images BOAT and CAR have three segments each 

and images ELEPHANT and HOUSE have four segments 

each. The initial values of the model parameters
 1 2,i im m  

and 
i  for  i  = 1, 2, …, K ,  for each image region are 

computed by the method given in section 3. 

Using these initial estimates and the updated equations of the 

EM Algorithm given in Section 3, the final estimates of the 

model parameters for each image are obtained and presented 

in Tables 2.a, 2.b, 2.c, 2.d, and 2.e for different images. 
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Table-2.a 

Estimated Values Of The Parameters For FLIGHT Image 

Number of Image Regions (K =2) 

 

Parameters 

Estimation of Initial Parameters Estimation of Final Parameters by EM Algorithm 

Image Region Image Region   

1 2 1 2 

i     0.500    0.500 0.0029 0.9971 

1ia
 

-58.088 -55.5881 -58.088 -55.5881 

2ia
 

25.8488 40.0346 25.8488 40.0346 

1im  0.6920 0.5813 0.7364 2.4226 

2im  -0.3080 -0.4187 1.6783 0.4688 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Table-2.b 

Estimated Values Of The Parameters For   BOAT Image 

Number of Image Regions (K =3) 

Parameters 

 

Estimation of Initial Parameters Estimation of Final Parameters by EM Algorithm 

Image Region  Image Region 

1 2 3 1 2 3 

i  0.333 0.333 0.333 0.4653 -0.1466 0.6813 

1ia
 

-48.126 -8.3033 -29.299 -48.126 -8.3033 -29.299 

2ia
 

32.600 114.676 16.0984 32.600 114.676 16.0984 

1im  0.5962 0.0675 0.6454 0.4287 10.3444 2.3217 

2im  -0.4038 -0.9325 -0.3546 1.0532 0.0671 0.5050 

Table-2.c 

Estimated Values Of The Parameters For ELEPHANT Image 

Number of Image Regions (K =4) 

 

Parameters 

Estimation of Initial Parameters Estimation of Final Parameters by EM Algorithm 

Image Region Image Region 

1 2 3 4 1 2 3 4 

i    0.250  0.250    0.250     0.250 0.6051 -0.2622 0.7480 -0.0909 

1ia
 

-21.155 -28.957 -16.364 -15.213 -21.155 -28.957 -16.364 -15.213 

2ia
 

17.3338 96.4809 16.2716 23.0406 17.3338 96.4809 16.2716 23.0406 

1im  0.5496 0.2308 0.5014 0.3976 0.2637 3.9888 2.5847 2.8962 

2im  -0.4503 -0.7691 -0.4985 -0.6023 0.6779 0.2182 0.4199 0.3503 

2im  -0.2433 -0.8886 -0.8886 1.0000 1.0010 0.1095 1.0000 0.4638 
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The probability density function of pixel intensities of each 

image is estimated by substituting the final estimates of the 

model parameters.  

The estimated probability density function of the pixel 

intensities of the image FLIGHT is 

 

(0.7364) (1.6783)
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The estimated   probability density function of the pixel 

intensities of the image BOAT is 
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The estimated probability density function of the pixel 

intensities of the image ELEPHANT is                     
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The estimated probability density function of the pixel 

intensities of the image HOUSE is 
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Table-2.d 

Estimated Values Of The Parameters For HOUSE Image 

Number of Image Regions (K =4) 

 

Parameters 

Estimation of Initial Parameters Estimation of Final Parameters by EM Algorithm 

Image Region Image Region 

1 2 3 4 1 2 3 4 

i    0.250  0.250    0.250     0.250 0.2789 0.1023 0.0011 0.6174 

1ia
 

-105.17 -4.3631 -23.336 -32.635 -105.17 -4.3631 -23.336 -32.635 

2ia
 

31.025 58.9906 26.5679 11.0164 31.025 58.9906 26.5679 11.0164 

1im  0.7566 0.1113 0.1113 0.3735 0.4569 6.8063 0.6511 2.4379 

2im  -0.2433 -0.8886 -0.8886 1.0000 1.0010 0.1095 1.0000 0.4638 

Table-2.e 

Estimated Values Of The Parameters For CAR Image 

Number of Image Regions (K =3) 

Parameters 

 

Estimation of Initial 

Parameters 

Estimation of Final Parameters by EM 

Algorithm 

Image Region  Image Region 

1 2 3 1 2 3 

i   0.333   0.333    0.333 0.4208 -0.0297 0.6089 

1ia
 

-60.512 -74.9156 -37.404 -60.512 -74.9156 -37.404 

2ia
 

33.9930 75.3392 26.3223 33.9930 75.3392 26.3223 

1im  0.6403 0.4985 0.5869 0.4709 2.5803 2.4129 

2im  -0.3596 -0.5014 -0.4130 1.1147 0.4191 0.4721 
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The estimated probability density function of the pixel 

intensities of the image CAR is 
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Using the estimated probability density function and image 

segmentation algorithm given in section 3, the image 

segmentation is done for the five images under consideration. 

The original and segmented images are shown in Figure 2 

Fig 2: Original and Segmented Images 
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7. PERFORMANCE EVALUTION 

After conducting the experiment with the. By using  image 

segmentation algorithm we have conducted the experiment 

and also studied its performance in this paper. The 

performance evaluation of the segmentation technique is 

carried by obtaining the three performance measures namely,  

(i) probabilistic rand index (PRI), (ii) variation of information 

(VOI) and  (iii) global consistence error (GCE). The 

performance of developed algorithm using  Pearsonian Type I 

Distribution  (PTID-K) is studied by computing the 

segmentation performance measures namely PRI, GCE, and 

VOI for the five images under study. The computed values of 

the performance measures for the developed algorithm and  

the earlier existing finite Gaussian mixture model(GMM) with 

K-means algorithm are presented in Table 4 for a comparative 

study. 

  
Table 3: SEGMENTATION PERFORMACE MEASURES 

 

IMAGES 

 

METHOD 

PERFORMACE 

MEASURES 

PRI GCE  VOI 

 

FLIGHT 

GMM 0.7802 0.6554 7.7477 

PTID-K 0.9836 0.4702 1.9154 

 

HOUSE  

GMM 0.9028 0.7056 7.4164 

PTID-K 09031 0.6963 7.3567 

ELEPHANT 
GMM 0.9753 0.9142 8.8837 

PTID-K 0.9762 0.9012 8.8270 

HOUSE 
GMM 09252 0.6997 6.8004 

PTID-K 0.9628 0.2786 6.7263 

CAR 
GMM 0.9420 0.8779 8.8885 

PTID-K 0.9559 0.8584 8.8772 

 

From Table 3 it is identified that the PRI values of the existing 

algorithm based on finite Gaussian Mixture model for the five 

images considered for experimentation are less than that of 

the values from the segmentation algorithm based Pearsonian 

Type I distribution with K-means. Similarly GCE and VOI 

values of the proposed algorithm are less than that of finite 

Gaussian mixture model. This reveals that the proposed 

algorithm outperforms the existing algorithm based on the 

finite Gaussian mixture model.  

After developing the image segmentation method  and it is 

required to verify the utility of segmentation in model 

building of the image for image retrieval.  The performance 

evaluation of the retrieved image can be done by subjective 

image quality testing or by objective image quality testing.  

The objective image quality testing methods are often used 

since the numerical results of an objective measure allow a 

consistent comparison of different algorithms. There are 

several image quality measures available for performance 

evaluation of the image segmentation method.  An extensive 

survey of quality measures is given by Eskicioglu A.M. and 

Fisher P.S. (1995).  For the performance evaluation of the 

developed segmentation algorithm, we consider the following 

image quality measures.  

a) Average Difference = 
1 1

ˆ( , ) ( , )
M N

i j

Z i j Z i j MN
 

    
 

b) Maximum Distance = ˆ( , ) ( , )Max Z i j Z i j 
   

c) Image Fidelity  = 
2

2

1 1 1 1

ˆ ˆ1 ( , ) ( , ) ( , )
M N M N

i j i j

Z i j Z i j Z i j
   

         
 

d) Mean Square Error   = 
2

1 1

1 ˆ( , ) ( , )
M N

j i

Z i j Z i j
MN  

   
 

e) Signal to Noise Ratio   = 
1010*log 255/ ( )MSE 
 
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      f)    Image Quality Index   = 

 2 2 2 2

ˆ4

ˆ( ) ( )

xy

x y

Z Z
Q

Z Z



 


  
  

   

      where, 
1 1 1 1

1 1ˆ ˆ( , ) ;    ( , )
M N M N

i j i j

Z Z i j Z Z i j
MN MN   

    ;         

2 2 2 2

1 1

1 1 ˆ( ( , ) ) ;    ( ( , ) )
1 1

N N

x y
i i

Z i j Z Z i j Z
N N

 
 

    
 

 

       
1

1 ˆ ˆ( ( , ) ) ( ( , ) )
1

N

xy
i

Z i j Z Z i j Z
N




  
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where, ( , )Z i j  is the pixel intensity at the pixel ( i, j ) of 

the original image and ˆ( , )Z i j   is the estimated pixel 

intensity at the pixel ( i, j ) of the reconstructed image . 

Using the estimated probability density functions of the 

images under consideration the retrieved images are obtained 

and are shown in Figure 3. 

Fig 3: The Original and Retrieved Images 
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The image quality measures are computed for the five 

retrieved images FLIGHT, BOAT, ELEPHANT, HOUSE 

AND CAR using the proposed model and GMM with K-

means and their values are given in the Table.4 

 

 Table 4: Comparative Study of Image Quality Metrics 

IMAGE Quality 

Metrics 

GMM PTID-

K 

Standard 

Limits 

 

 

FLIGH

T 

Average 

Difference 

0.4946 0.4034 Close to 0 

Maximum 
Distance 

1.0000 1.0000 Close to 1 

Image Fidelity 1.0000 1.0000 Close to 1 

Mean Square 

Error 

0.5011 0.4043 Close to 0 

Signal to Noise 
Ratio 

5.6542 6.1207 As big as 
possible 

Image Quality 

Index 

1.0000 1.0000 Close to 1 

 

 

BOAT  

Average 

Difference 

0.4946 0.0832 Close to 0 

Maximum 

Distance 

1.0000 1.0000 Close to 1 

Image Fidelity 0.9000 0.9091 Close to 1 

Mean Square 

Error 

0.4946 0.0158 Close to 0 

Signal to Noise 
Ratio 

5.6828 13.243
0 

As big as 
possible 

Image Quality 

Index 

0.7068 0.7876 Close to 1 

 

 

ELEPH

ANT 

Average 
Difference 

0.4930 -
43.58

59 

Close to 0 

Maximum 

Distance 

1.0000 88 Close to 1 

Image Fidelity 1.0000 .8395 Close to 1 

Mean Square 

Error 

0.4930 0.4849 Close to 0 

Signal to Noise 
Ratio 

5.6897 5.7362 As big as 
possible 

Image Quality 

Index 

1.0011 1.0000 Close to 1 

 

 

HOUSE 

Average 
Difference 

0.579 13.354 Close to 0 

Maximum 

Distance 

1.0000 1.0000 Close to 1 

Image Fidelity 1.0000 0.8787 Close to 1 

Mean Square 

Error 

0.5079 0.5012 Close to 0 

Signal to Noise 

Ratio 

5.6251 5.2682 As big as 

possible 

Image Quality 

Index 

1.0007 0.9550 Close to 1 

 

 

CAR 

Average 

Difference 

0.5064 13.162

2 

Close to 0 

Maximum 

Distance 

1.0000 1.0000 Close to 1 

Image Fidelity 1.0000 0.9769 Close to 1 

Mean Square 
Error 

0.5064 0.4770 Close to 0 

Signal to Noise 

Ratio 

5.6318 4.3116 As big as 

possible 

Image Quality 
Index 

1.0012 0.9329 Close to 1 

 

It is perceived that all the image quality measures for the five 

images are meeting the standard criteria which is given in the 

Table 4. Basing on the above quality metrics we can retrieve 

images accurately by using the proposed algorithm. A 

comparative study is done on proposed algorithm with that of 

algorithm based on finite Gaussian mixture model reveals that 

the MSE of the proposed model is less than that of the finite 

Gaussian mixture model. It is perceived that the performance 

of the proposed model in retrieving the images is better than 
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the finite Gaussian mixture model by using these quality 

metrics. 

8. CONCLUSION 
This paper deals with an image segmentation algorithm based 

on finite mixture of Pearsonian Type I Distribution with EM + 

K-means algorithm. Here it is assumed that the pixel 

intensities of whole image follow a mixture of Pearsonian 

Type I Distribution. The Pearsonian Type I Distribution 

includes the several of the skewed distributions .The model 

parameters are estimated using EM algorithm , the 

Initialization of parameters is done through K-means and 

moment method of estimates. A segmentation algorithm is 

developed under the bayes frame. The Experiment results 

using Berkeley data set is revealed that this algorithm 

performs better then Gaussian mixture model. In image 

segmentation the pixel intensities of image regions are 

distributed asymmetrically. This is also supported by image 

segmentation measures such as VOI, GCE and PRI. This 

image segmentation method is useful in segmenting the 

images taken in sky and on earth. 
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